JP3430686B2 - COMPOUND FOR HIGH CORROSION RESISTANCE BOND MAGNET, BOND MAGNET, AND PROCESS FOR PRODUCING THEM - Google Patents

COMPOUND FOR HIGH CORROSION RESISTANCE BOND MAGNET, BOND MAGNET, AND PROCESS FOR PRODUCING THEM

Info

Publication number
JP3430686B2
JP3430686B2 JP31187594A JP31187594A JP3430686B2 JP 3430686 B2 JP3430686 B2 JP 3430686B2 JP 31187594 A JP31187594 A JP 31187594A JP 31187594 A JP31187594 A JP 31187594A JP 3430686 B2 JP3430686 B2 JP 3430686B2
Authority
JP
Japan
Prior art keywords
resin
compound
magnet
magnet powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31187594A
Other languages
Japanese (ja)
Other versions
JPH08167514A (en
Inventor
浩司 山本
修嗣 三野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP31187594A priority Critical patent/JP3430686B2/en
Publication of JPH08167514A publication Critical patent/JPH08167514A/en
Application granted granted Critical
Publication of JP3430686B2 publication Critical patent/JP3430686B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐食性に優れた希土類
系ボンド磁石とその原料コンパウンド、ならびにそれら
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth-based bonded magnet excellent in corrosion resistance, its raw material compound, and a method for producing them.

【0002】[0002]

【従来の技術】磁気特性に優れた希土類系磁石粉末を熱
可塑性または熱硬化性合成樹脂をバインダーとして成形
することにより製造されるボンド磁石は、樹脂を含有し
ているため、従来の焼結磁石に比べれば磁気性能が低く
なるものの、なお十分に高い磁気性能をもっている。そ
の上、複雑薄肉形状の磁石や、ラジアル異方性磁石が容
易に得られるといった焼結磁石にない特徴を有するた
め、特にスピンドルモーター、ステッピングモーター等
の小型モーターに多く用いられ、近年需要が増加してい
る。
2. Description of the Related Art Bonded magnets produced by molding rare earth magnet powders having excellent magnetic properties using a thermoplastic or thermosetting synthetic resin as a binder contain a resin, so that conventional sintered magnets are used. Although the magnetic performance is lower than that of, it still has sufficiently high magnetic performance. In addition, because it has features not found in sintered magnets, such as complicated thin-walled magnets and radial anisotropic magnets, which are easily obtained, it is often used in small motors such as spindle motors and stepping motors, and demand has increased in recent years. is doing.

【0003】原料の希土類系磁石粉末は高い磁気特性を
有するものの、例えば、R−Fe−B系(RはYを含む希
土類元素から選ばれた1種または2種以上の元素、特に
Nd)磁石粉末の場合、活性な希土類元素と鉄が組成の大
半を占めるため、空気酸化や腐食を受け易い。
Although the rare earth magnet powder as a raw material has high magnetic properties, for example, one or more elements selected from R-Fe-B series (R is a rare earth element containing Y, especially
In the case of Nd) magnet powder, the active rare earth element and iron occupy most of the composition, so they are susceptible to air oxidation and corrosion.

【0004】そのため、ボンド磁石の製造においては、
まず希土類磁石粉末の表面を液状のバインダー樹脂と混
合して、粉末表面が樹脂で被覆された、コンパウンドと
呼ばれる原料粉末を調製し、このコンパウンドを射出成
形または圧縮成形し、バインダーが熱硬化性樹脂の場合
にはさらに加熱して樹脂を硬化させることにより、製品
を得ている。しかし、このように樹脂で磁石粉末を被覆
しても、特に高温、多湿環境下では酸化、腐食の進行は
速く、それに伴い、磁気性能が低下するという問題があ
った。
Therefore, in the production of bonded magnets,
First, the surface of the rare earth magnet powder is mixed with a liquid binder resin to prepare a raw material powder called a compound, the powder surface of which is coated with a resin, and the compound is injection molded or compression molded, and the binder is a thermosetting resin. In this case, the product is obtained by further heating to cure the resin. However, even if the magnet powder is coated with the resin as described above, there is a problem that the oxidation and the corrosion proceed rapidly especially in a high temperature and high humidity environment, and the magnetic performance is deteriorated accordingly.

【0005】ボンド型磁石の耐食性 (耐酸化性) を改善
する手段として、特開平1−102901号および特開平3−
74810 号各公報に示されるように、バインダー樹脂と混
合する前に、希土類系磁石粉末表面をシランカップリン
グ剤などのカップリング剤で表面処理することが知られ
ているが、なお耐食性の改善は不十分であった。
As means for improving the corrosion resistance (oxidation resistance) of bond type magnets, JP-A-1-102901 and JP-A-3-102901.
As disclosed in Japanese Patent No. 74810, it is known that the surface of a rare earth magnet powder is treated with a coupling agent such as a silane coupling agent before mixing with a binder resin. It was insufficient.

【0006】特開平3−191501号公報には、希土類系磁
石粉末をカップリング剤で表面処理した後、さらにグロ
ー放電を利用したプラズマ重合法により粉末表面に有機
樹脂皮膜を形成してから、バインダー樹脂と混合して成
形を行うボンド磁石の製造方法が提案されている。しか
し、この方法は、樹脂との混合前に、カップリング剤に
よる表面処理とプラズマ重合の2種類の処理が必要であ
って、工程が複雑となる上、実施例に示されるように、
プラズマ重合による樹脂皮膜の形成に40分という長時間
を要するので、工業化には不向きである。
JP-A-3-191501 discloses that after a rare earth magnet powder is surface-treated with a coupling agent, an organic resin film is further formed on the powder surface by a plasma polymerization method utilizing glow discharge, and then a binder is used. There has been proposed a method for producing a bonded magnet, which is mixed with a resin and molded. However, this method requires two kinds of treatments, namely, a surface treatment with a coupling agent and a plasma polymerization before mixing with a resin, which complicates the process and, as shown in Examples,
Since it takes a long time of 40 minutes to form a resin film by plasma polymerization, it is not suitable for industrialization.

