JPH01111843A - Rare-earth permanent magnet material and its manufacture - Google Patents

Rare-earth permanent magnet material and its manufacture

Info

Publication number
JPH01111843A
JPH01111843A JP26823587A JP26823587A JPH01111843A JP H01111843 A JPH01111843 A JP H01111843A JP 26823587 A JP26823587 A JP 26823587A JP 26823587 A JP26823587 A JP 26823587A JP H01111843 A JPH01111843 A JP H01111843A
Authority
JP
Japan
Prior art keywords
sintering
rare
permanent magnet
phase
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26823587A
Other languages
Japanese (ja)
Other versions
JP2654952B2 (en
Inventor
Tsutomu Otsuka
努 大塚
Hiroshi Oyanagi
大柳 浩
Hiroshi Momotani
浩 百谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP26823587A priority Critical patent/JP2654952B2/en
Publication of JPH01111843A publication Critical patent/JPH01111843A/en
Application granted granted Critical
Publication of JP2654952B2 publication Critical patent/JP2654952B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a rare-earth permanent magnet material improved in workability and working costs and having superior acid resistance by mixing a powdered alloy composed principally of rare-earth elements, Cu, and Fe with a powdered intermetallic compound consisting of rare-earth elements, Fe, and B, compacting the resulting powder mixture in a magnetic field, and then subjecting the green compact to liquid-phase sintering. CONSTITUTION:A powdered alloy composed principally of one or two kinds among the compounds of R(Cu1-xFex) phase and R(Cu1-yFey)2 phase [where the symbols (x) and (y) stand for >=0 and <=0.2, respectively] is mixed with a powdered R2Fe14B intermetallic compound (where R means rare-earth elements including Y), and the resulting powder mixture is compacted in a magnetic field and then subjected to liquid-phase sintering. At this time, the ratio of the factor of shrinkage on sintering in the direction of magnetic orientation to that in a vertical direction based on the factor of shrinkage on sintering of a green compact in the direction of magnetic orientation is regulated to >=80%. By this method, the rate-earth permanent magnet excellent in workability and oxidation resistance can be easily manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はR2T14B金属間、1化合物を主成分とする
R−T−B系永久磁石に関し、特に焼結体の加工性及び
加工コストの改善及び耐酸化性に優れた希土類永久磁石
に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an R-T-B permanent magnet mainly composed of an R2T14B intermetallic compound, and in particular to improvement of workability and processing cost of a sintered body. and a rare earth permanent magnet with excellent oxidation resistance.

〔従来の技術〕[Conventional technology]

Nd−Fe−Bで代表されるR−Fe−B系磁石は、従
来よシ普及してきているSm−Co系合金永久磁石に比
べ高い磁石特性を有し、かつ、資源的に豊富な。
R-Fe-B magnets, represented by Nd-Fe-B, have higher magnetic properties than the Sm-Co alloy permanent magnets that have been in widespread use, and are rich in resources.

Nd−Feを主成分としているため、その用途は拡大し
てきており ’、 Sm−Co系永久磁石の代替も進行
しつつある。
Because it has Nd-Fe as its main component, its uses are expanding, and its use as a substitute for Sm-Co permanent magnets is progressing.

これら希土類永久磁石は、その用途に応じて。These rare earth permanent magnets are used depending on their use.

様々な形状が製造され、また、その磁場配向方向も様々
であり、中には、リングのラジアル方向へ磁場配向した
ものもあり、さらにはこのラジアル方向へパルス着磁に
よる多極ラジアル配向品も。
Various shapes are manufactured, and the direction of magnetic field orientation is also various. Among them, there are products in which the magnetic field is oriented in the radial direction of the ring, and there are also products with multipolar radial orientation by pulse magnetization in this radial direction. .

特に最近その用途が拡大してきている。In particular, its uses have been expanding recently.

現在、市販されているSm−Co系永久磁石では。Currently, Sm-Co permanent magnets are commercially available.

上記の様々な形状及びラジアル配向された製品を製造す
るに当り何ら問題がなく1産されている。
The above-mentioned products with various shapes and radial orientations have been produced without any problems.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、Nd−Fe−B系の磁石を製造する場合、大き
な問題があシコスト高となっている。それはSm−Co
系においては、焼結による圧粉体の収縮率は、全方向に
対して等方的であるが、 Nd−Fe−B系ではその収
縮率に磁場配向方向をその直角方向でかなり大きな差が
ちシ、一般に、磁場配向方向の収縮率に対する磁場配向
方向に垂直方向の収縮率は約60チである。
However, when manufacturing Nd-Fe-B based magnets, a major problem is high cost. It is Sm-Co
In the Nd-Fe-B system, the shrinkage rate of the green compact due to sintering is isotropic in all directions, but in the Nd-Fe-B system, the shrinkage rate tends to vary considerably in the direction perpendicular to the magnetic field orientation direction. In general, the contraction rate in the direction perpendicular to the direction of magnetic field orientation relative to the contraction rate in the direction of magnetic field orientation is about 60 inches.

