JP2005268352A - Resin bonded magnet and method for manufacturing the same - Google Patents

Resin bonded magnet and method for manufacturing the same Download PDF

Info

Publication number
JP2005268352A
JP2005268352A JP2004075551A JP2004075551A JP2005268352A JP 2005268352 A JP2005268352 A JP 2005268352A JP 2004075551 A JP2004075551 A JP 2004075551A JP 2004075551 A JP2004075551 A JP 2004075551A JP 2005268352 A JP2005268352 A JP 2005268352A
Authority
JP
Japan
Prior art keywords
resin
bonded magnet
phosphate
magnet body
magnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004075551A
Other languages
Japanese (ja)
Other versions
JP4140778B2 (en
Inventor
Kazuhiko Inoue
和彦 井上
Hideaki Miura
英明 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2004075551A priority Critical patent/JP4140778B2/en
Publication of JP2005268352A publication Critical patent/JP2005268352A/en
Application granted granted Critical
Publication of JP4140778B2 publication Critical patent/JP4140778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin bonded magnet in which not only corrosion resistance against high temperature and high humidity but also excellent corrosion resistance against salt water can be improved, and high magnetic characteristics capable of reducing not only the generation of rust due to oxidation but also the deterioration of magnetic characteristics can be obtained. <P>SOLUTION: Rare-earth magnetic powder and bonding resin are mixed with each other by a mixing process 1, the surface of a resin bonded magnet body molded by a compression molding process 2 is etched by alkalescent etching process 3, the etched resin bonded magnet body is treated with phosphate by a phosphate treatment process 4 using zinc phosphate group or manganese phosphate group phosphate, and then a resin film is formed on the surface of the resin bonded magnet body after the phosphate treatment. Consequently, a resin bonded magnet of high corrosion resistance can be obtained in which Zn<SB>3</SB>(PO<SB>4</SB>)<SB>2</SB>/4H<SB>2</SB>O and/or Zn<SB>2</SB>M(PO<SB>4</SB>)<SB>2</SB>/4H<SB>2</SB>O (where M contains Mn as an essential element and contains one element out of Ni and Fe) exists on the surface of the resin bonded magnet body and a resin film is formed on the surface. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、希土類系磁性粉(希土類磁石粉)と結合用樹脂とを用いた樹脂結合型磁石に係り、さらに詳しくは、その母体となる樹脂結合型磁石体の表面を燐酸塩処理し、更にその外周表面に樹脂被膜を形成した構成を有していて、水或いは塩水等に対する耐食性に優れた樹脂結合型磁石及びその製造方法に関する。   The present invention relates to a resin-bonded magnet using a rare earth-based magnetic powder (rare earth magnet powder) and a binding resin. More specifically, the surface of the base resin-bound magnet body is subjected to a phosphate treatment. The present invention relates to a resin-bonded magnet having a structure in which a resin film is formed on the outer peripheral surface and having excellent corrosion resistance against water or salt water, and a method for producing the same.

従来、小型又は高特性のモータ等に用いられる永久磁石としては、フェライトや希土類系の磁性粉と結合用樹脂とを混合してなる樹脂結合型磁石や、磁性粉を成形し焼結した焼結磁石が使用されている。   Conventional permanent magnets used for small or high-performance motors, etc., are resin-bonded magnets made by mixing ferrite or rare-earth magnetic powder and a binding resin, or sintered by sintering magnetic powder. A magnet is used.

近年、自動車搭載用電子機器は言うに及ばず、IT関連機器、更には、音響・映像機器等々において、軽薄短小化が進み、永久磁石を用いたモータ等においても更なる小型・高精度化、高性能化、高耐久性化が必須となっている。   In recent years, not only electronic equipment for automobiles, but also IT-related equipment, audio / video equipment, etc., have become lighter, thinner, and smaller, and motors using permanent magnets have become smaller and more precise. High performance and high durability are essential.

このような背景のもと、焼結法で作製されるフェライト磁石及び金属焼結磁石では、焼結工程における縮率が大きいために小型モータ等の用途に求められる寸法精度の確保が難しく、焼結後の加工工程を余儀なくされ、製造のリードタイムが長くなり、勢い製造原価が高騰するという問題をもたらしている。   Against this background, ferrite magnets and metal sintered magnets produced by the sintering method have a large shrinkage ratio in the sintering process, making it difficult to ensure the dimensional accuracy required for applications such as small motors. This leads to the problem that the processing process after the consequent is forced, the lead time of manufacturing becomes long, and the manufacturing cost rises rapidly.

また、フェライト磁石においては、永久磁石の性能を支配する最大エネルギー積の増大には限界があり、モータ用等に求められる磁気特性の高性能化に追随出来ないという問題をきたしてる。   In addition, in ferrite magnets, there is a limit to the increase in the maximum energy product that governs the performance of permanent magnets, and there is a problem that it cannot follow the high performance of magnetic properties required for motors and the like.

上述したようなことから、所定の形状に成形した後の工程で縮率が極めて小さいため高寸法精度の実現が図れ、また、高い圧力で成形し高密度化することで磁気特性の高性能化を図れるという観点から、SmCo系やNdFeB系等の希土類系磁性粉及び結合用樹脂の混合材料を用いた樹脂結合型磁石が好んで用いられるようになって来ている。   As described above, high dimensional accuracy can be achieved because the shrinkage ratio is extremely small in the process after molding into a predetermined shape, and high performance is achieved by molding with high pressure and densification. From the viewpoint that it can be achieved, resin-bonded magnets using a mixed material of rare-earth magnetic powders such as SmCo-based and NdFeB-based and binding resins have come to be used favorably.