【0007】[0007]

【発明が解決しようとする課題】ボンド磁石では、磁石
粉末が磁石で被覆されていて、耐酸化性は問題ないよう
に考えられるが、実際には、樹脂と粉末との接着性が悪
いため、成形時に被覆が一部剥離し、磁石粉末の表面は
部分的に露出していることが多く、また磁石粉末/樹脂
の界面に水や酸素が侵入し、酸化が進行することがあっ
た。特に高温使用時には、その酸化の進行が速く、それ
に伴う磁気性能の低下が大きかった。
In the bonded magnet, the magnet powder is covered with the magnet, and it is considered that the oxidation resistance is not a problem, but in reality, the adhesiveness between the resin and the powder is poor. In some cases, the coating was partly peeled off during molding and the surface of the magnet powder was partially exposed in many cases, and water and oxygen entered the interface of the magnet powder / resin, and oxidation sometimes proceeded. In particular, when used at high temperatures, the oxidation proceeded rapidly, and the magnetic performance was greatly reduced.

【0008】本発明は、活性表面を有するため、耐食性
(耐酸化性) 、耐熱性に劣るR−Fe−B系などの希土類
系磁石粉末に、高い初期磁気特性を維持しつつ、耐食
性、耐熱性を付与したボンド磁石用コンパウンドと、こ
のコンパウンドを用いたボンド磁石、ならびにそれらの
製造方法を提供することを目的とする。
Since the present invention has an active surface, it is corrosion resistant.
(Oxidation resistance) R-Fe-B based rare earth magnet powders with poor heat resistance, while maintaining high initial magnetic characteristics, with a corrosion resistant and heat resistant compound for bonded magnets and this compound It is an object of the present invention to provide bonded magnets, and manufacturing methods thereof.

【0009】[0009]

【課題を解決するための手段】本発明者らは、蒸着重合
法により比較的速い造膜速度で均一な樹脂皮膜を形成で
きることに着目し、この樹脂皮膜を希土類系磁石粉末の
表面処理に利用したところ、磁石粉末の耐酸化性を著し
く高めることができることを見出し、本発明を完成させ
た。
The inventors of the present invention have noticed that a uniform resin film can be formed by a vapor deposition polymerization method at a relatively high film forming rate, and this resin film is used for surface treatment of rare earth magnet powder. As a result, they found that the oxidation resistance of the magnet powder can be remarkably enhanced, and completed the present invention.

【0010】ここに、本発明の要旨は、希土類系磁石粉
末表面に、蒸着重合法により形成された内層樹脂皮膜
と、熱硬化性または熱可塑性外層樹脂皮膜とを有するこ
とを特徴とする、高耐食性ボンド磁石用コンパウンドに
ある。
Here, the gist of the present invention is that the rare earth magnet powder surface has an inner layer resin film formed by a vapor deposition polymerization method and a thermosetting or thermoplastic outer layer resin film. It is a compound for corrosion resistant bonded magnets.

【0011】この高耐食性ボンド磁石用コンパウンド
は、希土類系磁石粉末表面に、縮重合性の2種以上のモ
ノマーの蒸気を真空蒸着させ、粉末表面で重合させるこ
とにより内層樹脂皮膜を形成した後、この粉末を熱硬化
性または熱可塑性合成樹脂液と混合することにより、前
記内層樹脂皮膜の上に外層樹脂皮膜を形成することによ
り製造することができる。
This compound for a highly corrosion-resistant bonded magnet is obtained by vacuum-depositing vapors of two or more kinds of polycondensable monomers on the surface of rare earth magnet powder, and polymerizing on the surface of the powder to form an inner layer resin film, It can be produced by mixing the powder with a thermosetting or thermoplastic synthetic resin liquid to form an outer resin film on the inner resin film.

【0012】本発明によればまた、上記のコンパウンド
から製造された高耐食性ボンド磁石、ならびに上記のコ
ンパウンドを押出、射出、または圧縮成形する工程を含
む、高耐食性ボンド磁石の製造方法も提供される。
According to the present invention, there is also provided a highly corrosion resistant bonded magnet produced from the above compound, and a method for producing a highly corrosion resistant bonded magnet including the steps of extruding, injecting or compression molding the above compound. .

【0013】[0013]

【作用】以下に本発明を詳細に説明する。本発明で用い
る磁石粉末は、従来より知られている任意の希土類系磁
石粉末でよく、例えば、希土類・鉄系および希土類・コ
バルト系合金磁石粉末である。希土類・鉄系合金の代表
例は、R−Fe−B系またはR−Fe−N系の組成を有する
合金である。ここでRはYを含む希土類元素から選ばれ
た1種または2種以上の元素であり、好ましくはNdまた
はNdと他の1種以上の希土類元素との混合物である。Fe
の一部はCoで置換されていてもよい。希土類・コバルト
系合金の代表例はSm−Co系である。これらは公知方法で
製造したもので、あるいは、市販品でもよい。また、磁
石粉末は、磁気等方性と磁気異方性のいずれであっても
よい。
The present invention will be described in detail below. The magnet powder used in the present invention may be any conventionally known rare earth magnet powder, for example, rare earth / iron magnet and rare earth / cobalt alloy magnet powder. A typical example of the rare earth / iron-based alloy is an alloy having an R-Fe-B-based or R-Fe-N-based composition. Here, R is one or more elements selected from rare earth elements including Y, and is preferably Nd or a mixture of Nd and one or more other rare earth elements. Fe
A part of may be replaced by Co. A typical example of rare earth / cobalt alloy is Sm-Co alloy. These may be manufactured by known methods or may be commercially available products. Further, the magnet powder may be either magnetic isotropic or magnetic anisotropy.