それ故、圧粉体にてリング状のラジアル配向品を焼結す
ると焼結体は楕円の形状となシ、目的とする円形状の製
品が得られないという問題がある。
Therefore, when a ring-shaped radially oriented product is sintered using a powder compact, the sintered body has an elliptical shape, and there is a problem that a desired circular product cannot be obtained.

この対策としてブロック焼結体よシ切シ出したシあるい
は、あらかじめ目的の寸法よシも大きな楕円形状の焼結
体を作製し、センタレス加工を施すという加工コストが
高く、また加工屑が多量に生ずる方策をとっていた。
As a countermeasure to this, the block sintered body is cut out, or an oval-shaped sintered body that is larger than the desired size is made in advance and then subjected to centerless processing, which increases the processing cost and generates a large amount of processing waste. I was taking measures to make this happen.

また、焼結時の収縮率等を考慮した上で、あらかじめ金
型の形状を楕円形にしておいて、目的とする円形状の焼
結体を得ようとする方策も取られているが焼結時の収縮
率は、成形体の圧粉密度等にも変化するため、圧粉密度
の異なる成形体を作製するためには異なる寸法の金型を
使用しなければならずコスト高となシ好ましくない。
Additionally, taking into account the shrinkage rate during sintering, the shape of the mold is made elliptical in advance to obtain the desired circular sintered body. The shrinkage rate during compaction changes depending on the compacted powder density, etc., so molds with different dimensions must be used to produce compacts with different compacted densities, resulting in high costs. Undesirable.

しかも、ラジアル多極型の成形体を焼結する場合は焼結
過程においてこの焼結時の収縮率の差によシ焼結体に割
れが生ずるため事実上、製造することが極めて困難であ
った。
Moreover, when sintering a radial multipolar molded body, cracks occur in the sintered body due to the difference in shrinkage rate during the sintering process, making it extremely difficult to manufacture. Ta.

さらに、このR−Fe−B系の永久磁石では、もう−点
大きな問題点を有している。すなわち、大気中にて極め
て酸化し易いR−Fe固溶体相が2本系磁石の金属組織
中に存在するため、磁気回路等の装置に組込んだ場合に
、Sm−co系磁石に比べ磁石の酸化による特性劣化及
びバラツキが大きく、また磁石よ)発生する酸化物の飛
散等による周辺部品への汚染を引き起こすという欠点を
有する。この耐食性の改善に関する文献として特開昭6
0−54406号(J、P、A)や同60−63903
号等が挙げられる。
Furthermore, this R-Fe-B permanent magnet has another major problem. In other words, since the R-Fe solid solution phase, which is extremely easily oxidized in the atmosphere, exists in the metal structure of the two-piece magnet, when it is incorporated into a device such as a magnetic circuit, the magnet's It has the disadvantage that characteristics deteriorate and vary widely due to oxidation, and that surrounding parts are contaminated by scattering of oxides generated by magnets. As a document related to improving this corrosion resistance, JP-A No. 6
No. 0-54406 (J, P, A) and No. 60-63903
For example, the number etc.

これらの文献では、磁石体表面にメツキ、化成皮膜等の
耐酸化性皮膜を形成し、その耐食性向上を図ることを目
的としている。
These documents aim to improve the corrosion resistance of a magnet by forming an oxidation-resistant film such as plating or a chemical conversion film on the surface of the magnet.

しかし、これらの耐酸化性皮膜は、その工程中において
、多量の水及び水溶液を使用するため。
However, these oxidation-resistant coatings use large amounts of water and aqueous solutions during the process.

処理工種中に磁石のNd−Fe固溶体相が酸化すること
になシ皮膜形成後も内部において酸化が進行し。
Since the Nd-Fe solid solution phase of the magnet is oxidized during the treatment process, oxidation continues inside the magnet even after the film is formed.

ふくれ又は皮膜の剥離等を生ずるため耐食性を改善する
ことはできない。
Corrosion resistance cannot be improved because blistering or peeling of the film occurs.

また、水を使用しない方法として、エポキシ等の耐酸化
性樹脂coating又は最近普及してきたスパッタ、
蒸着、イオンブレーティング等の方法によるAt、Ni
等の金属皮膜を形成させ耐食性改善を図る乾式メツキ等
の方法もある。しかしながら。
In addition, as a method that does not use water, coating with oxidation-resistant resin such as epoxy, sputtering, which has recently become popular,
At, Ni by vapor deposition, ion blating, etc.
There are also methods such as dry plating that improve corrosion resistance by forming a metal film such as. however.

