JPH02117103A - Rare-earth permanent magnet having desirable resistance to oxidation and manufacture thereof - Google Patents

Rare-earth permanent magnet having desirable resistance to oxidation and manufacture thereof

Info

Publication number
JPH02117103A
JPH02117103A JP63269584A JP26958488A JPH02117103A JP H02117103 A JPH02117103 A JP H02117103A JP 63269584 A JP63269584 A JP 63269584A JP 26958488 A JP26958488 A JP 26958488A JP H02117103 A JPH02117103 A JP H02117103A
Authority
JP
Japan
Prior art keywords
phase
xtx
corrosion resistance
sintered body
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63269584A
Other languages
Japanese (ja)
Inventor
Tsutomu Otsuka
努 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP63269584A priority Critical patent/JPH02117103A/en
Publication of JPH02117103A publication Critical patent/JPH02117103A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve corrosion resistance of a sintered body magnet itself by substituting an Nd rich phase having extremely low corrosion resistance with a matrix phase composed of at least one of R5(Pd1-xTx)2, R3(Pd1-xTx)2 and R(Pd1-xTx) having superior corrosion resistance. CONSTITUTION:An alloy powder principally composed of Nd2Fe14B phase is mixed with an alloy powder principally composed of at least one of Nd5(Pd1-xTx)2, Nd3(Pd1-xTx)2 and Nd(Pd1-xTx) phases, and the mixture is molded and sintered to provide a sintered body having a composite texture in which Nd2Fe14B phase is dispersed in a matrix composed of at least one of Nd5(Pd1-xTx)2, Nd3(Pd1-xTx)2 and Nd(Pd1-xTx) phases. The sintered body having such composite texture scarcely contains Nd rich phase. If contained any, it is isolated from others, taking a spherical shape. So, even if the Nd rich phase is oxidized, the oxidation does not penetrate the inside of the sintered body. Thus, corrosion resistance of the sintered body itself can be improved remarkably.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はR2T14B金属間化合物を主成分とするRx
TxB系永久磁石に関するものであり、特に耐酸化性に
優れた希土類永久磁石と、その製造方法に関するもので
ある。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides an Rx whose main component is an R2T14B intermetallic compound.
The present invention relates to TxB permanent magnets, and in particular to rare earth permanent magnets with excellent oxidation resistance and methods of manufacturing the same.

〈従来の技術〉 Nd−Fe−Bで代表されるR−Fe−B系磁石は、従
来より普及しているS m −Co系合金永久磁石に比
べ高い磁石特性をHする。それ故その用途は拡大しつつ
ある。このR−FeeB系磁石はその金属組織中におい
て磁性相であるNd2Fe14B相の値にNdリッチ相
、NdFe、B、相が存在する。この中でNdリッチ相
がバインダーのように作用しNd2Fe14B相を接合
しているため、Nd−Fe−B磁石焼結体が存在してい
る。
<Prior Art> R-Fe-B magnets represented by Nd-Fe-B have higher magnetic properties than S m -Co alloy permanent magnets which have been widely used. Therefore, its uses are expanding. This R-FeeB magnet has an Nd-rich phase, NdFe, B, and Nd-rich phases in addition to the magnetic Nd2Fe14B phase in its metallographic structure. In this, the Nd-rich phase acts like a binder and binds the Nd2Fe14B phase, so that a Nd-Fe-B magnet sintered body exists.

しかしながら、このNdリッチ相は大気中において、極
めて酸化され易いため磁気回路等の装置に組込んだ場合
、磁石の酸化による特性劣化、バラツキが生じさらに磁
石より発生する酸化物の飛散による周辺部品への汚染を
引き起こすという欠点を有する。
However, this Nd-rich phase is extremely easily oxidized in the atmosphere, so when it is incorporated into a device such as a magnetic circuit, the oxidation of the magnet will cause property deterioration and variations, and furthermore, the oxides generated by the magnet will scatter and damage surrounding components. It has the disadvantage of causing contamination.

この耐食性の改善に関する文献として、特開昭60−5
4406号公報(J、P、A)や特開昭60−6390
3号公報等が挙げられる。これらの文献では磁石体表面
にめっき、化成処理等により耐酸化性皮膜を形成し、そ
の耐食性向上を図ることを目的としている。
As a document regarding this improvement of corrosion resistance, JP-A-60-5
Publication No. 4406 (J, P, A) and JP-A-60-6390
Publication No. 3 etc. can be mentioned. These documents aim to improve the corrosion resistance of the magnet by forming an oxidation-resistant film on the surface of the magnet by plating, chemical conversion treatment, or the like.