【0014】本発明によれば、原料の希土類系磁石粉末
の表面に、内外2層の樹脂皮膜が形成される。内層は蒸
着重合法により形成された薄い樹脂皮膜であり、磁石粉
末の保護膜の機能を果たす。外層は従来と同様にバイン
ダー樹脂との混合により形成された樹脂皮膜であり、バ
インダーの機能も兼ね備える。
According to the present invention, inner and outer two-layer resin coatings are formed on the surface of the raw material rare earth magnet powder. The inner layer is a thin resin film formed by vapor deposition polymerization and functions as a protective film for the magnet powder. The outer layer is a resin film formed by mixing with a binder resin as in the conventional case, and also has a binder function.

【0015】内層樹脂皮膜を形成するための蒸着重合法
は、通常は酸成分と塩基 (アミン)成分からなる2種以
上の縮重合性モノマーの蒸気 (気相モノマー) を、真空
室中に置いた基体上に蒸着させ、次いで基体を加熱する
か、或いは真空蒸着中から基体を加熱することで、蒸着
モノマーを基体上で重合させることにより、基体上に縮
重合ポリマーからなる樹脂皮膜を形成する方法である。
The vapor deposition polymerization method for forming the inner layer resin film is usually carried out by placing vapors (gas phase monomers) of two or more polycondensation-polymerizable monomers consisting of an acid component and a base (amine) component in a vacuum chamber. By vapor-depositing on a substrate and then heating the substrate, or by heating the substrate during vacuum vapor deposition, the vaporized monomer is polymerized on the substrate to form a resin film made of a condensation-polymerized polymer on the substrate. Is the way.

【0016】蒸着重合法により形成された樹脂皮膜は、
基体の磁石粉末との接着強度が高く、高純度で緻密であ
り、表面が平滑で膜厚の均一性に優れている。そのた
め、数μm以下、例えば、1μmといった薄膜で、基体
を十分に酸化から保護することができる。また、蒸着重
合法では、蒸着膜の生成速度が1μm/min と比較的速い
ので、数分程度で必要な樹脂皮膜を形成することができ
る。
The resin film formed by the vapor deposition polymerization method is
It has high adhesion strength to the magnetic powder of the substrate, high purity and denseness, smooth surface, and excellent film thickness uniformity. Therefore, a thin film having a thickness of several μm or less, for example, 1 μm can sufficiently protect the substrate from oxidation. Further, in the vapor deposition polymerization method, the rate of formation of the vapor deposited film is relatively high at 1 μm / min, so that the required resin film can be formed in about several minutes.

【0017】蒸着重合法に適用可能なモノマーの例を挙
げると、酸成分としては、テレフタロイルクロリド、4,
4'−ビフェニルジカルボニルクロリド、ピロメリト酸二
無水物、 3,3',4,4'−ベンゾフェノンテトラカルボン酸
二無水物、トリメリト酸無水物クロリド、テレフタルア
ルデヒド、4,4'−ジフェニルメタンジイソシアナート等
がある。塩基成分としては、4,4'−ジアミノジフェニル
エーテル、p−フェニレンジアミン、4,4'−ジアミノジ
フェニルメタン、3,3'−ジアミノベンゾフェノン、3,3'
−ジメチルベンジジン、N,N'−ビス (トリメチルシリ
ル) ビス(4−アミノフェニル) エーテル、N,N'−ビス
(トリメチルシリル) −p−フェニレンジアミン等が例
示される。これらの酸および塩基成分によって形成され
る樹脂は、ポリアミド、ポリイミド、ポリアミドイミ
ド、ポリアゾメチン、ポリユリア等である。
Examples of monomers applicable to the vapor deposition polymerization method include terephthaloyl chloride, 4,
4'-biphenyldicarbonyl chloride, pyromellitic dianhydride, 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride, trimellitic anhydride chloride, terephthalaldehyde, 4,4'-diphenylmethane diisocyanate Etc. As the base component, 4,4'-diaminodiphenyl ether, p-phenylenediamine, 4,4'-diaminodiphenylmethane, 3,3'-diaminobenzophenone, 3,3 '
-Dimethylbenzidine, N, N'-bis (trimethylsilyl) bis (4-aminophenyl) ether, N, N'-bis
(Trimethylsilyl) -p-phenylenediamine and the like are exemplified. The resin formed by these acid and base components is polyamide, polyimide, polyamideimide, polyazomethine, polyurea or the like.

【0018】中でも芳香族ポリアミドは、酸素透過性が
小さく (例えば、J. Appl. Polym.Sci., 25, 1391(198
0)参照) 、しかも基体 (本発明の場合、希土類系磁石粉
末)の温度が比較的低温 (一般に200 ℃以下、例えば100
℃またはそれ以下) で重合が起こるため、基体となる
磁石粉末の加熱による磁気特性の低下がないので特に好
適である。
Among them, aromatic polyamides have low oxygen permeability (for example, J. Appl. Polym. Sci., 25, 1391 (198
(See (0)) and the temperature of the substrate (rare earth magnet powder in the case of the present invention) is relatively low (generally 200 ° C. or lower, for example, 100 ° C. or lower).
Polymerization occurs at (° C. or lower), so that there is no deterioration of magnetic properties due to heating of the magnet powder as a base, which is particularly preferable.

【0019】蒸着重合法によれば、気相モノマーが基体
の磁石粉末の表面に到達したのち、粉末表面を動き回り
ながら反応して重合が起こる。そのため、磁石粉末表面
の微小な割れなどにも侵入して、重合膜が形成される。
また、気相モノマーはいずれもカルボン酸基もしくはそ
の誘導体基、またはアミノ基といった極性官能基を有し
ているので、磁石粉末表面との親和性に優れている上、
蒸着重合膜の上に形成される合成樹脂との親和性にも優
れている。
According to the vapor deposition polymerization method, after the gas phase monomer reaches the surface of the magnet powder of the substrate, the reaction occurs while moving around the surface of the powder to cause polymerization. Therefore, the polymer film is formed by penetrating even minute cracks on the surface of the magnet powder.
In addition, since each of the gas phase monomers has a polar functional group such as a carboxylic acid group or its derivative group, or an amino group, it has excellent affinity with the surface of the magnet powder.
It also has excellent compatibility with synthetic resins formed on vapor-deposited polymer films.