これらの水を未使用のコーティングにおいても長期使用
による皮膜の劣化、使用中又は、製品検査。
Even in unused coatings, the film may deteriorate due to long-term use, during use, or during product inspection.

及び装置への組み込み作業等の取シ扱い時に微少な、カ
ケ等によシ磁石体表面が、大気と接した場合、この部分
よシ磁石組識中のNd−Fe固溶体相が。
If the surface of the magnet comes into contact with the atmosphere due to minute chips etc. during handling such as installation into a device, the Nd-Fe solid solution phase in the magnet structure will be removed from this area.

時間と共に著しく酸化し、磁石内部全体に広がっていく
ため耐食性改善の方策としては適していない。
It is not suitable as a measure to improve corrosion resistance because it oxidizes significantly over time and spreads throughout the inside of the magnet.

以上述べたように、いずれの従来の耐食性改善方法にお
いても磁石中に極めて酸化し易いNd−Fe固溶体相が
存在するため上記した各方策が有する本来の耐食性を水
系磁石に付寄することは極めて困難であった。
As mentioned above, in any of the conventional methods for improving corrosion resistance, there is a Nd-Fe solid solution phase that is extremely easily oxidized in the magnet, so it is extremely difficult to impart the inherent corrosion resistance of each of the above measures to a water-based magnet. It was difficult.

すなわち2本系磁石においてはこのNd−Fe固溶体相
の耐食性を根本的に改善しなければ充分な耐食性を得る
ことは不可能である。
That is, in a two-wire magnet, it is impossible to obtain sufficient corrosion resistance unless the corrosion resistance of this Nd-Fe solid solution phase is fundamentally improved.

尚、この対策として1本系磁石合金にNl l Cur
 Smtpb等の元素を添加することによシ本系磁石合
金の耐食性を向上させ先に遮水た各種耐食性皮膜を水系
磁石にcoatingすることによシ上記欠点を解決す
ることも可能であるが、従来の方法では、磁石合金イン
コゝット與作時にこれら元素を添加して得られる合金イ
ンゴットを粉砕・成形・焼結するため1本系磁石の磁性
相であるNd 2Fe 1a B相へもこれら元素、が
−様に拡散してしまい磁石特性を著しく劣化させてしま
うため、対策としては適していない。
In addition, as a countermeasure for this, Nl l Cur is added to the single magnet alloy.
Although it is possible to improve the corrosion resistance of the water-based magnet alloy by adding elements such as Smtpb and to coat the water-based magnet with various corrosion-resistant films that have previously been water-blocked, the above drawbacks can be overcome. In the conventional method, the alloy ingot obtained by adding these elements to the magnetic alloy ingot is crushed, formed, and sintered. This is not suitable as a countermeasure because the elements will diffuse in a negative manner, significantly deteriorating the magnetic properties.

そこで1本発明の技術的課題は、これら2点の問題点を
解決するものであシ、従来のNd−Fe−B系磁石よシ
も加工コストの低減できる焼結磁石及び耐食性に優れた
希土類永久磁石を提供することにある。
Therefore, the technical problem of the present invention is to solve these two problems, and to create a sintered magnet that can reduce the processing cost compared to the conventional Nd-Fe-B magnet, and a rare earth magnet that has excellent corrosion resistance. Our goal is to provide permanent magnets.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、 R−Fe−Bを主成分とするR−T
−B系合金磁石(ここでRはYを含む希土類元、素、T
は遷移金属を示す。)を粉末冶金法にて製造する方法に
おいて、R2T14B磁性化合物を主成分とする粉末に
R(cu t −xTx ) + R(c u 、−7
Ty ) 2の一種又は2種(ここで、0≦x’y≦0
.2)の化合物を主成分とする合金粉末を混合・成形し
た粉末成形体を焼結することによ’) 、R(Cu  
T )、R(Cu  Ty)″’一種又1−xx   
    1−7   2は二種の化合物にてNd 2F
e 14B磁性相が包まれた希土類永久磁石が得られる
According to the present invention, RT containing R-Fe-B as a main component
-B-based alloy magnet (where R is a rare earth element including Y, elemental, T
indicates a transition metal. ) by powder metallurgy, R(cut −xTx ) + R(c u , −7
Ty) 2 types or 2 types (here, 0≦x'y≦0
.. 2), R(Cu
T ), R (Cu Ty)″' 1-xx
1-7 2 is two types of compounds, Nd 2F
e A rare earth permanent magnet in which the 14B magnetic phase is wrapped is obtained.

