JPH11204320A - Bonded magnet and its manufacture - Google Patents

Bonded magnet and its manufacture

Info

Publication number
JPH11204320A
JPH11204320A JP10020264A JP2026498A JPH11204320A JP H11204320 A JPH11204320 A JP H11204320A JP 10020264 A JP10020264 A JP 10020264A JP 2026498 A JP2026498 A JP 2026498A JP H11204320 A JPH11204320 A JP H11204320A
Authority
JP
Japan
Prior art keywords
magnet
epoxy resin
layer
coating layer
polymer material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10020264A
Other languages
Japanese (ja)
Inventor
Yoshiyasu Koike
吉康 小池
Takeshi Anpo
武志 安保
Yasumitsu Hayashi
保光 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIDO DENSHI KK
Original Assignee
DAIDO DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIDO DENSHI KK filed Critical DAIDO DENSHI KK
Priority to JP10020264A priority Critical patent/JPH11204320A/en
Publication of JPH11204320A publication Critical patent/JPH11204320A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a bonded magnet which is improved in corrosion resistance and mechanical strength. SOLUTION: A main body 12 of a rare-earth bonded magnet 10 is obtained by injection or compression-molding a kneaded material of rare-earth magnet powder and a binder composed of a high polymer material into a required shape. It is preferable to adjust the mixing ratio of the rare-earth magnet powder and an epoxy resin which is used as the high polymer material as the high polymer material in the main body 12 to 90-99 wt.% and 1-10 wt.%, respectively. The entire surface of the main body 12 is covered with a first resin film 14 composed of an epoxy resin, which is a high polymer material and having a thickness of 5-50 μm. Then the entire surface of the first resin film 14 is furthermore covered with a second resin film 16 which is composed of an epoxy resin and having a thickness of 1-20 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ボンド磁石およ
びその製造方法に関し、更に詳細には、高分子材料の被
膜層または金属メッキ層で被覆された磁石本体の表面全
体を、更に高分子材料の被膜層で被覆したボンド磁石お
よびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bonded magnet and a method of manufacturing the same, and more particularly, to a magnet body covered with a polymer material coating layer or a metal plating layer. The present invention relates to a bonded magnet covered with a coating layer and a method for producing the same.

【0002】[0002]

【従来の技術】Sm、Nd、Pr等の希土類元素の1種
または2種以上を含む磁性材料の粉末と樹脂バインダー
とを所要の割合で混合した混合物を射出成形または圧縮
成形して得られる希土類ボンド磁石が、例えばハードデ
ィスク用のスピンドルモータにおけるロータ等に好適に
使用されている。しかるに、希土類ボンド磁石は、酸化
し易い原料成分を含んでいるため、その表面が素地のま
までは経時的に錆が発生し易く、モータ部品等にそのま
ま使用すると、耐久性の低下や故障の原因を招くことに
なる。そこで、錆止めのために希土類ボンド磁石の表面
を、スプレー塗装法、電着塗装法または浸漬塗装法等に
よって樹脂被膜で被覆する対策が一般に採られている。
2. Description of the Related Art Rare earth obtained by injection molding or compression molding of a mixture obtained by mixing a powder of a magnetic material containing one or more kinds of rare earth elements such as Sm, Nd, Pr and a resin binder in a required ratio. Bond magnets are suitably used, for example, as rotors in spindle motors for hard disks. However, since rare-earth bonded magnets contain raw materials that are easily oxidized, rust easily occurs over time if the surface is unmodified, and if used as such for motor parts, the durability and failure may be reduced. Will be invited. Therefore, measures are generally taken to coat the surface of the rare-earth bonded magnet with a resin film by a spray coating method, an electrodeposition coating method, a dip coating method or the like to prevent rust.

【0003】[0003]

【発明が解決しようとする課題】前述したスプレー塗装
法や浸漬塗装法の場合には、該塗装法で形成される膜厚
のコントロールが難しく、樹脂被膜のみでの耐食性が一
般に低い欠点がある。これに対して電着塗装法の場合に
は、均一な樹脂被膜を形成することができ、耐食性は優
れている。しかるに、磁石表面に接触する電極部分には
被膜は形成されず、この電極跡の部分から錆が発生した
り磁石粉末の飛散を生ずる懸念がある。また、樹脂被膜
で表面を被覆した希土類ボンド磁石を用いた製品におい
ては、その機械的強度が低く、組立工程中に樹脂被膜が
損傷したり、運搬時に誤って落したときに簡単に破損し
てしまう等の難点が指摘される。すなわち、何れにして
も希土類ボンド磁石の表面を樹脂被膜のみで被覆するだ
けでは、充分な耐食性や機械的強度を得ることはできな
い欠点が指摘される。
In the case of the above-mentioned spray coating method or dip coating method, it is difficult to control the film thickness formed by the coating method, and there is a disadvantage that the corrosion resistance of the resin film alone is generally low. On the other hand, in the case of the electrodeposition coating method, a uniform resin film can be formed, and the corrosion resistance is excellent. However, a coating is not formed on the electrode portion in contact with the magnet surface, and there is a concern that rust is generated from the trace of the electrode and that the magnet powder is scattered. In addition, products using rare-earth bonded magnets whose surface is coated with a resin coating have low mechanical strength, and the resin coating may be damaged during the assembly process or may be easily broken if dropped accidentally during transportation. Some difficulties are pointed out. That is, in any case, it is pointed out that a sufficient corrosion resistance and mechanical strength cannot be obtained only by coating the surface of the rare-earth bonded magnet only with the resin film.