[発明が解決しようとする課WJ] しかし、これらの耐酸化性皮膜はその形成工程中におい
て、多量の水及び水溶液を使用するため、処理工程中に
磁石のNdリッチ相より酸化が進行し、皮膜形成後内部
において酸化が進行し、ふくれ又は皮膜の剥離等を生ず
るため、耐食性の改善としては適していない。
[Problem to be solved by the invention WJ] However, since these oxidation-resistant films use a large amount of water and aqueous solution during their formation process, oxidation progresses from the Nd-rich phase of the magnet during the treatment process. After the film is formed, oxidation progresses inside the film, causing blistering or peeling of the film, so it is not suitable for improving corrosion resistance.

また、水を使用しない方法として、エポキシ等の耐酸化
性樹脂コーティング又は、最近普及してきたスパッタ、
蒸着、イオンブレーティング等の方法によるA、17.
Ni等の金属皮膜形成させた乾式メツキ等の方法もある
。しかしながら、これらの水を使用しないコーティング
においても長期使用による皮膜の劣化、使用中又は製品
検査及び装置への組み込みなどの取扱い時に微小なカケ
等により磁石表面が大気と接した場合、この部分より磁
石組織中のNdリッチ相が時間と共に著しく酸化し磁石
内部全体に拡がっていくため、耐食性の改善としては適
していない。
In addition, as a method that does not use water, oxidation-resistant resin coating such as epoxy, sputtering, which has recently become popular,
A, 17. by methods such as vapor deposition and ion blating;
There is also a method such as dry plating in which a metal film such as Ni is formed. However, even with these coatings that do not use water, if the film deteriorates due to long-term use, or if the magnet surface comes into contact with the atmosphere due to minute chips during use or during handling such as product inspection or installation into equipment, the magnet may be damaged from this area. Since the Nd-rich phase in the structure oxidizes significantly over time and spreads throughout the inside of the magnet, it is not suitable for improving corrosion resistance.

以上のように、いずれの従来の耐食性改溌方法において
も磁石中に極めて大気中で活性であるNdリッチ相が焼
結体中に連続して存在しているため、上記の6方”策が
有する本来の耐食成を水系磁石に付与することは、極め
て困難であった。
As mentioned above, in any of the conventional corrosion resistance reforming methods, the Nd-rich phase, which is extremely active in the atmosphere, exists continuously in the sintered body of the magnet, so the above six methods are not effective. It has been extremely difficult to impart the inherent corrosion resistance properties to water-based magnets.

すなわち、水系磁石においては、このNdリッチ相の耐
食性を根本的に改善しなければ、充分な耐食性を得るこ
とは不ロf能であった。
That is, in water-based magnets, it has been impossible to obtain sufficient corrosion resistance unless the corrosion resistance of this Nd-rich phase is fundamentally improved.

そこで本発明の技術課題は耐食性が極度に低いNdリッ
チ相を、より耐食性に優れた R5 (Pd、〜 xTx)2゜ Ri  (P d+xTx) 2 、  R(P d+
〜 T)のうち、少なくとも一種以上より構成されるマ
トリックス相に代替することにより、焼結体磁石自身の
耐食性を向上させ、さらにめっき、化成皮膜等のHする
本来の耐食性を水系磁石に付与することにある。
Therefore, the technical problem of the present invention is to replace the Nd-rich phase, which has extremely low corrosion resistance, with R5 (Pd, ~xTx)2°Ri (Pd+xTx)2, R(Pd+), which has even better corrosion resistance.
~ T) By substituting a matrix phase composed of at least one type or more, the corrosion resistance of the sintered magnet itself is improved, and the original corrosion resistance of plating, chemical conversion coating, etc. is imparted to the aqueous magnet. There is a particular thing.

[課題を解決するための手段] 本発明者らは種々の検討を重ねた結果 Rs  (P d +−xTx) 2相。[Means to solve the problem] As a result of various studies conducted by the inventors, Rs (Pd + - xTx) 2-phase.