この得られた焼結磁石は、焼結時の収縮率において、磁
場配向方向の収縮率に対する磁場配向方向に垂直な方向
の収縮率の比が80%以上であるため、従来のNd−F
e−B系磁石に比べ格段に焼結時の収縮率の方向性が緩
和されている。それ故1通常のSm−Co系で用いてい
た金型によシラシアル配向及びラジアルの多極型成形体
を作製し、その圧粉体を通常のNd−Fe4磁石と同様
に焼結しても。
This obtained sintered magnet has a shrinkage rate during sintering in which the ratio of the shrinkage rate in the direction perpendicular to the magnetic field orientation direction to that in the magnetic field orientation direction is 80% or more.
The directionality of the shrinkage rate during sintering is much more relaxed than that of e-B magnets. Therefore, it is possible to fabricate a multipolar molded body with radial orientation and radial shape using the mold used for the normal Sm-Co system, and then sinter the compact in the same way as a normal Nd-Fe4 magnet. .

焼結体の変形が著しく改善され、又焼結時の収縮率の差
による焼結体の割れも発生しないため、従来のNd−F
e−B系磁石に比べ、加工コストが改善されしかも従来
では製造困難とされたラジアル方向への多極配向品の製
造も可能となる。
The deformation of the sintered body is significantly improved, and cracks in the sintered body do not occur due to the difference in shrinkage rate during sintering, so compared to the conventional Nd-F
Compared to e-B type magnets, the processing cost is improved, and it is also possible to manufacture products with multipole orientation in the radial direction, which was previously considered difficult to manufacture.

また、さらに水系磁石ではNd−Fe固溶体相をよシ耐
食性に優れたR(c ” 、−xpe x ) −R(
Cu1− yF e y ) 2の一種又は二種にて代
替しているため、焼結体の耐酸化性が著しく向上する。
In addition, in water-based magnets, R(c'', -xpex)-R(
Since one or two of Cu1-yFey)2 is used instead, the oxidation resistance of the sintered body is significantly improved.

それ故2通常のNi、Cr等の耐酸化性メダキ、樹脂c
oati1tg等の有する本来の耐食性を水系磁石に付
与することが可能となり工業上極めて有益である。ここ
で本発明における希土類永久磁石において、そのマトリ
ックスを形成するR(Cu1−xFex)、R(Cu1
−yFe、)2相の一種又は二種において、0≦x、y
≦0.2としたのは、0.2以上では本発明の目的とす
るR(CuFe)、R(CuFe)2相ではなく他の相
となったシ、また過剰のFeは焼結体中にFe相として
残留し、磁石特性を著しく劣化させるため、0≦Xs7
≦0.2とする必要がある。
Therefore, 2. Usual oxidation-resistant medaki such as Ni and Cr, resin c
It is possible to impart the inherent corrosion resistance of oatiltg and the like to aqueous magnets, which is extremely useful industrially. Here, in the rare earth permanent magnet in the present invention, R(Cu1-xFex) and R(Cu1
-yFe,) in one or two of the two phases, 0≦x, y
≦0.2 because if it is 0.2 or more, other phases will be formed instead of the R(CuFe) and R(CuFe) two phases that are the object of the present invention, and excessive Fe will not be present in the sintered body. 0≦Xs7 to remain in the Fe phase and significantly deteriorate the magnetic properties.
It is necessary to satisfy ≦0.2.

また9本系磁石だおいて、圧粉体の焼結時における磁場
配向方向の収縮率に対する磁場配向方向と垂直の方向の
収縮率の比を80%以上としたのは、80%よシ小さい
領域では、焼結体あ変形が著しく加工コストの低減がで
きずまた収縮率の差による焼結体の割れ等を生ずるため
1本発明の目的に沿わないためである。
In addition, for a 9-piece magnet, the ratio of the contraction rate in the direction perpendicular to the magnetic field orientation direction to the contraction rate in the magnetic field orientation direction during sintering of the compact is 80% or more, which is smaller than 80%. This is because, in this region, the deformation of the sintered body is significant, making it impossible to reduce processing costs, and cracking of the sintered body occurs due to the difference in shrinkage rate, which is not in accordance with the object of the present invention.

〔実施例〕〔Example〕

以下2本発明の実施例を図面を参照して説明する。 Hereinafter, two embodiments of the present invention will be described with reference to the drawings.

〈実施例−1〉 純度95%以上のNd−Fe−Bを用い、 Ar雰囲気
中にて高周波加熱により、 28 Nd・1. OB 
−Febat(wt%)の組成を有するNd2Fe14
B相を主相とするingotを得た。このingotを
粗粉砕し、得られた粗粉末をI材とした。
<Example-1> Using Nd-Fe-B with a purity of 95% or more, 28 Nd.1. OB
-Nd2Fe14 with a composition of Febat (wt%)
An ingot containing phase B as the main phase was obtained. This ingot was coarsely ground, and the resulting coarse powder was used as material I.