【0004】[0004]

【発明の目的】本発明は、前述した従来の技術に内在し
ている前記欠点に鑑み、これを好適に解決するべく提案
されたものであって、高い耐食性が得られ、かつ機械的
強度を向上し得るボンド磁石およびその製造方法を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned drawbacks inherent in the prior art, and has been proposed in order to suitably solve the drawback. The present invention provides high corrosion resistance and high mechanical strength. An object of the present invention is to provide a bond magnet that can be improved and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】前記課題を克服し、所期
の目的を好適に達成するため、本発明に係るボンド磁石
は、希土類磁石粉末と高分子材料とを所要の割合で混合
した混合物から磁石本体が構成され、この磁石本体の表
面全体が高分子材料の被膜層または金属メッキ層で被覆
されると共に、前記被膜層または金属メッキ層の外表面
全体が、更に高分子材料の被膜層で被覆されていること
を特徴とする。
SUMMARY OF THE INVENTION In order to overcome the above-mentioned problems and appropriately attain the intended purpose, a bonded magnet according to the present invention is a mixture of a rare earth magnet powder and a polymer material in a required ratio. And the entire surface of the magnet body is coated with a coating layer or a metal plating layer of a polymer material, and the entire outer surface of the coating layer or the metal plating layer is further coated with a coating layer of a polymer material. Characterized by being coated with

【0006】前記課題を克服し、所期の目的を達成する
ため、本願の別の発明に係るボンド磁石は、Nd−Fe
−B系の希土類磁石粉末が90〜99wt%で、高分子
材料としてのエポキシ樹脂が1〜10wt%の割合で混
合した混合物から磁石本体が構成され、この磁石本体の
表面全体が5〜50μmの厚みのエポキシ樹脂の被膜層
で被覆されると共に、該被膜層の外表面全体が更に1〜
20μmの厚みの樹脂被膜層で被覆されていることを特
徴とする。
[0006] In order to overcome the above-mentioned problems and achieve the intended object, a bonded magnet according to another invention of the present application comprises Nd-Fe.
The magnet main body is composed of a mixture in which the rare earth magnet powder of -B type is 90 to 99 wt% and the epoxy resin as a polymer material is mixed at a ratio of 1 to 10 wt%, and the entire surface of the magnet main body is 5 to 50 μm. While being coated with a thick epoxy resin coating layer, the entire outer surface of the coating layer is further 1 to
It is characterized by being coated with a resin coating layer having a thickness of 20 μm.

【0007】前記課題を克服し、所期の目的を達成する
ため、本願の更に別の発明に係るボンド磁石は、Nd−
Fe−B系の希土類磁石粉末と高分子材料としてのエポ
キシ樹脂を所要の割合で混合した混合物から磁石本体が
構成され、この磁石本体の表面全体がニッケルメッキ層
で被覆されると共に、該ニッケルメッキ層の外表面全体
が更にエポキシ樹脂の被膜層で被覆されていることを特
徴とする。
[0007] In order to overcome the above-mentioned problems and achieve the intended object, a bonded magnet according to still another invention of the present application is an Nd-bonded magnet.
The magnet body is composed of a mixture of a Fe-B-based rare earth magnet powder and an epoxy resin as a polymer material in a required ratio, and the entire surface of the magnet body is covered with a nickel plating layer. The entire outer surface of the layer is further coated with an epoxy resin coating layer.

【0008】前記課題を克服し、所期の目的を達成する
ため、本願の別の発明に係るボンド磁石の製造方法は、
希土類磁石粉末と高分子材料としてのエポキシ樹脂を所
要の割合で混合した混合物の成形体からなる磁石本体の
表面全体に、電着または浸漬塗装法によってエポキシ樹
脂の被膜層を5〜50μmの厚みで形成する工程を行な
った後、この被膜層の外表面全体に電着またはスプレー
塗装法により更にエポキシ樹脂の被膜層を1〜20μm
の厚みで形成する工程を行なうことを特徴とする。
[0008] In order to overcome the above problems and achieve the intended object, a method for manufacturing a bonded magnet according to another invention of the present application is as follows.
An epoxy resin coating layer having a thickness of 5 to 50 μm is formed by electrodeposition or dip coating on the entire surface of the magnet body made of a mixture of the rare earth magnet powder and the epoxy resin as a polymer material in a required ratio. After performing the forming step, an epoxy resin coating layer is further applied to the entire outer surface of the coating layer by 1 to 20 μm by electrodeposition or spray coating.
A step of forming with a thickness of

【0009】前記課題を克服し、所期の目的を達成する
ため、本願の更に別の発明に係るボンド磁石の製造方法
は、希土類磁石粉末と高分子材料としてのエポキシ樹脂
を所要の割合で混合した混合物の成形体からなる磁石本
体の表面全体に、電気金属メッキ法によってニッケルメ
ッキ層を5〜50μmの厚みで形成する工程を行なった
後、このニッケルメッキ層の外表面全体に電着または浸
漬塗装法によりエポキシ樹脂の被膜層を1〜20μmの
厚みで形成する工程を行なうことを特徴とする。
In order to overcome the above problems and achieve the intended object, a method for manufacturing a bonded magnet according to still another invention of the present application is to mix a rare earth magnet powder and an epoxy resin as a polymer material at a required ratio. A step of forming a nickel plating layer with a thickness of 5 to 50 μm on the entire surface of the magnet main body made of the molded product of the mixture by electrometal plating, and then electrodepositing or dipping the entire outer surface of the nickel plating layer The method is characterized in that a step of forming an epoxy resin coating layer with a thickness of 1 to 20 μm by a coating method is performed.