Rs  (PD1xTx)2相、R(pcl、−”r、
)相が、Ndリッチ相よりも優れた耐食性を有しており
、しかも通常の粉末冶金工程により Nd2Fe+iB
相が、これらの相の少なくとも一種以上のマトリックス
中に分散した複合組織を有する焼結体が得られることを
見い出し本発明に至ったものである。
Rs (PD1xTx) 2-phase, R (pcl, -”r,
) phase has better corrosion resistance than the Nd-rich phase, and moreover, the Nd2Fe+iB
The present invention was based on the discovery that a sintered body having a composite structure in which phases are dispersed in a matrix of at least one of these phases can be obtained.

すなわち、本発明によれば、Nd2Fe14B相を主相
とする合金粉末と Ndq  (PD1xTx)2相。
That is, according to the present invention, an alloy powder having a main phase of Nd2Fe14B phase and two Ndq (PD1xTx) phases.

Ndi  (P d+xTx)2 、Nd (PD1、
T、)相の少なくとも一種以上の相を主成分とする合金
粉末を混合、成形、焼結を行うことにより、NdzFe
zB相が、Nd、(PD1xTx)2 。
Ndi (P d+xTx)2 , Nd (PD1,
NdzFe
The zB phase is Nd, (PD1xTx)2.

Ndj (PD1−T、)2 、Nd (PD1−T、
)相の少なくとも一種より構成されるマトリックス中に
分散した複合組織を有することを特徴とする焼結体が得
られるものである。この複合組織を有する焼結体中には
Ndリッチ相がほとんど存在せず、存在する場合におい
ても Nd、(Pd1−、T、)2相。
Ndj (PD1-T,)2, Nd (PD1-T,
) A sintered body is obtained which is characterized by having a composite structure dispersed in a matrix composed of at least one type of phase. There is almost no Nd-rich phase in the sintered body having this composite structure, and even when it does exist, it is a two-phase Nd, (Pd1-, T,).

Nd3  (P d l−m xTx) 2相。Nd3 (Pdl-mxTx) 2-phase.

Nd (Pd1−  T、)相中に球状で孤立した状態
で存在するため、゛このNdリッチ相が酸化しても焼結
体内部に進行せず、焼結体の酸化には影響しないため全
く問題はない。また、 Nds  (PdI−xTx)2相。
Since it exists in a spherical and isolated state in the Nd (Pd1-T,) phase, even if this Nd-rich phase oxidizes, it does not advance into the interior of the sintered body and does not affect the oxidation of the sintered body, so it does not affect the oxidation of the sintered body at all. No problem. Also, Nds (PdI-xTx) two-phase.

Nd  3  (Pd1−    T  菖 )  2
 相 ・Nd (PdI−x ’r、)相がNdリッチ
相よりも著しく優れた耐食性を有するため、焼結体自身
の耐食性も著しく向上゛させることができる。
Nd 3 (Pd1- T irises) 2
Since the Nd (PdI-x'r,) phase has significantly better corrosion resistance than the Nd-rich phase, the corrosion resistance of the sintered body itself can be significantly improved.

それ故、さらに耐食性を向上させるために、通常のめっ
き、化成処理等の従来の耐酸化性コーティングを本発明
の磁石に施しても、その処理工程1に焼結体が酸化する
ことがないため、これら耐酸化性コーティング皮膜の有
する本来の耐酸化性をも水系磁石に付与することができ
、工業上極めて有益である。
Therefore, even if a conventional oxidation-resistant coating such as ordinary plating or chemical conversion treatment is applied to the magnet of the present invention in order to further improve corrosion resistance, the sintered body will not be oxidized during the first treatment step. The inherent oxidation resistance of these oxidation-resistant coatings can also be imparted to water-based magnets, which is extremely useful industrially.

ここで本発明において、 R5(P drxTx) 2 。Here, in the present invention, R5 (P drxTx) 2.

RJ (PdIxTx) 2 、 R(PdI−xTx
)相のXを0〜0.3としたのは、Xが0.3を越えた
領域では過剰のTにより本発明の目的とするRs  (
P drxTx) 2 。
RJ(PdIxTx)2, R(PdI-xTx
) Phase X is set to 0 to 0.3 because in the region where X exceeds 0.3, excessive T causes Rs (
P drxTx) 2.

R3(P dr−xTx) 2. R(P di−m 
xTx)相が得られなかったり、またTにFeを用いた
場合には、過剰なFeは焼結体中にFe相として残留し
、著しく磁石特性を劣化させるなどの悪影響を及はすた
めX −s Q〜0.3とする必要がある。
R3 (P dr-xTx) 2. R(P di-m
If the -s Q~0.3.