【0020】従って、蒸着重合法により形成された内層
の樹脂皮膜は、磁石粉末の欠陥部を封じると同時に、素
地の磁石表面および外層の樹脂皮膜と直接結合する。そ
の結果、内層樹脂皮膜は、単なる磁石粉末と樹脂との混
合により形成した樹脂皮膜に比べ、磁石粉末との密着性
が著しく高まり、成形時に磁石粉末表面からはがれた
り、界面に水や酸素が侵入することがないので、磁石粉
末の耐食性 (耐酸化性)、耐熱性の向上に非常に有効で
あることが判明した。
Therefore, the resin film of the inner layer formed by the vapor deposition polymerization method seals the defective portion of the magnet powder and, at the same time, directly bonds to the magnet surface of the base and the resin film of the outer layer. As a result, the inner layer resin film has significantly higher adhesion to the magnet powder than the resin film formed by simply mixing the magnet powder and resin, peels off from the magnet powder surface during molding, and water and oxygen penetrate into the interface. Therefore, it was found that it is very effective in improving the corrosion resistance (oxidation resistance) and heat resistance of the magnet powder.

【0021】また、前述した特開平3−191501号公報に
記載の方法とは異なり、内層樹脂被膜形成前のカップリ
ング剤による表面処理が不要であり、さらに蒸着重合法
は造膜速度が速いので、内層樹脂皮膜を比較的短時間で
形成することができる。内層の蒸着重合法による樹脂皮
膜の厚みは、要求される耐食性の程度や経済性等を考慮
して適宜決定されるが、好ましい厚みは 0.5〜20μmで
あり、より好ましくは0.5〜5μmである。実施例に示
すように、厚み1μmという薄膜で十分に磁石粉末に耐
食性と耐熱性を付与できる。
Also, unlike the method described in the above-mentioned Japanese Patent Laid-Open No. 3-191501, there is no need for surface treatment with a coupling agent before forming the inner layer resin film, and the vapor deposition polymerization method has a high film forming rate. The inner layer resin film can be formed in a relatively short time. The thickness of the resin film of the inner layer formed by the vapor deposition polymerization method is appropriately determined in consideration of the required degree of corrosion resistance and economical efficiency, but the preferable thickness is 0.5 to 20 μm, and more preferably 0.5 to 5 μm. As shown in the examples, a thin film having a thickness of 1 μm can sufficiently provide the magnet powder with corrosion resistance and heat resistance.

【0022】蒸着重合後、形成された内層の樹脂皮膜上
に、従来のボンド磁石用コンパウンドと同様に熱可塑性
または熱硬化性の合成樹脂を被覆して、外層の樹脂皮膜
を形成する。外層皮膜の樹脂種は特に制限されないが、
熱可塑性樹脂としては、ポリアミド樹脂、ポリプロピレ
ン樹脂、ポリフェニレンスルフィド樹脂等が使用でき、
熱硬化性樹脂としてはエポキシ樹脂、フェノール樹脂、
ポリエステル樹脂等が適当である。熱硬化性樹脂の場合
には、必要に応じて硬化剤や硬化促進剤を併用する。
After the vapor deposition polymerization, a thermoplastic or thermosetting synthetic resin is coated on the resin film of the formed inner layer as in the conventional compound for bonded magnets to form a resin film of the outer layer. The resin type of the outer layer coating is not particularly limited,
As the thermoplastic resin, polyamide resin, polypropylene resin, polyphenylene sulfide resin, etc. can be used,
As thermosetting resin, epoxy resin, phenol resin,
A polyester resin or the like is suitable. In the case of a thermosetting resin, a curing agent and a curing accelerator are used together if necessary.

【0023】外層の樹脂被覆は、蒸着重合法により形成
された内層樹脂皮膜を有する磁石粉末を、熱硬化性また
は熱可塑性合成樹脂液と混合することにより行うことが
できる。合成樹脂液は、被覆温度で液状の樹脂をそのま
ま使用してもよく、或いは固体または液体の樹脂を適当
な有機溶媒に溶解、懸濁、もしくは乳化させた溶液、懸
濁液もしくはエマルジョンのいずれでもよい。樹脂液に
は、所望により、潤滑剤やシランカップリング剤などの
添加剤を少量添加してもよい。
The resin coating of the outer layer can be carried out by mixing magnet powder having an inner layer resin film formed by vapor deposition polymerization with a thermosetting or thermoplastic synthetic resin liquid. As the synthetic resin liquid, a resin which is liquid at the coating temperature may be used as it is, or a solution, suspension or emulsion in which a solid or liquid resin is dissolved, suspended or emulsified in an appropriate organic solvent. Good. If desired, a small amount of additives such as a lubricant and a silane coupling agent may be added to the resin liquid.

【0024】上記磁石粉末を合成樹脂液と十分に混合し
た後、必要であれば乾燥して溶媒を除去すると、外層の
樹脂皮膜が内層樹脂皮膜上に形成され、本発明のボンド
磁石用コンパウンドが得られる。
After the above magnet powder is thoroughly mixed with the synthetic resin solution and dried if necessary to remove the solvent, an outer resin film is formed on the inner resin film, and the compound for a bonded magnet of the present invention is obtained. can get.

【0025】内外2層の樹脂皮膜を有する本発明のコン
パウンドは、従来と同様に、押出、射出、または圧縮成
形により成形される。原料の希土類系磁石粉末が磁気異
方性のものである場合には、成形中に磁場を印加する
と、各磁石粉末の磁化容易方向が同方向に揃う配向が起
こって、特定方向に磁気特性が向上した永久磁石を得る
ことができるので、磁場の印加下で成形を行うことが好
ましい。
The compound of the present invention having a resin film of two layers inside and outside is molded by extrusion, injection, or compression molding as in the conventional case. When the raw rare earth magnet powder has magnetic anisotropy, when a magnetic field is applied during molding, an orientation occurs in which the easy magnetization directions of the magnet powders are aligned in the same direction, and the magnetic properties are Since it is possible to obtain an improved permanent magnet, it is preferable to perform molding under the application of a magnetic field.