次に、上記と同等のNd −Fe −Cu−Bを用いて
、 61.3Nd・37.7Cu・1.OB 、 61
.5Nd−35,7Cu ・1.7 Fe ” 1.O
B。
Next, using Nd-Fe-Cu-B equivalent to the above, 61.3Nd・37.7Cu・1. OB, 61
.. 5Nd-35,7Cu ・1.7 Fe” 1.O
B.

61.6Nd ・34.ICu ・3.3Fe ・1.
OB 、 61.8Nd ・32.2Cu ・5.OF
e ・1.OB 、 61.9Nd ・30.4Cu 
・6.7Fe ・1、OB 、 62Nd ・28.6
Cu ・8.4Fe−1,OB (いずれもwt4 、
 Fe/Cuの比はおのおのO/1 、0.0510.
95 。
61.6Nd ・34. ICu ・3.3Fe ・1.
OB, 61.8Nd・32.2Cu・5. OF
e・1. OB, 61.9Nd・30.4Cu
・6.7Fe ・1, OB, 62Nd ・28.6
Cu ・8.4Fe-1, OB (both wt4,
The Fe/Cu ratios are O/1 and 0.0510.
95.

0.110.9 、0.1510.85 、01210
.8 、0.2510.75 )の組成を有する6種類
の粗粉末(■材)を得た。
0.110.9, 0.1510.85, 01210
.. Six types of coarse powders (■ materials) having a composition of 0.8, 0.2510.75) were obtained.

そして、秤量はI材は85 wt%とし残部15wt%
は■材の1種とし6種類の混合秤量した粗粉末を得た。
The weight is 85 wt% for I material and 15 wt% for the remainder.
Six types of coarse powder were obtained by mixing and weighing six types of materials.

次に、これら粗粉末をおのおのボールミルを用い平均粒
径約4μmK湿式1砕し、微粉末を得た。次に得られた
微粉末を20 KOeの磁界中1. Ot on/cr
n2で成形し、圧粉体を得た。これら圧粉体を1000
〜1150℃で、O〜4 hrAr中焼結した。そして
得られた焼結体を500〜900℃で1〜5 hr加熱
した後急冷した。
Next, each of these coarse powders was wet-milled using a ball mill with an average particle size of about 4 μm to obtain fine powders. Next, the obtained fine powder was heated in a magnetic field of 20 KOe for 1. Ot on/cr
It was molded using n2 to obtain a green compact. 1000 of these compacts
Sintered at ˜1150° C. in 0˜4 hrAr. The obtained sintered body was heated at 500 to 900°C for 1 to 5 hours, and then rapidly cooled.

第1図にこれら焼結体の中で、最も高い磁石特性を示す
。第1図より、■材のNd −Cu −Fe−B粉末の
F e/Cuの比が071〜0210.8の間では高い
磁石特性を示すことがわかる。
Figure 1 shows the highest magnetic properties among these sintered bodies. From FIG. 1, it can be seen that when the Fe/Cu ratio of the Nd-Cu-Fe-B powder of material (2) is between 071 and 0210.8, high magnetic properties are exhibited.

〈実施例−2〉 実施例−1で得られた■材に実施例−1で得られた■材
の中で、 61.3Nd ・37.7Cu ・1.OB
の組成を有する粉末を15wt%添加し混合した。
<Example-2> Among the ■materials obtained in Example-1 and the ■materials obtained in Example-1, 61.3Nd・37.7Cu・1. OB
15 wt % of powder having the composition was added and mixed.

この粉末を実施例−1と同様にして微粉末を得た。This powder was treated in the same manner as in Example-1 to obtain a fine powder.

次にこの微粉末を15 KOeの磁界中てて、ラジアル
配向となるようφ20X10の円柱状の成形体を得た。
Next, this fine powder was placed in a magnetic field of 15 KOe to obtain a cylindrical molded body of φ20×10 so as to have radial orientation.

また同粉末を100 KOeの・ぐシス着磁中6極のラ
ジアル多極型のφ20Xφ12X10の寸法を有する成
形体を得た。
Further, the same powder was magnetized to 100 KOe to obtain a 6-pole radial multipolar molded body having dimensions of φ20×φ12×10.

次に実施例−1の比較材である3 2Nd4.0B−F
ebatの組成を有する微粉末を用いて、上記と同様の
寸法のラジアル配向を有する成形体、及び6極の多極型
ラジアル配向を有する成形体を得た。
Next, 32Nd4.0B-F, which is a comparative material of Example-1.
Using a fine powder having the composition of ebat, a molded body having a radial orientation having the same dimensions as above and a molded body having a six-pole multipolar radial orientation were obtained.