【0010】[0010]

【発明の実施の形態】次に、本発明に係るボンド磁石お
よびその製造方法につき、添付図面を参照しながら以下
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a bonded magnet and a method for manufacturing the same according to the present invention will be described below with reference to the accompanying drawings.

【0011】[0011]

【第1実施例について】図1は、第1実施例に係る希土
類ボンド磁石を示すものであって、該希土類ボンド磁石
10の磁石本体12は、Sm、Nd、Pr等の希土類元
素の1種または2種以上を含む磁性材料の粉末に高分子
材料からなるバインダーを添加して混練したものを、所
要形状に射出または圧縮成形することにより得られる。
この磁石本体12は、好適にはNd−Fe−B系の希土
類磁石粉末が90〜99wt%で、高分子材料としての
エポキシ樹脂が1〜10wt%の割合で混合した混合物
から構成される。
FIG. 1 shows a rare earth bonded magnet according to a first embodiment. The magnet main body 12 of the rare earth bonded magnet 10 is one of rare earth elements such as Sm, Nd and Pr. Alternatively, it is obtained by adding or kneading a binder made of a polymer material to a magnetic material powder containing two or more kinds and injecting or kneading the mixture into a required shape.
The magnet main body 12 is preferably composed of a mixture of Nd-Fe-B-based rare earth magnet powder in a proportion of 90 to 99 wt% and an epoxy resin as a polymer material in a proportion of 1 to 10 wt%.

【0012】前記磁石本体12の表面全体は、5〜50
μmの厚みの高分子材料であるエポキシ樹脂からなる第
1樹脂被膜層14で被覆されている。そして、この第1
樹脂被膜層14の外表面全体が、更に高分子材料である
エポキシ樹脂からなる第2樹脂被膜層16で被覆してあ
る。なお、第2樹脂被膜層16の厚みは、1〜20μm
に設定されている。
The entire surface of the magnet body 12 is 5 to 50
It is covered with a first resin coating layer 14 made of an epoxy resin which is a polymer material having a thickness of μm. And this first
The entire outer surface of the resin coating layer 14 is further covered with a second resin coating layer 16 made of an epoxy resin which is a polymer material. The thickness of the second resin coating layer 16 is 1 to 20 μm.
Is set to

【0013】図2は、第1実施例に係る希土類ボンド磁
石の製造工程を示すフローチャートである。この実施例
で使用される磁石本体12は、例えば公知の急冷法で作
製したNd27wt%、Fe67wt%、B1wt%、
Co5wt%の組成からなる平均粒径150μmの合金
粉末に、カップリング剤0.1wt%、エポキシ樹脂1.
5〜3.0wt%および潤滑剤を加えて混練し、所要圧
力で圧縮成形した後に180℃で30〜60分間の熱処
理により硬化させることで製造される。なお合金粉末の
組成としては、Nd30wt%、Fe69wt%、B1
wt%のものでもよい。
FIG. 2 is a flowchart showing the steps of manufacturing the rare earth bonded magnet according to the first embodiment. The magnet main body 12 used in this embodiment includes, for example, Nd 27% by weight, Fe 67% by weight, B1% by weight,
An alloy powder having an average particle size of 150 μm having a composition of Co 5 wt%, a coupling agent 0.1 wt%, and an epoxy resin 1.
It is manufactured by adding and mixing 5 to 3.0 wt% of a lubricant, kneading, compression molding at a required pressure, and curing by heat treatment at 180 ° C for 30 to 60 minutes. The composition of the alloy powder was as follows: Nd 30 wt%, Fe 69 wt%, B1
wt%.

【0014】前記磁石本体12を、純水により洗浄して
表面に付着している不純物を除去する。そして、この磁
石本体12の表面全体に、電着塗装法により第1樹脂被
膜層14を形成する。すなわち、被覆するべきエポキシ
樹脂を純水に所要の割合で溶かした溶液中に磁石本体1
2を浸漬した状態で、該溶液が貯留される容器に配設し
た電極に所要の電圧を印加することで、磁石本体12の
表面全体には所要厚みでエポキシ樹脂の第1樹脂被膜層
14が形成される。この第1樹脂被膜層14の厚みは、
印加電圧および浸漬時間等を制御することで、5〜50
μmとなるよう設定される。第1樹脂被膜層14が形成
された磁石本体12は、洗浄工程を経て乾燥される。な
お、第1樹脂被膜層14に関しては、スプレー塗装法や
特開平8−265994号公報に開示の塗装方法を用い
て形成してもよい。
The magnet body 12 is washed with pure water to remove impurities adhering to the surface. Then, the first resin coating layer 14 is formed on the entire surface of the magnet main body 12 by an electrodeposition coating method. That is, the magnet body 1 is placed in a solution in which the epoxy resin to be coated is dissolved in pure water at a required ratio.
2 is immersed, a required voltage is applied to an electrode disposed in a container in which the solution is stored, so that a first resin coating layer 14 of epoxy resin having a required thickness is formed on the entire surface of the magnet body 12. It is formed. The thickness of the first resin coating layer 14 is
By controlling the applied voltage and immersion time, 5 to 50
It is set to be μm. The magnet main body 12 on which the first resin coating layer 14 is formed is dried through a washing step. The first resin coating layer 14 may be formed by a spray coating method or a coating method disclosed in JP-A-8-265994.