また、これらマトリックス相で R%  (P d +−−Tヨ)2゜ Ri  (P d +xTx) 2 、相でも充分に耐
食性を向上させることができるが、より耐食性を向上さ
せるためにはマトリックス中のR(PdI−7つ)相の
存在比を50vo1%以上とすることが好ましい。
In addition, although the corrosion resistance can be sufficiently improved with the R% (P d +−−Tyo)2°Ri (P d +xTx) 2 phase in these matrix phases, in order to further improve the corrosion resistance, it is necessary to It is preferable that the abundance ratio of the R (PdI-7) phase is 50vol% or more.

以下に本発明の実施例について説明する。Examples of the present invention will be described below.

−〈実施例−1〉 純度9596以上のNd、Fe、Bを用いAr雰囲気中
にて高周波溶解により27Nd−1,OB−F e b
at(vL%)の組成をaするNd2Fe14、B相を
主相とするインゴットを得た。このインゴットを粗粉砕
し、得られた粗粉末を(1)材とした。
-〈Example-1〉 27Nd-1, OB-F e b was produced by high-frequency melting in an Ar atmosphere using Nd, Fe, and B with a purity of 9596 or higher.
An ingot having a main phase of Nd2Fe14 and B phase having a composition of at (vL%) was obtained. This ingot was coarsely ground, and the resulting coarse powder was used as material (1).

次に、上記と同等のNd、Fe、Pd、Bを用い、7g
、3Nd−18,2Pd−2,5Fe−1、OB、73
Nd−23Pd−3Fe−1,OB、68.5Nd−2
7Pd−3,5Fe−1、OB、64Nd−31Pd−
4Fe−1,0B  59Nd−35,5Pd−4,5
Fe1、OBの5fI類の組成(νt%)を有するイン
ゴットを上記と同様の方法により得た。
Next, using Nd, Fe, Pd, and B equivalent to the above, 7g
,3Nd-18,2Pd-2,5Fe-1,OB,73
Nd-23Pd-3Fe-1, OB, 68.5Nd-2
7Pd-3,5Fe-1, OB, 64Nd-31Pd-
4Fe-1,0B 59Nd-35,5Pd-4,5
An ingot having a 5fI composition (vt%) of Fe1 and OB was obtained by the same method as above.

これらインゴットを粗粉砕し、得られた5種類の粉末を
(II)−1〜ら材とした。これら(II)−1〜5材
のインゴットにおける金属組織をE、D、X、画像解析
装置を用い、その組成分析、各相の占積率を調査したと
ころ(n)−1材はNdq  (PdFe)2相が90
%以上、1−2材はNdq  (FePd)2相と N d 3  (F e P d ) 2相が約50%
づつ、(II)−3材はNd、(PdFe)2相が約9
0%以上、(n)−4材はNd*  (PdF e)を
相、Nd (PdFe)相が約50%づつ、(■−5材
は、Nd (FePn)相が90%の各組織を有してお
り、これら(II)−1〜5材が、Ndq  (P d
 F e) 2 Flj、Ndi  (FePd)2相
、Nd (FePd)の少なくとも一種以上を主成分と
する粉末であることがわかった。次に前述した(1)材
に(II)−1〜5材をおのおの適量添加し、Nd値が
32wt%となるように秤量し5種類の混合粉末を得た
。これら5種類の混合粉末をボールミルを用いてl均粒
径約4μmに微粉砕した。次に得られた微粉末を20 
XOeの磁界中1、  OLon /c−の圧力で成形
し圧粉体を得た。
These ingots were coarsely ground, and the five types of powder obtained were used as materials (II)-1 to (II)-1. The metal structures in the ingots of these (II)-1 to 5 materials were analyzed using an image analyzer using E, D, and X, and the composition analysis and space factor of each phase were investigated. PdFe) 2 phase is 90
% or more, 1-2 material has approximately 50% Ndq (FePd) 2 phases and N d 3 (F e P d ) 2 phases.
(II)-3 material has two phases of Nd and (PdFe) approximately 9
0% or more, (n)-4 material has a structure of Nd* (PdFe) phase and approximately 50% Nd (PdFe) phase, (■-5 material has a structure of 90% Nd (FePn) phase). These (II)-1 to 5 materials have Ndq (P d
It was found that the powder contains at least one of Fe) 2 Flj, two phases of Ndi (FePd), and Nd (FePd) as a main component. Next, appropriate amounts of each of materials (II)-1 to 5 were added to the material (1) described above and weighed so that the Nd value was 32 wt% to obtain five types of mixed powders. These five types of mixed powder were pulverized to an average particle size of about 4 μm using a ball mill. Next, the obtained fine powder was
A green compact was obtained by molding in a magnetic field of XOe at a pressure of 1 OLon/c-.