【0026】一般に、押出成形と射出成形は、成形中の
コンパウンドの流動を必要とするので、外層樹脂が熱可
塑性樹脂である場合に適用され、外層の樹脂皮膜を比較
的厚く形成する必要がある。外層樹脂の被覆量は、原料
の磁石粉末に対して5〜20重量%の範囲内が適当であ
る。
In general, extrusion molding and injection molding require the flow of the compound during molding, so that it is applied when the outer layer resin is a thermoplastic resin, and it is necessary to form the resin film of the outer layer relatively thick. . The coating amount of the outer layer resin is appropriately in the range of 5 to 20% by weight based on the raw material magnet powder.

【0027】これに対して、圧縮成形ではコンパウンド
の流動は必要ないので、外層樹脂として耐熱性に優れた
熱硬化性樹脂を使用できる。金型への投入を円滑に進め
るためには、常温で固体の熱硬化性樹脂を外層樹脂とし
て使用することが好ましい。圧縮成形の場合の外層樹脂
の被覆量は、磁石粉末に対して1〜4重量%と、より少
量でよい。従って、圧縮成形の方が磁石粉末の充填量を
多くでき、より優れた磁気性能のボンド磁石を得ること
ができる。
On the other hand, since the flow of the compound is not required in the compression molding, a thermosetting resin having excellent heat resistance can be used as the outer layer resin. A thermosetting resin that is solid at room temperature is preferably used as the outer layer resin in order to facilitate the introduction into the mold. In the case of compression molding, the coating amount of the outer layer resin may be as small as 1 to 4% by weight based on the magnet powder. Therefore, the compression molding can increase the filling amount of the magnet powder, and a bonded magnet having more excellent magnetic performance can be obtained.

【0028】成形後、特に外層樹脂が熱硬化性樹脂であ
る場合には、必要により加熱して樹脂を硬化させる。こ
の時の加熱雰囲気は、磁石粉末の酸化を避けるために、
不活性雰囲気とすることが好ましい。押出または射出成
形のように高温で成形する場合には、成形も不活性雰囲
気で行うことが好ましい。得られたボンド磁石は、必要
により、常法に従って、塗装やメッキなどの表面処理を
施してもよい。
After molding, particularly when the outer layer resin is a thermosetting resin, the resin is cured by heating if necessary. The heating atmosphere at this time is to avoid oxidation of the magnet powder,
An inert atmosphere is preferable. When molding at a high temperature such as extrusion or injection molding, it is preferable to carry out molding in an inert atmosphere. If necessary, the obtained bonded magnet may be subjected to surface treatment such as painting or plating according to a conventional method.

【0029】[0029]

【実施例】以下、実施例により本発明をより具体的に説
明する。実施例中、部は特に指定のない限り重量部であ
る。
The present invention will be described in more detail with reference to the following examples. In the examples, parts are parts by weight unless otherwise specified.

【0030】原料磁石粉末の作製 原子分率でNd:13%、Co:12%、Ga:1%、B:6%、
残部がFeからなる組成を有する合金を 970〜1170Kの水
素ガス中に保持して、Nd水酸化物、Fe2B、Feに分解し
た。次にこの温度領域で水素圧を下げ、Nd水酸化物から
水素を解離させることによって、微細なNd2Fe14B結晶か
らなる磁気異方性を示す磁石粉末を作製した。得られた
磁石粉末をさらに粉砕し、分級して、63〜297 μmの粒
度範囲の粉末を原料磁石粉末として使用した。
Manufacture of raw material magnet powder Nd: 13%, Co: 12%, Ga: 1%, B: 6% by atomic fraction,
An alloy having a composition in which the balance was Fe was held in hydrogen gas at 970 to 1170 K and decomposed into Nd hydroxide, Fe 2 B and Fe. Next, the hydrogen pressure was lowered in this temperature range to dissociate the hydrogen from the Nd hydroxide to prepare a magnet powder having a magnetic anisotropy composed of fine Nd 2 Fe 14 B crystals. The obtained magnet powder was further pulverized and classified, and powder having a particle size range of 63 to 297 μm was used as a raw material magnet powder.

【0031】(実施例1)原料磁石粉末を真空室に入れ、
テレフタロイルクロリドと4,4'−ジアミノジフェニルエ
ーテルの両モノマーを別々に加熱蒸発させて発生させた
2種類の気相モノマーを真空室に導入して、真空下 (到
達真空度8×10-4torr) 、100 ℃に加熱した粉末表面に
蒸着重合させることによって、1μm厚の芳香族ポリイ
ミドからなる内層樹脂皮膜を磁石粉末表面に形成した。
この内層皮膜の形成に要した時間は約1分であった。
(Example 1) A raw material magnet powder was placed in a vacuum chamber,
Two kinds of gas phase monomers generated by separately heating and evaporating both monomers of terephthaloyl chloride and 4,4'-diaminodiphenyl ether were introduced into a vacuum chamber, and under vacuum (achieved vacuum degree 8 × 10 -4 The inner layer resin film made of aromatic polyimide having a thickness of 1 μm was formed on the magnet powder surface by vapor deposition polymerization on the powder surface heated to 100 ° C.
The time required to form this inner layer film was about 1 minute.