【0015】次いで、前記磁石本体12の表面を覆う第
1樹脂被膜層14の外表面全体に、浸漬塗装法により第
2樹脂被膜層16を更に形成する。すなわち、被覆すべ
きエポキシ樹脂を含む樹脂溶液中に磁石本体12を浸漬
し、該樹脂溶液中から取出した磁石本体12を乾燥して
液切りを行なった後に、所要温度のオーブン中に所定時
間放置して硬化処理を施す。これにより、第1樹脂被膜
層14および第2樹脂被膜層16で2重に被覆された高
い耐食性を有し、かつ機械的強度が向上した希土類ボン
ド磁石10が得られる。なお、第2樹脂被膜層16の厚
みは、樹脂溶液中におけるエポキシ樹脂の濃度等の制御
により、1〜20μmとなるよう設定される。前記樹脂
溶液の配合例としては、エポキシ樹脂:7.0wt%、
キシレン:8.0wt%、MEK(メチルエチルケト
ン):85.0wt%、硬化剤:2.0wt%のものが好
適に使用される。また第2樹脂被膜層16に関しては、
第1樹脂被膜層14と同じように電着塗装法により形成
するようにしてもよい。
Next, a second resin coating layer 16 is further formed on the entire outer surface of the first resin coating layer 14 covering the surface of the magnet main body 12 by a dip coating method. That is, the magnet body 12 is immersed in a resin solution containing an epoxy resin to be coated, the magnet body 12 taken out of the resin solution is dried and drained, and then left in an oven at a required temperature for a predetermined time. And perform a hardening process. Thereby, the rare-earth bonded magnet 10 having high corrosion resistance and improved mechanical strength, which is double-coated with the first resin coating layer 14 and the second resin coating layer 16, is obtained. The thickness of the second resin coating layer 16 is set to 1 to 20 μm by controlling the concentration of the epoxy resin in the resin solution. As an example of the composition of the resin solution, epoxy resin: 7.0 wt%,
Xylene: 8.0 wt%, MEK (methyl ethyl ketone): 85.0 wt%, and curing agent: 2.0 wt% are preferably used. As for the second resin coating layer 16,
It may be formed by an electrodeposition coating method as in the case of the first resin coating layer 14.

【0016】[0016]

【第1実施例の試験例について】前述した第1実施例に
係る製造方法により得られた希土類ボンド磁石および従
来の電着塗装法により樹脂被膜のみが被覆された希土類
ボンド磁石の各20個について、沸騰水中に3時間保持
して、錆の発生の有無を検査した結果を以下の表1に示
す。なお試験結果は、夫々20個の希土類ボンド磁石に
対する錆の発生個数の割合(錆の発生個数/20)で示
す。また、試験に用いた磁石本体は、φ20×φ18×
10mmの成形体であり、この成形体に対して実施例で
は20μmの第1樹脂被膜層14が形成されると共に5
μmの第2樹脂被膜層16が形成され、従来例では20
μmの樹脂被膜が形成してある。更に、第1実施例の希
土類ボンド磁石および従来例の希土類ボンド磁石の各2
0個について、ロードセルによって応力荷重を加え、圧
環強度を測定した結果を併せて示す。
[Test Example of First Embodiment] For each of the 20 rare-earth bonded magnets obtained by the manufacturing method according to the above-described first embodiment and the rare-earth bonded magnets coated only with a resin film by the conventional electrodeposition coating method. Table 3 shows the results of inspection for the presence or absence of rust by holding the sample in boiling water for 3 hours. The test results are shown as the ratio of the number of rusts generated to 20 rare-earth bonded magnets (the number of rusts generated / 20). The magnet body used for the test was φ20 × φ18 ×
In this embodiment, the first resin coating layer 14 having a thickness of 20 μm is formed on the molded body.
A second resin coating layer 16 having a thickness of 20 μm is formed.
A resin coating of μm is formed. Further, each of the rare earth bonded magnet of the first embodiment and the rare earth bonded magnet of the conventional example is 2
About 0 pieces, the result which measured the radial crushing strength by applying a stress load with a load cell is also shown.

【0017】 [0017]

【0018】すなわち、この試験結果から、磁石本体1
2を第1樹脂被膜層14と第2樹脂被膜層16とで2重
に被覆した第1実施例の希土類ボンド磁石10は、樹脂
被膜のみを施した従来例の希土類ボンド磁石に比較し
て、耐食性(防錆効果)および圧環強度(破壊強度)が共に
向上することが明らかとなった。
That is, from the test results, the magnet body 1
2 is doubly covered with the first resin coating layer 14 and the second resin coating layer 16 in the rare earth bonded magnet 10 of the first embodiment, compared with the conventional rare earth bonded magnet coated only with the resin coating. It became clear that both corrosion resistance (rust prevention effect) and radial crushing strength (breaking strength) were improved.