これら圧粉体を1000〜1150°CでO〜4hrA
r中焼結した。その後得られた焼結体を500〜800
℃で加熱した後急冷した。又比較材として32 N d
 −1、OB −F e L+al(wt%)の組成を
6する焼結体を通常の粉末冶金法により得た。
These compacts were heated at 1000 to 1150°C for 0 to 4 hrA.
Sintered in r. After that, the obtained sintered body was
It was heated at ℃ and then rapidly cooled. Also, as a comparative material, 32 N d
A sintered body having a composition of -1, OB -F e L+al (wt%) of 6 was obtained by a normal powder metallurgy method.

これら焼結体に、Cu下地めっきとしたNiめっきを施
した。これら試料の磁石特性、及び60’CX 959
6恒温恒湿試験を施した結果を第1表に示す。第1表よ
り本発明による試験片は、いずれも比較例の試験片に比
べ優れた耐食性を示し、磁石特性の面においても希土類
永久磁石として優れた磁石特性を示すことがわかる。
These sintered bodies were subjected to Ni plating with Cu underplating. Magnetic properties of these samples and 60'CX 959
Table 1 shows the results of the 6 constant temperature and humidity tests. From Table 1, it can be seen that the test pieces according to the present invention all exhibited superior corrosion resistance compared to the test pieces of the comparative example, and in terms of magnetic properties, they also exhibited excellent magnetic properties as rare earth permanent magnets.

またさらに耐食性の試験において(II)材のNd (
PdFe)相の量が50%以上の場合において、−段と
耐食性が向上することがわかる。
Furthermore, in the corrosion resistance test, Nd (
It can be seen that when the amount of the PdFe phase is 50% or more, the corrosion resistance is significantly improved.

〈実施例−2〉 実施例−1と同様にして57Nd−42Pd1、OB、
57.8Nd−39Pd−2,3Fe−0,9B、58
.4Nd−37,2Pd−3,4Fe−1,OB、59
.6Nd−33,5Pd−5,9Fe−1,OB、60
.3Nd−31,6Pd−7、lFe−1,OB、60
.9Nd−29,7Pd−8,4Fe−1,OB (い
ずれもW L %6、F e / P d比は0/1,
0.110.9,0.1510.85,0.210.8
゜0.2510.75,0.310.7,0.3510
.65である)の組成を有する7fili類の粗粉末(
I[[)−1〜7材を得た。
<Example-2> 57Nd-42Pd1, OB,
57.8Nd-39Pd-2,3Fe-0,9B, 58
.. 4Nd-37, 2Pd-3, 4Fe-1, OB, 59
.. 6Nd-33,5Pd-5,9Fe-1,OB,60
.. 3Nd-31, 6Pd-7, lFe-1, OB, 60
.. 9Nd-29, 7Pd-8, 4Fe-1, OB (all W L% 6, Fe / P d ratio 0/1,
0.110.9, 0.1510.85, 0.210.8
゜0.2510.75, 0.310.7, 0.3510
.. 7fili coarse powder (65)
I[[)-1 to 7 materials were obtained.

そして、これら粗粉末は、各々15wL%とし、残部8
596は実施例−1の(1)材を用い混合して、7種類
の混合粉末を得た。
Each of these coarse powders was 15 wL%, and the remaining amount was 8 wL%.
596 was mixed using material (1) of Example-1 to obtain seven types of mixed powders.

そしてこれら混合粗粉末を実施例−1と同様にして、微
粉砕、磁場中成形、焼結、熱処理を行い焼結体磁石試料
を得た。
These mixed coarse powders were finely pulverized, compacted in a magnetic field, sintered, and heat treated in the same manner as in Example 1 to obtain sintered magnet samples.

第1図にこれら焼結体の磁石特性と(II[)−1〜7
材のFe/Pbの比との関係を示す。第1図より(m)
−1〜6材のF e / Cu比が、0/1〜0.31
0.7の間で、高い磁石特性を示すことがわかる。
Figure 1 shows the magnetic properties of these sintered bodies and (II[)-1 to 7
The relationship with the Fe/Pb ratio of the material is shown. From Figure 1 (m)
- Fe / Cu ratio of materials 1 to 6 is 0/1 to 0.31
It can be seen that high magnetic properties are exhibited between 0.7 and 0.7.