【0032】一方、常温で固体のクレゾールノボラック
型エポキシ樹脂100 部とフェノール系硬化剤3部とを溶
媒のメチルエチルケトンに溶解し、樹脂液を得た。蒸着
重合により内層樹脂で被覆された上記の磁石粉末と樹脂
液とを、磁石粉末97部:エポキシ樹脂 (固形分) 3部の
割合で十分に混合した後、メチルエチルケトンを常温で
蒸発させ、コンパウンドを作製した。
On the other hand, 100 parts of a cresol novolac type epoxy resin which was solid at room temperature and 3 parts of a phenolic curing agent were dissolved in methyl ethyl ketone as a solvent to obtain a resin liquid. The above magnet powder coated with an inner layer resin by vapor deposition polymerization and the resin liquid were sufficiently mixed at a ratio of 97 parts of magnet powder: 3 parts of epoxy resin (solid content), and then methyl ethyl ketone was evaporated at room temperature to form a compound. It was made.

【0033】(実施例2)原料磁石粉末を真空室に入れ、
テレフタロイルクロリドとp−フェニレンジアミンの両
モノマーを別々に加熱蒸発させて発生させた2種類の気
相モノマーを真空室に導入して、真空下 (到達真空度2
×10-3torr) 、170 ℃に加熱した粉末表面に蒸着重合さ
せることによって、1μm厚の芳香族ポリアミドからな
る内層樹脂皮膜を磁石粉末表面に形成した。この内層皮
膜の形成に要した時間は約1分であった。このようにし
て内層樹脂被覆を形成した磁石粉末を、実施例1に記載
した方法と同様にしてエポキシ樹脂液と混合し、溶媒蒸
発後にコンパウンドを得た。
(Example 2) The raw material magnet powder was placed in a vacuum chamber,
Two kinds of gas phase monomers generated by separately heating and evaporating both monomers of terephthaloyl chloride and p-phenylenediamine were introduced into a vacuum chamber, and under vacuum (achieved vacuum degree 2
The inner layer resin film made of aromatic polyamide having a thickness of 1 μm was formed on the surface of the magnet powder by vapor deposition polymerization on the surface of the powder heated to × 10 −3 torr) and 170 ° C. The time required to form this inner layer film was about 1 minute. The magnet powder thus coated with the inner layer resin was mixed with the epoxy resin solution in the same manner as in Example 1 to obtain a compound after solvent evaporation.

【0034】(実施例3)原料磁石粉末を真空室に入れ、
テレフタロイルクロリドとN,N'−ビス (トリメチルシリ
ル) ビス(4−アミノフェニル) エーテルの両モノマーを
別々に加熱蒸発させて発生させた2種類の気相モノマー
を真空室に導入して、真空下 (到達真空度2×10-3tor
r) 、60℃に加熱した粉末表面に蒸着重合させることに
よって、1μm厚の芳香族ポリアミドからなる内層樹脂
皮膜を磁石粉末表面に形成した。この内層皮膜の形成に
要した時間は約1分であった。このようにして内層樹脂
被覆を形成した磁石粉末を、実施例1に記載した方法と
同様にしてエポキシ樹脂液と混合し、溶媒蒸発後にコン
パウンドを得た。
(Example 3) A raw material magnet powder was placed in a vacuum chamber,
Two kinds of gas phase monomers generated by separately heating and evaporating both monomers of terephthaloyl chloride and N, N'-bis (trimethylsilyl) bis (4-aminophenyl) ether were introduced into the vacuum chamber, and vacuum was generated. Lower (Ultimate vacuum degree 2 × 10 -3 tor
r), the inner surface resin film made of aromatic polyamide having a thickness of 1 μm was formed on the surface of the magnet powder by vapor deposition polymerization on the surface of the powder heated to 60 ° C. The time required to form this inner layer film was about 1 minute. The magnet powder thus coated with the inner layer resin was mixed with the epoxy resin solution in the same manner as in Example 1 to obtain a compound after solvent evaporation.

【0035】(比較例1)常温で固体のクレゾールノボラ
ック型エポキシ樹脂100 部とフェノール系硬化剤3部と
を溶媒のメチルエチルケトンに溶解し、樹脂液を得た。
原料磁石粉末と樹脂液とを、磁石粉末97部:エポキシ樹
脂 (固形分) 3部の割合で十分に混合した後、メチルエ
チルケトンを常温で蒸発させ、コンパウンドを作製し
た。
Comparative Example 1 100 parts of a cresol novolac type epoxy resin which was solid at room temperature and 3 parts of a phenolic curing agent were dissolved in methyl ethyl ketone as a solvent to obtain a resin solution.
After thoroughly mixing the raw material magnet powder and the resin liquid in the ratio of 97 parts of magnet powder: 3 parts of epoxy resin (solid content), methyl ethyl ketone was evaporated at room temperature to prepare a compound.

【0036】(比較例2)原料磁石粉末100 部を、γ−グ
リシドキシプロピルトリメトキシシラン1部とエタノー
ル水溶液 (水:エタノールを1:9の体積比で混合) 2
部と共に十分に混合し、次いで窒素雰囲気中、80℃で2
時間乾燥して、磁石粉末をシランカップリング剤で表面
処理した。
Comparative Example 2 100 parts of raw material magnet powder was mixed with 1 part of γ-glycidoxypropyltrimethoxysilane and an aqueous ethanol solution (water: ethanol was mixed at a volume ratio of 1: 9).
Mix well with 2 parts, then 2 at 80 ° C in a nitrogen atmosphere.
After drying for an hour, the magnet powder was surface-treated with a silane coupling agent.

【0037】一方、常温で固体のクレゾールノボラック
型エポキシ樹脂100 部とフェノール系硬化剤3部とを溶
媒のメチルエチルケトンに溶解し、樹脂液を得た。上記
のシランカップリング剤で表面処理した磁石粉末と樹脂
液とを、磁石粉末97部:エポキシ樹脂 (固形分) 3部の
割合で十分に混合した後、メチルエチルケトンを常温で
蒸発させ、コンパウンドを作製した。
On the other hand, 100 parts of a cresol novolac type epoxy resin which was solid at room temperature and 3 parts of a phenolic curing agent were dissolved in methyl ethyl ketone as a solvent to obtain a resin liquid. The magnet powder surface-treated with the above silane coupling agent and the resin liquid were thoroughly mixed in a ratio of 97 parts of magnet powder: 3 parts of epoxy resin (solid content), and then methyl ethyl ketone was evaporated at room temperature to prepare a compound. did.