【0019】[0019]

【第2実施例について】図3は、第2実施例に係る希土
類ボンド磁石を示すものであって、該希土類ボンド磁石
20の磁石本体22は、前述したと同様な希土類元素の
1種または2種以上を含む磁性材料の粉末に高分子材料
からなるバインダーを添加して混練したものを、所要形
状に射出または圧縮成形することにより得られる。この
磁石本体22は、好適にはNd−Fe−B系の希土類磁
石粉末が90〜99wt%で、高分子材料としてのエポ
キシ樹脂が1〜10wt%の割合で混合した混合物から
構成される。また磁石本体22は、その表面粗度が10
0μm以下で、密度が5.0〜6.5g/cm3の間で好
適には6.0g/cm3に設定される。
FIG. 3 shows a rare earth bonded magnet according to a second embodiment. The magnet main body 22 of the rare earth bonded magnet 20 has one or two rare earth elements similar to those described above. It can be obtained by adding or kneading a binder made of a polymer material to a magnetic material powder containing at least one kind and injecting or compression-molding it into a required shape. The magnet main body 22 is preferably composed of a mixture of Nd-Fe-B-based rare earth magnet powder in a proportion of 90 to 99 wt% and an epoxy resin as a polymer material in a proportion of 1 to 10 wt%. The magnet body 22 has a surface roughness of 10
0μm or less, density preferably between 5.0~6.5g / cm 3 is set to 6.0 g / cm 3.

【0020】前記磁石本体22の表面全体は、金属材料
としてのニッケルを材質とするニッケルメッキ層(金属
メッキ層)24により被覆され、その厚みは5〜50μ
mに設定されている。そして、このニッケルメッキ層2
4の外表面全体が、更に高分子材料であるエポキシ樹脂
からなる樹脂被膜層26で被覆してある。なお、樹脂被
膜層26の厚みは、1〜20μmに設定されている。
The entire surface of the magnet main body 22 is covered with a nickel plating layer (metal plating layer) 24 made of nickel as a metal material, and has a thickness of 5 to 50 μm.
m. And this nickel plating layer 2
The entire outer surface of No. 4 is further covered with a resin coating layer 26 made of an epoxy resin which is a polymer material. In addition, the thickness of the resin coating layer 26 is set to 1 to 20 μm.

【0021】図4は、第2実施例に係る希土類ボンド磁
石の製造工程を示すフローチャートである。この実施例
で使用される磁石本体22は、例えば公知の急冷法で作
製したNd27wt%、Fe67wt%、B1wt%、
Co5wt%の組成からなる平均粒径150μmの合金
粉末に、カップリング剤0.1wt%、エポキシ樹脂1.
5〜3.0wt%および潤滑剤を加えて混練し、所要圧
力で圧縮成形した後に180℃で30〜60分間の熱処
理により硬化させることで製造される。なお、得られた
磁石本体22の表面粗度が100μm以下で、かつ密度
が5.0〜6.5g/cm3となるように、各製造条件が
設定される。また合金粉末の組成としては、Nd30w
t%、Fe69wt%、B1wt%のものでもよい。
FIG. 4 is a flowchart showing the steps of manufacturing the rare earth bonded magnet according to the second embodiment. The magnet main body 22 used in this embodiment includes, for example, Nd 27 wt%, Fe 67 wt%, B 1 wt%
An alloy powder having an average particle size of 150 μm having a composition of Co 5 wt%, a coupling agent 0.1 wt%, and an epoxy resin 1.
It is manufactured by adding and mixing 5 to 3.0 wt% of a lubricant, kneading, compression molding at a required pressure, and curing by heat treatment at 180 ° C for 30 to 60 minutes. Each manufacturing condition is set such that the surface roughness of the obtained magnet main body 22 is 100 μm or less and the density is 5.0 to 6.5 g / cm 3 . The composition of the alloy powder is Nd30w
t%, Fe69wt%, B1wt%.

【0022】前記磁石本体22を、純水により洗浄して
表面に付着している不純物を除去する。そして、この磁
石本体22を、メッキ用金属としてニッケルを用いて電
気金属メッキ法によりメッキした後、洗浄工程を経て乾
燥される。これにより、磁石本体22の表面全体は、直
にニッケルメッキ層24で被覆されることとなる。この
ニッケルメッキ層24の厚みは、メッキ時間等を制御す
ることで、5〜50μmとなるよう設定される。なお電
気金属メッキ法としては、メッキ液が貯留されたバレル
タンク内に磁石本体22を装入し、このタンクを回転さ
せると共に該タンク内に配設した電極に電流を流すこと
によりメッキを行なうバレル法が好適に用いられる。ま
たメッキ液としては、公知のワット浴が好適である。
The magnet body 22 is washed with pure water to remove impurities adhering to the surface. Then, after the magnet main body 22 is plated by an electrometal plating method using nickel as a plating metal, the magnet body 22 is dried through a washing step. Thus, the entire surface of the magnet body 22 is directly covered with the nickel plating layer 24. The thickness of the nickel plating layer 24 is set to 5 to 50 μm by controlling the plating time and the like. In the metal electroplating method, a magnet main body 22 is charged into a barrel tank in which a plating solution is stored, and the barrel is rotated by rotating the tank and applying a current to an electrode provided in the tank. The method is preferably used. A well-known watt bath is suitable as the plating solution.