以下余白 以上、主にNd−Fe−Bについてのみ述べたが、Yを
含めた希土類元素(R)、及び遷移金属T5及びBより
なるRxTxB系合金についても同様の効果が期待でき
ることは容易に推察できるところである。
In the following margins, we mainly talked about Nd-Fe-B, but it is easy to infer that similar effects can be expected for RxTxB alloys made of rare earth elements (R) including Y, and transition metals T5 and B. It's possible.

〈発明の効果〉 以上述べた如く本発明によればNd、Fe14B相を主
相とする粉末にNds  (PdFe)2゜Nd3 (
PdFe)2、Nd (Pd、Fe)相の少くとも一種
を主相とする粉末を混合し従来通りの粉末冶金法により
製造された焼結体磁石はNd、(PdFe)2.Nd3
 (PdFe)2+Nd (Pd、Fe)相の一種以上
のマトリックス中にNd2Fe14B相か分散した金属
組織を有している。
<Effects of the Invention> As described above, according to the present invention, Nds (PdFe)2゜Nd3 (
PdFe)2, Nd A sintered magnet manufactured by a conventional powder metallurgy method by mixing powders having at least one of the (Pd, Fe) phases as a main phase is Nd, (PdFe)2. Nd3
It has a metal structure in which a Nd2Fe14B phase is dispersed in a matrix of one or more types of (PdFe)2+Nd (Pd, Fe) phases.

この焼結体磁石は、従来のNd−Fe−B磁石に比べ耐
食性が著しく向上しており従来の水溶液を用いたNi、
Cu、Cr等の耐酸化性めっき、化成皮膜等のもつ本来
の耐食性を付与することができるため、耐食性に優れた
希土類永久磁石を容易に得ることができ工業上極めて有
益である。
This sintered magnet has significantly improved corrosion resistance compared to conventional Nd-Fe-B magnets, and has
Since it is possible to impart the inherent corrosion resistance of oxidation-resistant plating of Cu, Cr, etc., chemical coating, etc., it is possible to easily obtain rare earth permanent magnets with excellent corrosion resistance, which is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例−2における、Nd−(F e
 x P d l−* )  BのXの値を変化させた
粉末を混合して得られた焼結体のFeの置換圧と磁石特
性の関係を示す図である。
FIG. 1 shows Nd-(F e
xPdl-*) It is a figure showing the relationship between Fe substitution pressure and magnetic properties of a sintered body obtained by mixing powders in which the value of X of B is changed.

Claims (3)

【特許請求の範囲】[Claims] (1)R_5(PD_1_−_xT_x)_2,R_3
(Pd_1_−_xT_x)_2,R(PD_1_−_
xT_x)(ここでRは、Yを含めた希土類元素、Tは
遷移金属、x=0〜0.3の数を表わす。)のうち、少
なくとも一種より構成されるマトリックス中にR_2T
_1_4B相が分散していることを特徴とする耐酸化性
に優れた希土類永久磁石。
(1) R_5(PD_1_-_xT_x)_2, R_3
(Pd_1_-_xT_x)_2,R(PD_1_-_
xT_x) (where R is a rare earth element including Y, T is a transition metal, and x represents a number from 0 to 0.3).
A rare earth permanent magnet with excellent oxidation resistance characterized by dispersed _1_4B phase.
(2)第1の請求項記載の希土類永久磁石において、前
記マトリックス中のR(PD_1_−_xT_x)の体
積構成比が、50%以上であることを特徴とする希土類
永久磁石。
(2) The rare earth permanent magnet according to claim 1, wherein the volumetric composition ratio of R(PD_1_-_xT_x) in the matrix is 50% or more.
(3)希土類磁石合金粉末を磁場中成形し、液相焼結す
る希土類永久磁石の製造方法において、上記希土類磁石
合金粉末は、R_2T_1_4B金属間化合物を主成分
とする合金粉末に、 R_5(Pd_1_−_xT_x)_2, R_3(Pd_1_−_xT_x)_2,R(Pd_1
_−_xT_x)(ここでRは、Yを含めた希土類元素
、Tは遷移金属、x=0〜0.3の数を表わす。)の少
なくとも一種の化合物を主成分とする合金粉末を混合し
てなることを特徴とする耐酸化性に優れた希土類永久磁
石の製造方法。
(3) In a method for producing a rare earth permanent magnet in which rare earth magnet alloy powder is formed in a magnetic field and liquid-phase sintered, the rare earth magnet alloy powder is mixed into an alloy powder whose main component is an R_2T_1_4B intermetallic compound, R_5(Pd_1_- _xT_x)_2, R_3(Pd_1_-_xT_x)_2, R(Pd_1
____xT_x) (where R is a rare earth element including Y, T is a transition metal, and x represents a number from 0 to 0.3). A method for manufacturing rare earth permanent magnets with excellent oxidation resistance.
JP63269584A 1988-10-27 1988-10-27 Rare-earth permanent magnet having desirable resistance to oxidation and manufacture thereof Pending JPH02117103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63269584A JPH02117103A (en) 1988-10-27 1988-10-27 Rare-earth permanent magnet having desirable resistance to oxidation and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63269584A JPH02117103A (en) 1988-10-27 1988-10-27 Rare-earth permanent magnet having desirable resistance to oxidation and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02117103A true JPH02117103A (en) 1990-05-01