そしてこれら圧粉体を1100℃で2時間Ar中焼結し
た。
These compacts were then sintered in Ar at 1100° C. for 2 hours.

これら焼結体に対し、その収縮率測定及び外観の観察を
行った。
These sintered bodies were subjected to measurement of their shrinkage rate and observation of their appearance.

その結果を第1表に示す。The results are shown in Table 1.

以下余白 第1表より本発明による磁石焼結体は、配向方向とその
垂直方向での収縮率の差も小さく焼結体の変形も小さい
。また多極型ラジアル配向品においては比較例は、焼結
体に割れが生じているが。
As shown in Table 1 below, the magnet sintered body according to the present invention has a small difference in shrinkage rate between the orientation direction and the perpendicular direction, and the deformation of the sintered body is also small. In addition, in the comparative example, cracks occurred in the sintered body of the multipolar radially oriented product.

本発明による焼結体磁石は2割れと生じておらずまた。The sintered magnet according to the present invention does not suffer from cracking in two.

焼結体の変形も小さかった。The deformation of the sintered body was also small.

すなわち本発明による永久磁石は、加工しろが小さいた
め加工コストが低減でき、しかも従来のNd−Fe−B
系磁石では製造困難とされた多極型ラジアル配向品の製
造も極めて容易であることがわがる。
In other words, the permanent magnet according to the present invention has a small machining allowance, so the machining cost can be reduced, and moreover, the permanent magnet according to the present invention can reduce the machining cost.
It can be seen that it is extremely easy to manufacture multipolar radially oriented products, which were considered difficult to manufacture with magnets based on magnets.

〈実施例−3〉 実施例−1で得られた焼結体に対し、 CuT地メヅキ
を施した電解Niメjキ、及び有色クロメート処理を施
した。また比較例として、32Nd・1.OBで; Tebatの組成を有するingotを実施例−1と同
様に高周波溶解によシ得た。
<Example 3> The sintered body obtained in Example 1 was subjected to electrolytic Ni plating with CuT base plating and colored chromate treatment. Further, as a comparative example, 32Nd・1. In OB: An ingot having the composition of Tebat was obtained by high frequency melting in the same manner as in Example-1.

次に実施例−1と同様に粗粉砕、微粉砕・磁場中成形、
焼結、熱処理を施して焼結体を得た。そしてこの焼結体
に上記と同様の表面処理を施し。
Next, as in Example-1, coarse pulverization, fine pulverization and molding in a magnetic field,
A sintered body was obtained by sintering and heat treatment. This sintered body was then subjected to the same surface treatment as above.

比較材とした。これら表面処理の膜厚を測定したところ
2〜25μmであった。
It was used as a comparison material. When the film thickness of these surface treatments was measured, it was 2 to 25 μm.

これら各試験片を、60℃X90%の恒温恒湿試験を3
00 hr加えた。
Each of these test pieces was subjected to a constant temperature and humidity test at 60°C x 90% for 3 times.
Added 00 hr.

その結果を第2表に示す。The results are shown in Table 2.

第2表 ◎・・・変化なし ○・・・エッヂ等にわずかな赤さび Δ・・・表面に斑点状の白い酸化物又は赤さび×・・・
全面に赤さびと白い酸化物及び膜のハクリ以下余白 第2表より9本発明の磁石は、従来のNd−Fe13 
−’−系磁石に比べ著しく耐食性に優れていることがわ
かる。
Table 2 ◎... No change ○... Slight red rust on edges etc. Δ... Spotted white oxide or red rust on the surface ×...
The magnet of the present invention has red rust and white oxide on the entire surface and the margin below the peeling of the film.9 From Table 2, the magnet of the present invention is
It can be seen that the corrosion resistance is significantly superior to that of −'− type magnets.

〔発明の効果〕〔Effect of the invention〕

以上の説明のとおり+ Nd 2 F 614B相を主
相とする粉末に、Nd(Cu、−xFeρ又はNd(C
u1−yFey)2(ただし、O≦x、y≦0.2)の
一種以上の相を主相とする粉末を温容し、従来通シの粉
末冶金法によシ製造された焼結体磁石は+ Nd (C
u 1−xFe x )、又はNd(Cu1−yFe 
y )2相の一種以上の相の一種以上の相をマトリック
ス中K t Nd2Fe14B相が分散しだ組織を有し
ている。
As explained above, Nd(Cu, -xFeρ or Nd(C
A sintered body manufactured by a conventional powder metallurgy method by heating a powder whose main phase is one or more of the following phases: u1-yFey)2 (O≦x, y≦0.2) The magnet is +Nd (C
u 1-xFe x ), or Nd(Cu1-yFe
y) It has a structure in which a K t Nd2Fe14B phase is dispersed in a matrix of one or more of the two phases.