【0023】次いで、前記磁石本体22の表面を覆うニ
ッケルメッキ層24の外表面全体に、浸漬塗装法により
樹脂被膜層26を更に形成する。すなわち、被覆すべき
エポキシ樹脂を含む樹脂溶液中に磁石本体22を浸漬
し、該樹脂溶液中から取出した磁石本体22を乾燥して
液切りを行なった後に、所要温度のオーブン中に所定時
間放置して硬化処理を施す。これにより、磁石本体22
の表面が直にニッケルメッキ層24で被覆されると共
に、更に該メッキ層24が樹脂被膜層26で被覆された
高い耐食性を有し、かつ機械的強度が向上した希土類ボ
ンド磁石20が得られる。なお、樹脂被膜層26の厚み
は、樹脂溶液中におけるエポキシ樹脂の濃度等の制御に
より、1〜20μmとなるよう設定される。前記樹脂溶
液の配合例としては、エポキシ樹脂:7.0wt%、キ
シレン:8.0wt%、MEK(メチルエチルケトン):
85.0wt%、硬化剤:2.0wt%のものが好適に使
用される。また樹脂被膜層26に関しては、前述した第
1実施例に開示の電着塗装法や特開平8−265994
号公報に開示の塗装方法を用いて形成してもよい。
Next, a resin coating layer 26 is further formed on the entire outer surface of the nickel plating layer 24 covering the surface of the magnet main body 22 by a dip coating method. That is, the magnet body 22 is immersed in a resin solution containing an epoxy resin to be coated, the magnet body 22 taken out of the resin solution is dried and drained, and then left in an oven at a required temperature for a predetermined time. And perform a hardening process. Thereby, the magnet body 22
Is coated directly with a nickel plating layer 24, and the plating layer 24 is further coated with a resin coating layer 26, thereby obtaining a rare earth bonded magnet 20 having high corrosion resistance and improved mechanical strength. The thickness of the resin coating layer 26 is set to 1 to 20 μm by controlling the concentration of the epoxy resin in the resin solution. Examples of the composition of the resin solution include: epoxy resin: 7.0 wt%, xylene: 8.0 wt%, MEK (methyl ethyl ketone):
Those having 85.0 wt% and a curing agent of 2.0 wt% are suitably used. Regarding the resin coating layer 26, the electrodeposition coating method disclosed in the above-mentioned first embodiment and the method disclosed in Japanese Patent Application Laid-Open No. 8-265994.
It may be formed by using the coating method disclosed in Japanese Patent Application Laid-Open Publication No. H10-15095.

【0024】[0024]

【第2実施例の試験例について】前述した第2実施例に
係る製造方法により得られた希土類ボンド磁石、および
磁石本体をニッケルメッキ層のみで被覆した希土類ボン
ド磁石の各20個について、沸騰水中に3時間保持し
て、錆の発生の有無を検査した結果を以下の表2に示
す。なお試験結果は、夫々20個の希土類ボンド磁石に
対する錆の発生個数の割合(錆の発生個数/20)で示
す。また、試験に用いた磁石本体は、φ20×φ18×
10mmの成形体であり、この成形体に対して実施例で
は20μmのニッケルメッキ層24が形成されると共に
5μmの樹脂被膜層26が形成され、比較例では20μ
mのニッケルメッキ層が形成してある。更に、第2実施
例の希土類ボンド磁石および比較例の希土類ボンド磁石
の各20個について、ロードセルによって応力荷重を加
え、圧環強度を測定した結果を併せて示す。
Test Example of the Second Embodiment Boiling water was applied to each of the 20 rare-earth bonded magnets obtained by the manufacturing method according to the above-described second embodiment and the 20 rare-earth bonded magnets whose magnet bodies were covered only with a nickel plating layer. The results of inspection for the presence or absence of rust after holding for 3 hours are shown in Table 2 below. The test results are shown as the ratio of the number of rusts generated to 20 rare-earth bonded magnets (the number of rusts generated / 20). The magnet body used for the test was φ20 × φ18 ×
In this embodiment, a nickel plating layer 24 having a thickness of 20 μm was formed, and a resin coating layer 26 having a thickness of 5 μm was formed.
m nickel plating layer is formed. Further, the results obtained by applying a stress load by a load cell to each of the 20 rare-earth bonded magnets of the second embodiment and the rare-earth bonded magnet of the comparative example and measuring the radial crushing strength are also shown.

【0025】 [0025]

【0026】すなわち、この試験結果から、磁石本体2
2をニッケルメッキ層24と樹脂被膜層26とで2重に
被覆した第2実施例の希土類ボンド磁石20は、ニッケ
ルメッキ層のみを施した比較例の希土類ボンド磁石に比
較して、耐食性(防錆効果)および圧環強度(破壊強度)が
共に向上することが明らかとなった。
That is, from the test results, the magnet body 2
2 is double-coated with a nickel plating layer 24 and a resin coating layer 26, the rare-earth bonded magnet 20 of the second embodiment has a higher corrosion resistance (anti-corrosion) than the rare-earth bonded magnet of the comparative example having only the nickel plating layer. It became clear that both the rust effect) and the radial crushing strength (breaking strength) were improved.

【0027】[0027]