【0038】ボンド磁石の作製 上記の各実施例および比較例で作製したコンパウンド
を、12 kOeの磁場中において、加圧力8ton/cm2 で圧縮
成形した。得られた成形体を150 ℃のアルゴン雰囲気下
で1時間加熱して樹脂を硬化させ、ボンド磁石を作製し
た。
Production of Bonded Magnets The compounds produced in each of the above Examples and Comparative Examples were compression-molded in a magnetic field of 12 kOe at a pressing force of 8 ton / cm 2 . The molded body thus obtained was heated in an argon atmosphere at 150 ° C. for 1 hour to cure the resin and produce a bonded magnet.

【0039】上記の各実施例および比較例で作製したコ
ンパウンドおよびボンド磁石について、耐食性試験を実
施した。耐食性の評価は、コンパウンドおよび磁石を12
0 ℃の空気中に1000時間放置し、この放置前 (初期) と
1000時間放置後の磁気特性を調べることにより行った。
Corrosion resistance tests were carried out on the compounds and bonded magnets produced in the above Examples and Comparative Examples. Corrosion resistance was evaluated using compounds and magnets 12
Leave it in the air at 0 ° C for 1000 hours.
This was done by examining the magnetic properties after standing for 1000 hours.

【0040】コンパウンドの磁気特性は、測定直前に配
向着磁を行ってからVSM により測定した。一方、ボンド
磁石の磁気特性は、測定直前に着磁を行ってから、BHト
レーサーにより測定した。また、ボンド磁石の錆発生状
況を目視により観察した。結果を表1に示す。
The magnetic characteristics of the compound were measured by VSM after orientation magnetization was performed immediately before the measurement. On the other hand, the magnetic characteristics of the bonded magnet were measured with a BH tracer after magnetization was performed immediately before the measurement. Moreover, the rust generation state of the bonded magnet was visually observed. The results are shown in Table 1.

【0041】[0041]

【表1】 [Table 1]

【0042】表1に示したように、従来のように樹脂液
との混合による樹脂被覆のみのボンド磁石用コンパウン
ド (比較例1) 、あるいはさらに下地としてシランカッ
プリング剤で表面処理したコンパウンド (比較例2)
と、それから製造されたボンド磁石は、120 ℃の空気中
に1000時間放置した後、磁気性能が顕著に低下し、また
磁石には肉眼で見える錆が発生していた。
As shown in Table 1, a compound for a bonded magnet, which was only coated with a resin by mixing with a resin liquid as in the conventional case (Comparative Example 1), or a compound which was further surface-treated with a silane coupling agent as a base (Comparative Example 2)
The bonded magnet produced from the above had a remarkable decrease in magnetic performance after being left in air at 120 ° C. for 1000 hours, and the magnet had visible rust.

【0043】これに対し、本発明に従って蒸着重合法に
より形成された内層の保護樹脂皮膜を有する実施例のボ
ンド磁石用コンパウンドと、それから製造されたボンド
磁石では、120 ℃の空気中に1000時間放置後も磁気性能
の低下がほとんどなかった。従って、本発明のコンパウ
ンドおよびボンド磁石が、耐食性 (耐酸化性) と耐熱性
に優れていることは明らかである。
On the other hand, the bonded magnet compound of the example having the protective resin film of the inner layer formed by the vapor deposition polymerization method according to the present invention and the bonded magnet produced from the compound were left to stand in air at 120 ° C. for 1000 hours. After that, there was almost no deterioration in magnetic performance. Therefore, it is clear that the compound and bonded magnet of the present invention have excellent corrosion resistance (oxidation resistance) and heat resistance.

【0044】[0044]

【発明の効果】本発明によれば、蒸着重合により形成さ
れた接着強度のすぐれた緻密な薄膜で磁石粉末の表面を
最初に被覆しておくことにより、その後に常法に従って
磁石粉末を熱可塑性または熱硬化性合成樹脂液と混合す
ることによって、耐食性 (耐酸化性) 、耐熱性に優れた
ボンド磁石用コンパウンドおよびボンド磁石を得ること
ができ、使用中、特に高温、多湿環境下での使用中のボ
ンド磁石の磁気性能の低下を有効に防止することがで
き、ボンド磁石の耐久性を著しく高めることができる。
According to the present invention, the surface of the magnet powder is first coated with a dense thin film formed by vapor deposition polymerization and having excellent adhesive strength. Alternatively, by mixing with a thermosetting synthetic resin liquid, it is possible to obtain a compound for bonded magnets and a bonded magnet that are excellent in corrosion resistance (oxidation resistance) and heat resistance. During use, especially in high temperature and high humidity environments It is possible to effectively prevent deterioration of the magnetic performance of the bonded magnet inside, and it is possible to remarkably enhance the durability of the bonded magnet.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−262104(JP,A) 特開 平4−83306(JP,A) 特開 平6−158104(JP,A) 特開 平2−248012(JP,A) 特開 平6−306647(JP,A) 特開 平1−98120(JP,A) 特開 昭59−1506(JP,A) 特開 平7−130520(JP,A) 特開 平3−112103(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/08 H01F 1/053 H01F 41/02 B22F C22C ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-3-262104 (JP, A) JP-A-4-83306 (JP, A) JP-A-6-158104 (JP, A) JP-A-2- 248012 (JP, A) JP 6-306647 (JP, A) JP 1-98120 (JP, A) JP 59-1506 (JP, A) JP 7-130520 (JP, A) JP-A-3-112103 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01F 1/08 H01F 1/053 H01F 41/02 B22F C22C