Family

ID=17474397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63269584A Pending JPH02117103A (en) 1988-10-27 1988-10-27 Rare-earth permanent magnet having desirable resistance to oxidation and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02117103A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739102A (en) * 1980-08-19 1982-03-04 Takagi Kogyo Kk Production of permanent magnet
JPS5812329A (en) * 1981-07-16 1983-01-24 Fujitsu Ltd Manufacture of semiconductor device
JPS60230959A (en) * 1984-04-28 1985-11-16 Tohoku Metal Ind Ltd Permanent magnet and its manufacture
JPS62103346A (en) * 1985-10-31 1987-05-13 Daido Steel Co Ltd Permanent magnet alloy
JPS6345349A (en) * 1986-08-12 1988-02-26 Yamaha Corp Permanent magnet alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739102A (en) * 1980-08-19 1982-03-04 Takagi Kogyo Kk Production of permanent magnet
JPS5812329A (en) * 1981-07-16 1983-01-24 Fujitsu Ltd Manufacture of semiconductor device
JPS60230959A (en) * 1984-04-28 1985-11-16 Tohoku Metal Ind Ltd Permanent magnet and its manufacture
JPS62103346A (en) * 1985-10-31 1987-05-13 Daido Steel Co Ltd Permanent magnet alloy
JPS6345349A (en) * 1986-08-12 1988-02-26 Yamaha Corp Permanent magnet alloy

Similar Documents

Publication Publication Date Title
JP3057448B2 (en) Rare earth permanent magnet
JPS61222102A (en) Rare earth iron group permanent magnet
EP0249973B1 (en) Permanent magnetic material and method for producing the same
JPS6325904A (en) Permanent magnet and manufacture of the same and compound for manufacture of the permanent magnet
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
JPS6063901A (en) Permanent magnet superior in resistance to oxidation
JP2018160669A (en) R-t-b based rare earth magnet
JPS6017905A (en) Permanent magnet alloy powder
JP2546989B2 (en) Permanent magnet with excellent oxidation resistance
JPH01251704A (en) Rare earth permanent magnet with excellent oxidation resistance
JP2654952B2 (en) Rare earth permanent magnet material and method for producing the same
JPH01100242A (en) Permanent magnetic material
JP2546988B2 (en) Permanent magnet with excellent oxidation resistance
JP2684140B2 (en) Rare earth / iron / cobalt / boron tetragonal compounds
JP2700643B2 (en) Manufacturing method of rare earth permanent magnet with excellent oxidation resistance
JPH02117103A (en) Rare-earth permanent magnet having desirable resistance to oxidation and manufacture thereof
JPH085664B2 (en) Rare earth / iron / boron tetragonal compound
JPH01105502A (en) Rare earth permanent magnet exhibiting high resistance to oxidation and manufacture thereof
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPH0644526B2 (en) Rare earth magnet manufacturing method
JPH01155603A (en) Manufacture of oxidation-resistant rare-earth permanent magnet
JPH02259038A (en) Rare earth magnetic alloy
JPS62270746A (en) Manufacture of rare earth-type permanent magnet
JP2903403B2 (en) Permanent magnet with excellent corrosion resistance
JPS6077952A (en) Samarium-cobalt magnetic alloy containing praseodymium and neodymium