【発明の効果】以上説明した如く、本発明に係るボンド
磁石およびその製造方法によれば、磁石本体の表面全体
を高分子材料の被膜層や金属メッキ層で被覆し、更にそ
の外表面全体を高分子材料の被膜層で被覆したことによ
って、ボンド磁石の耐食性および機械的強度が向上す
る。従って、本発明に係るボンド磁石を用いた製品の信
頼性を向上し得ると共に、その組立工程中に損傷した
り、運搬時に誤って破損するのを抑制することができ、
取扱が容易となる利点を有する。殊に、磁石本体の表面
をニッケルメッキ層等の金属メッキ層で被覆した場合
は、該メッキ層の成膜効率が向上して、更に高い耐食性
を確保し得ると共に機械的強度も向上する。
As described above, according to the bonded magnet and the method of manufacturing the same according to the present invention, the entire surface of the magnet main body is covered with the coating layer of the polymer material or the metal plating layer, and the entire outer surface is further covered. By covering with a coating layer of a polymer material, the corrosion resistance and mechanical strength of the bonded magnet are improved. Therefore, it is possible to improve the reliability of the product using the bonded magnet according to the present invention, and to prevent the product from being damaged during the assembling process or from being erroneously damaged during transportation,
It has the advantage of easy handling. In particular, when the surface of the magnet main body is covered with a metal plating layer such as a nickel plating layer, the efficiency of forming the plating layer is improved, so that higher corrosion resistance can be ensured and mechanical strength is also improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例に係る希土類ボンド磁石を
示す断面図である。
FIG. 1 is a cross-sectional view illustrating a rare-earth bonded magnet according to a first embodiment of the present invention.

【図2】第1実施例に係る希土類ボンド磁石の製造方法
の工程を示すフローチャート図である。
FIG. 2 is a flowchart showing steps of a method for manufacturing a rare-earth bonded magnet according to the first embodiment.

【図3】本発明の第2実施例に係る希土類ボンド磁石を
示す断面図である。
FIG. 3 is a sectional view showing a rare earth bonded magnet according to a second embodiment of the present invention.

【図4】第2実施例に係る希土類ボンド磁石の製造方法
の工程を示すフローチャート図である。
FIG. 4 is a flowchart illustrating steps of a method for manufacturing a rare-earth bonded magnet according to a second embodiment.

【符号の説明】[Explanation of symbols]

12 磁石本体 14 第1樹脂被膜層 16 第2樹脂被膜層 22 磁石本体 24 ニッケルメッキ層(金属メッキ層) 26 樹脂被膜層 12 magnet main body 14 first resin coating layer 16 second resin coating layer 22 magnet main body 24 nickel plating layer (metal plating layer) 26 resin coating layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01F 41/02 H01F 1/04 H ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01F 41/02 H01F 1/04 H

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 希土類磁石粉末と高分子材料とを所要の
割合で混合した混合物から磁石本体(12,22)が構成さ
れ、この磁石本体(12,22)の表面全体が高分子材料の被
膜層(14)または金属メッキ層(24)で被覆されると共に、
前記被膜層(14)または金属メッキ層(24)の外表面全体
が、更に高分子材料の被膜層(16,26)で被覆されている
ことを特徴とするボンド磁石。
A magnet body (12, 22) is composed of a mixture of a rare earth magnet powder and a polymer material in a required ratio, and the entire surface of the magnet body (12, 22) is coated with a polymer material. Covered with a layer (14) or a metal plating layer (24),
A bonded magnet, wherein the entire outer surface of the coating layer (14) or the metal plating layer (24) is further covered with a coating layer (16, 26) of a polymer material.
【請求項2】 Nd−Fe−B系の希土類磁石粉末が9
0〜99wt%で、高分子材料としてのエポキシ樹脂が
1〜10wt%の割合で混合した混合物から磁石本体(1
2)が構成され、この磁石本体(12)の表面全体が5〜50
μmの厚みのエポキシ樹脂の被膜層(14)で被覆されると
共に、該被膜層(14)の外表面全体が更に1〜20μmの
厚みの樹脂被膜層(16)で被覆されていることを特徴とす
るボンド磁石。
2. An Nd—Fe—B-based rare earth magnet powder containing 9
The magnet body (1) is prepared from a mixture of 0 to 99 wt% and an epoxy resin as a polymer material mixed at a ratio of 1 to 10 wt%.
2) is constituted, and the entire surface of the magnet main body (12) is 5 to 50
μm thick epoxy resin coating layer (14), and the entire outer surface of the coating layer (14) is further coated with a 1-20 μm thick resin coating layer (16). And bond magnets.
【請求項3】 Nd−Fe−B系の希土類磁石粉末と高
分子材料としてのエポキシ樹脂を所要の割合で混合した
混合物から磁石本体(22)が構成され、この磁石本体(22)
の表面全体がニッケルメッキ層(24)で被覆されると共
に、該ニッケルメッキ層(24)の外表面全体が更にエポキ
シ樹脂の被膜層(26)で被覆されていることを特徴とする
ボンド磁石。
3. A magnet body (22) is composed of a mixture of a Nd—Fe—B-based rare earth magnet powder and a polymer material of epoxy resin in a required ratio, and the magnet body (22).
A bonded magnet, characterized in that the entire surface is coated with a nickel plating layer (24), and the entire outer surface of the nickel plating layer (24) is further coated with an epoxy resin coating layer (26).
【請求項4】 前記ニッケルメッキ層(24)の厚みは、5
〜50μmである請求項3記載のボンド磁石。
4. The nickel plating layer (24) has a thickness of 5
The bonded magnet according to claim 3, wherein the thickness of the bonded magnet is from 50 to 50 m.
【請求項5】 前記エポキシ樹脂の被膜層(26)の厚み
は、1〜20μmである請求項3または4記載のボンド
磁石。
5. The bonded magnet according to claim 3, wherein the thickness of the epoxy resin coating layer is 1 to 20 μm.
【請求項6】 希土類磁石粉末と高分子材料としてのエ
ポキシ樹脂を所要の割合で混合した混合物の成形体から
なる磁石本体(12)の表面全体に、電着またはスプレー塗
装法によってエポキシ樹脂の被膜層(14)を5〜50μm
の厚みで形成する工程を行なった後、この被膜層(14)の
外表面全体に電着または浸漬塗装法により更にエポキシ
樹脂の被膜層(16)を1〜20μmの厚みで形成する工程
を行なうことを特徴とするボンド磁石の製造方法。
6. A coating of an epoxy resin on the entire surface of a magnet body (12) made of a mixture of a rare earth magnet powder and an epoxy resin as a polymer material at a required ratio by electrodeposition or spray coating. Layer (14) is 5 to 50 μm
After the step of forming a layer having a thickness of 1 m, a step of further forming a layer of epoxy resin (16) with a thickness of 1 to 20 μm on the entire outer surface of the film layer (14) by electrodeposition or dip coating A method for producing a bonded magnet, comprising:
【請求項7】 希土類磁石粉末と高分子材料としてのエ
ポキシ樹脂を所要の割合で混合した混合物の成形体から
なる磁石本体(22)の表面全体に、電気金属メッキ法によ
ってニッケルメッキ層(24)を5〜50μmの厚みで形成
する工程を行なった後、このニッケルメッキ層(24)の外
表面全体に電着または浸漬塗装法によりエポキシ樹脂の
被膜層(26)を1〜20μmの厚みで形成する工程を行な
うことを特徴とするボンド磁石の製造方法。
7. A nickel plating layer (24) formed by electrometal plating on the entire surface of a magnet body (22) formed of a mixture of a rare earth magnet powder and an epoxy resin as a polymer material in a required ratio. Is formed in a thickness of 5 to 50 μm, and a coating layer (26) of an epoxy resin is formed in a thickness of 1 to 20 μm on the entire outer surface of the nickel plating layer (24) by electrodeposition or dip coating. A method of manufacturing a bonded magnet.
JP10020264A 1998-01-14 1998-01-14 Bonded magnet and its manufacture Pending JPH11204320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10020264A JPH11204320A (en) 1998-01-14 1998-01-14 Bonded magnet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10020264A JPH11204320A (en) 1998-01-14 1998-01-14 Bonded magnet and its manufacture