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 希土類系磁石粉末表面に、蒸着重合法に
より形成された、ポリアミド、ポリイミド、ポリアミド
イミド、ポリアゾメチン、ポリユリアのうち1種からな
る内層樹脂皮膜と、熱硬化性または熱可塑性外層樹脂皮
膜とを有することを特徴とする、高耐食性ボンド磁石用
コンパウンド。
1. An inner resin film made of one of polyamide, polyimide, polyamideimide, polyazomethine, and polyurea formed on the surface of a rare earth magnet powder by vapor deposition polymerization, and a thermosetting or thermoplastic outer resin. A compound for a highly corrosion-resistant bonded magnet, which has a coating.
【請求項2】 希土類系磁石粉末表面に、縮重合性の2
種以上のモノマーの蒸気を真空蒸着させ、粉末表面で重
合させることにより、ポリアミド、ポリイミド、ポリア
ミドイミド、ポリアゾメチン、ポリユリアのうち1種か
らなる内層樹脂皮膜を形成した後、この粉末を熱硬化性
または熱可塑性合成樹脂液と混合することにより、前記
内層樹脂皮膜の上に外層樹脂皮膜を形成することを特徴
とする、高耐食性ボンド磁石用コンパウンドの製造方
法。
2. A polycondensation-free 2 layer on the surface of the rare earth magnet powder.
After vapor-depositing vapors of at least one kind of monomer and polymerizing them on the surface of the powder, an inner layer resin film made of one kind of polyamide, polyimide, polyamideimide, polyazomethine, and polyurea is formed, and then the powder is thermosettable. Alternatively, a method for producing a compound for a high corrosion-resistant bonded magnet, which comprises forming an outer resin film on the inner resin film by mixing with a thermoplastic synthetic resin liquid.
【請求項3】 請求項1に記載のコンパウンドから製造
された高耐食性ボンド磁石。
3. A highly corrosion resistant bonded magnet manufactured from the compound of claim 1.
【請求項4】 請求項1に記載のコンパウンドを押出、
射出または圧縮成形する工程を含む、高耐食性ボンド磁
石の製造方法。
4. Extruding the compound according to claim 1,
A method for producing a highly corrosion-resistant bonded magnet, which comprises a step of injection or compression molding.
JP31187594A 1994-12-15 1994-12-15 COMPOUND FOR HIGH CORROSION RESISTANCE BOND MAGNET, BOND MAGNET, AND PROCESS FOR PRODUCING THEM Expired - Lifetime JP3430686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31187594A JP3430686B2 (en) 1994-12-15 1994-12-15 COMPOUND FOR HIGH CORROSION RESISTANCE BOND MAGNET, BOND MAGNET, AND PROCESS FOR PRODUCING THEM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31187594A JP3430686B2 (en) 1994-12-15 1994-12-15 COMPOUND FOR HIGH CORROSION RESISTANCE BOND MAGNET, BOND MAGNET, AND PROCESS FOR PRODUCING THEM

Publications (2)

Publication Number Publication Date
JPH08167514A JPH08167514A (en) 1996-06-25
JP3430686B2 true JP3430686B2 (en) 2003-07-28

Family

ID=18022470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31187594A Expired - Lifetime JP3430686B2 (en) 1994-12-15 1994-12-15 COMPOUND FOR HIGH CORROSION RESISTANCE BOND MAGNET, BOND MAGNET, AND PROCESS FOR PRODUCING THEM

Country Status (1)

Country Link
JP (1) JP3430686B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1296155B1 (en) * 1996-04-05 1999-06-09 Varian Spa TURBOMOLECULAR PUMP ROTOR
CN107424697A (en) * 2017-07-27 2017-12-01 包头稀土研究院 The preparation method of neodymium iron boron fine powder

Also Published As

Publication number Publication date
JPH08167514A (en) 1996-06-25

Similar Documents

Publication Publication Date Title
JP4623232B2 (en) Rare earth bonded magnet
US5580400A (en) Magnetically anisotropic permanent magnet
WO2005052960A2 (en) Coating formulation and application of organic passivation layer onto iron-based rare earth powders
JP3430686B2 (en) COMPOUND FOR HIGH CORROSION RESISTANCE BOND MAGNET, BOND MAGNET, AND PROCESS FOR PRODUCING THEM
US5393445A (en) Rare-earth bonded magnet, material and method for manufacturing the same
JP3028337B2 (en) Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same
US5300156A (en) Bonded rare earth magnet and a process for manufacturing the same
EP0549149B1 (en) Rare-earth bonded magnet, material therefor and method for manufacturing a bonded magnet
JPH07130520A (en) High corrosion-proof permanent magnet and manufacture of the same
US5240627A (en) Bonded rare earth magnet and a process for manufacturing the same
JP2012199462A (en) Rare earth bond magnet, rare earth magnet powder and manufacturing method therefor, and compound for rare earth bond magnet
JP2001167917A (en) R-Fe-B PERMANENT MAGNET AND MANUFACTURING METHOD OF THE SAME
JPH04273413A (en) Manufacture of rare-earth bonded magnet
JPH03101102A (en) Rare earth-iron-nitrogen-hydogen-oxygen-based magnetic material
JP2001189205A (en) Method for manufacturing rare earth base permanent magnet having polyamide resin cover film
JP2004266093A (en) Method of manufacturing rare earth bonded magnet
JP3941134B2 (en) Raw material powder for manufacturing bond type permanent magnet and manufacturing method
JP2993255B2 (en) Manufacturing method of resin magnet
JPH05175021A (en) Rare-earth bonded magnet material, rare earth bonded magnet and manufacture of the magnet
JP3149549B2 (en) Rare earth bonded magnet manufacturing method
EP0468449A1 (en) Bonded rare earth magnet and a process for manufacturing the same
JPH03108702A (en) Magnet and manufacture thereof
JP3182961B2 (en) Composition for bonded magnet and method for producing the same
JPH02103906A (en) Resin coupled type magnet excellent in corrosion resistance
JP2004149869A (en) Method of producing rare earth based magnet powder having surface coated with polyimide film by vapor deposition polymerization method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030422

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 11

EXPY Cancellation because of completion of term