この焼結体磁石は磁石特性に優れているだけでなく、焼
結時の収縮率に関し、従来のNd−Fe−B系磁石に比
べ磁場配向方向とその直角方向の収縮率の差が著しく小
さいため、ラジアル配向品等の収縮率の差による変形を
小さくでき加工しろを小さくでき加工コストの低減が実
現できる。また従来のNd−Fe−Bでは、製造困難と
されていた多甑型うジアル配向品についても水系磁石で
は、製造が容易となる。また水系磁石は、従来のNd−
Fe−B系磁石に比べ耐食性が著しく向上しているため
、Ni等の耐酸化性メツキ、化成被膜、耐酸化性樹脂c
O+Lting等の有する本来の耐食性を付寄すること
が可能となる。
This sintered magnet not only has excellent magnetic properties, but also has a significantly smaller shrinkage rate during sintering than conventional Nd-Fe-B magnets. Therefore, the deformation due to the difference in shrinkage rate of radially oriented products can be reduced, the processing margin can be reduced, and processing costs can be reduced. In addition, it is easy to manufacture polycavity-type radially oriented products using water-based magnets, which were considered difficult to manufacture using conventional Nd-Fe-B. In addition, water-based magnets are different from conventional Nd-
Since corrosion resistance is significantly improved compared to Fe-B magnets, oxidation-resistant plating such as Ni, chemical conversion coating, oxidation-resistant resin c
It becomes possible to provide the inherent corrosion resistance of O+Lting and the like.

以上Nd−Fe4系についてのみ述べたが、Yを含めた
希土類元素(R)・Fe−B系合金についても同様の効
果が期待できることは容易に推察できるところである。
Although only the Nd-Fe4 system has been described above, it can be easily inferred that similar effects can be expected for rare earth element (R)/Fe-B system alloys including Y.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例におけるNd(Cu1−
xFex)B(x=0〜0.25)の粉末を混合して得
られた焼結体のFeの置換量と、磁石特性の関係を示し
たものである。 第1図 すそ、比+rnol)
FIG. 1 shows Nd(Cu1-
The graph shows the relationship between the amount of Fe substitution in a sintered body obtained by mixing powders of xFex)B (x=0 to 0.25) and magnetic properties. Figure 1 hem, ratio + rnol)

Claims (1)

【特許請求の範囲】 1)R_2Fe_1_4B金属間化合物(ここでRは、
Yを含む希土類元素)を主成分とするR・Fe・Cu・
B系永久磁石において、Nd(Cu_1_−_xFe_
x)、Nd(Cu_1_−_yFe_y)_2の一種又
は二種の化合物(ここで0≦x、y≦0.2)を主成分
とするマトリックス中に上記R_2Fe_1_4B相が
分散してなることを特徴とする希土類永久磁石。 2)特許請求の範囲第一項記載の希土類永久磁石におい
て、圧粉体の磁場配向方向の焼結収縮率に対する磁場配
向方向と垂直方向との焼結収縮率の比が、80%以上で
あることを特徴とする希土類永久磁石材料。 3)R_2Fe_1_4B金属間化合物粉末(ここでR
はYを含む希土類元素を示す)にR(Cu_1_−_x
Fe_x)、R(Cu_1_−_yFe_y)_2相の
一種又は二種の化合物(ここで、0≦x、y≦0.2)
を主成分とする合金粉末を混合して混合粉末を形成する
混合工程と、該混合粉末を磁場中成形して、液相焼結す
る焼結工程とを有することを特徴とする希土類永久磁石
材料の製造方法。
[Claims] 1) R_2Fe_1_4B intermetallic compound (where R is
R・Fe・Cu・
In B-based permanent magnets, Nd(Cu_1_-_xFe_
x), Nd(Cu_1_-_yFe_y)_2, wherein the R_2Fe_1_4B phase is dispersed in a matrix mainly composed of one or two compounds (where 0≦x, y≦0.2). Rare earth permanent magnet. 2) In the rare earth permanent magnet according to claim 1, the ratio of the sintering shrinkage rate in the magnetic field orientation direction and the perpendicular direction to the sintering shrinkage rate in the magnetic field orientation direction of the powder compact is 80% or more. A rare earth permanent magnet material characterized by: 3) R_2Fe_1_4B intermetallic compound powder (here R
indicates a rare earth element containing Y) and R (Cu_1_-_x
Fe_x), one or two compounds of R(Cu_1_-_yFe_y)_2 phase (where 0≦x, y≦0.2)
A rare earth permanent magnetic material characterized by comprising a mixing step of mixing alloy powders mainly composed of to form a mixed powder, and a sintering step of forming the mixed powder in a magnetic field and sintering it in a liquid phase. manufacturing method.
JP26823587A 1987-10-26 1987-10-26 Rare earth permanent magnet material and method for producing the same Expired - Lifetime JP2654952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26823587A JP2654952B2 (en) 1987-10-26 1987-10-26 Rare earth permanent magnet material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26823587A JP2654952B2 (en) 1987-10-26 1987-10-26 Rare earth permanent magnet material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01111843A true JPH01111843A (en) 1989-04-28
JP2654952B2 JP2654952B2 (en) 1997-09-17