Publications (1)

Publication Number Publication Date
JPH11204320A true JPH11204320A (en) 1999-07-30

Family

ID=12022349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10020264A Pending JPH11204320A (en) 1998-01-14 1998-01-14 Bonded magnet and its manufacture

Country Status (1)

Country Link
JP (1) JPH11204320A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045923B2 (en) 2003-07-01 2006-05-16 Nidec Corporation Magnetizing method and permanent magnet magnetized thereby
JP2010118582A (en) * 2008-11-14 2010-05-27 Tdk Corp Method of manufacturing electronic component
CN108713232A (en) * 2016-03-11 2018-10-26 松下知识产权经营株式会社 Coil component
US11374451B2 (en) * 2018-07-05 2022-06-28 Johnson Electric International AG Rotor assembly for electric motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045923B2 (en) 2003-07-01 2006-05-16 Nidec Corporation Magnetizing method and permanent magnet magnetized thereby
JP2010118582A (en) * 2008-11-14 2010-05-27 Tdk Corp Method of manufacturing electronic component
CN108713232A (en) * 2016-03-11 2018-10-26 松下知识产权经营株式会社 Coil component
US11374451B2 (en) * 2018-07-05 2022-06-28 Johnson Electric International AG Rotor assembly for electric motor

Similar Documents

Publication Publication Date Title
EP0502475B1 (en) Method of plating a bonded magnet and a bonded magnet carrying a metal coating
EP1028437B1 (en) HIGH CORROSION-RESISTANT R-Fe-B-BASE BONDED MAGNET AND METHOD OF MANUFACTURING THE SAME
JPH11204320A (en) Bonded magnet and its manufacture
US6365030B1 (en) Method of manufacturing R-Fe-B bond magnets of high corrosion resistance
JP2000133541A (en) Manufacture of corrosion-resistant r-fe-b bonded magnet
JP5516092B2 (en) Corrosion-resistant magnet and manufacturing method thereof
JPH1126221A (en) Rare earth bonded magnet
JP2617118B2 (en) Rare earth permanent magnet with excellent corrosion resistance and method of manufacturing the same
JP3236815B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
JP4131385B2 (en) Rare earth permanent magnet manufacturing method
JP2001189214A (en) Bonded rare earth magnet and manufacturing method therefor
JPH04288804A (en) Permanent magnet and manufacture thereof
JPH0533077A (en) Method for reuse of ni-coated rare earth alloy
JP2004200387A (en) Corrosion-resistant permanent magnet and its manufacturing method
JP2000049007A (en) Rare earth bond magnet
JP2696757B2 (en) permanent magnet
JPH11195515A (en) High-corrosive r-fe-b bonded magnet and manufacture thereof
JPH0410502A (en) Manufacture of oxidation resistant plastic magnet
JP2004063806A (en) Method of improving annular bonded magnet in resistance against liquid fuel
JP2005268352A (en) Resin bonded magnet and method for manufacturing the same
JPH11233325A (en) Highly corrosion-resistant r-fe-b bond magnet and its manufacture
JPH04276603A (en) R-tm-b permanent magnet improved in corrosion resistance
JPH04180573A (en) Method for applying ni plating to resin molded type magnet and ni plating bath
JPH0529120A (en) High corrosion-resistant rare earth magnet and manufacture thereof
JPS6377102A (en) Rare-earth magnet excellent in corrosion resistance and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051108