Family

ID=17455782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26823587A Expired - Lifetime JP2654952B2 (en) 1987-10-26 1987-10-26 Rare earth permanent magnet material and method for producing the same

Country Status (1)

Country Link
JP (1) JP2654952B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6887783B2 (en) 2002-01-15 2005-05-03 International Business Machines Corporation Bilayer HDP CVD/PE CVD cap in advance BEOL interconnect structures and method thereof
US7138717B2 (en) 2004-12-01 2006-11-21 International Business Machines Corporation HDP-based ILD capping layer
JPWO2011070827A1 (en) * 2009-12-09 2013-04-22 愛知製鋼株式会社 Rare earth anisotropic magnet and manufacturing method thereof
JP5472320B2 (en) * 2009-12-09 2014-04-16 愛知製鋼株式会社 Rare earth anisotropic magnet powder, method for producing the same, and bonded magnet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105195734A (en) * 2015-11-12 2015-12-30 苏州萨伯工业设计有限公司 Method for preparing rare earth permanent magnetic material by adding liquid-phase yttrium in waste magnetic steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6887783B2 (en) 2002-01-15 2005-05-03 International Business Machines Corporation Bilayer HDP CVD/PE CVD cap in advance BEOL interconnect structures and method thereof
US6914320B2 (en) 2002-01-15 2005-07-05 International Business Machines Corporation Bilayer HDP CVD/PE CVD cap in advanced BEOL interconnect structures and method thereof
US7138717B2 (en) 2004-12-01 2006-11-21 International Business Machines Corporation HDP-based ILD capping layer
US7372158B2 (en) 2004-12-01 2008-05-13 International Business Machines Corporation HDP-based ILD capping layer
JPWO2011070827A1 (en) * 2009-12-09 2013-04-22 愛知製鋼株式会社 Rare earth anisotropic magnet and manufacturing method thereof
JP5472320B2 (en) * 2009-12-09 2014-04-16 愛知製鋼株式会社 Rare earth anisotropic magnet powder, method for producing the same, and bonded magnet

Also Published As

Publication number Publication date
JP2654952B2 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
CN104752049A (en) Process For Preparing Rare Earth Magnets
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JP2546989B2 (en) Permanent magnet with excellent oxidation resistance
JPH01111843A (en) Rare-earth permanent magnet material and its manufacture
JP3028337B2 (en) Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same
JPH01251704A (en) Rare earth permanent magnet with excellent oxidation resistance
JP2546988B2 (en) Permanent magnet with excellent oxidation resistance
JP4552161B2 (en) Ultra-compact magnet with excellent corrosion resistance
JP2700643B2 (en) Manufacturing method of rare earth permanent magnet with excellent oxidation resistance
JPH1154353A (en) Method for sintering r-t-b group permanent magnet
JPS62229803A (en) Nd-fe-b alloy powder for plastic magnet
JPH01105502A (en) Rare earth permanent magnet exhibiting high resistance to oxidation and manufacture thereof
JPS62284002A (en) Magnetic alloy powder consisting of rare earth element
JPS60138056A (en) Material for sintered magnet
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPH0380508A (en) Manufacture of rare earth element magnet
JPS59219453A (en) Permanent magnet material and its production
JPH01155603A (en) Manufacture of oxidation-resistant rare-earth permanent magnet
JP2546990B2 (en) Permanent magnet with excellent oxidation resistance
EP0549149A1 (en) Rare-earth bonded magnet, material therefor and method for manufacturing a bonded magnet
JPH02117103A (en) Rare-earth permanent magnet having desirable resistance to oxidation and manufacture thereof
JPH04206805A (en) Manufacture of rare earth element-fe-b based magnet excellent in magnetic characteristics and corrosion resistance
JP3010856B2 (en) Permanent magnet and method for manufacturing the same
JPH01239901A (en) Rare-earth magnet and its manufacture
JPH0287502A (en) Rare earth permanent magnet excellent in oxidation resistance and its manufacture