反面、上述の希土類系磁性粉は、焼結法で作製された焼結磁石においても、樹脂との混合からなる樹脂結合型磁石においても、希土類金属を含むため活性度が非常に高く、酸化による錆の発生、ひいては変質による磁気特性の劣化という問題を生じる。   On the other hand, the rare earth-based magnetic powders described above are highly active because they contain rare earth metals, both in sintered magnets made by sintering and in resin-bonded magnets that are mixed with resins. There arises a problem that the magnetic properties are deteriorated due to the generation of rust and, consequently, alteration.

上記のような樹脂結合型磁石における錆の発生を抑え、耐食性を向上させる方法としては、大別して、成形後の樹脂結合型磁石体の表面に耐食性処理を施す方法と、使用する磁性粉に予め耐食性処理を施す方法とがある。例えば、下記特許文献1には、R−Fe−B系磁性粉と合成樹脂を圧縮成形してなる成形体の表面に燐酸塩を被覆せしめる方法が開示されている。また、下記特許文献2には、希土類元素を含む鉄系磁性粉の表面が平均5〜100nmの燐酸塩被膜で均一に被覆されている磁石粉を用いたボンド磁石が開示されている。   As a method of suppressing the occurrence of rust in the resin-bonded magnet as described above and improving the corrosion resistance, it is roughly divided into a method of applying a corrosion-resistant treatment to the surface of the resin-bonded magnet body after molding, and a magnetic powder to be used in advance. There is a method of performing a corrosion resistance treatment. For example, Patent Document 1 below discloses a method in which phosphate is coated on the surface of a molded body formed by compression molding R-Fe-B magnetic powder and synthetic resin. Patent Document 2 below discloses a bonded magnet using magnet powder in which the surface of an iron-based magnetic powder containing a rare earth element is uniformly coated with a phosphate film having an average of 5 to 100 nm.

特開昭64−13707号公報Japanese Patent Application Laid-Open No. 64-13707 特開2003−7521号公報Japanese Patent Laid-Open No. 2003-7521

ところで、永久磁石を組み込んだモータ等が小型化され、また用途が多様化するにつれて、永久磁石は高特性化もさることながら耐食性にも高いレベルが要求されるようになってきている。従来は、耐湿試験に関する耐食性が品質試験として用いられてきたが、永久磁石を有するモータ等が使用される分野も固定設置用の音響・通信機器から車載用まで多様に広がっているため、耐湿試験に加えて塩水に対する耐食性試験が重要視されて来ており、更なる耐食性の改善の必要性が高まって来ている。   By the way, as motors incorporating permanent magnets are miniaturized and their applications are diversified, permanent magnets are required to have high levels of corrosion resistance as well as high performance. Conventionally, the corrosion resistance related to the moisture resistance test has been used as a quality test, but the field in which motors with permanent magnets are used has expanded from acoustic and communication equipment for fixed installation to in-vehicle use. In addition, the corrosion resistance test for salt water has been regarded as important, and the need for further improvement of the corrosion resistance has increased.

しかしながら、前掲の特許文献1に示される燐酸塩処理では、従来の耐湿試験には耐え得るが塩水に対する耐食性試験には不十分であり、酸化による錆の発生、ひいては変質による磁気特性の劣化という問題を生じる虞がある。   However, the phosphating treatment disclosed in the above-mentioned Patent Document 1 can withstand a conventional moisture resistance test, but is insufficient for a corrosion resistance test against salt water, and causes problems such as generation of rust due to oxidation and hence deterioration of magnetic properties due to alteration. May occur.

前述したが高磁気特性を有する樹脂結合型磁石は、希土類系磁性粉と結合用樹脂を混合して成る混合材料を高い圧力(具体的には784〜980Mpa(8〜10tf/cm)以上)で圧縮成形する必要性がある。この場合、磁性粉に燐酸塩被膜を施すと、前掲の特許文献2では、圧縮成形の過程で希土類系磁性粉の割れ或いは砕けが少なからず発生し、希土類系磁性粉に新しい活性な面が生じるため耐食性が劣化する虞がある。 As described above, the resin-bonded magnet having high magnetic characteristics is obtained by mixing a mixed material obtained by mixing rare earth magnetic powder and a binding resin with a high pressure (specifically, 784 to 980 Mpa (8 to 10 tf / cm 2 ) or more). There is a need for compression molding. In this case, when a phosphate coating is applied to the magnetic powder, the above-mentioned Patent Document 2 causes a considerable amount of cracking or fracture of the rare earth magnetic powder during the compression molding process, resulting in a new active surface in the rare earth magnetic powder. Therefore, the corrosion resistance may be deteriorated.

本発明は、上記の従来技術の問題点に鑑み、高温高湿度に対する耐食性の向上に止まらず、塩水に対する耐食性に優れ、酸化による錆の発生、ひいては変質による磁気特性の劣化の少ない高磁気特性の樹脂結合型磁石及びその製造方法を提供することを目的とする。   In view of the above-mentioned problems of the prior art, the present invention is not limited to the improvement of corrosion resistance to high temperature and high humidity, and is excellent in corrosion resistance to salt water, and has high magnetic characteristics with little generation of rust due to oxidation, and hence less deterioration of magnetic characteristics due to alteration. An object of the present invention is to provide a resin-bonded magnet and a method for producing the same.

本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。   Other objects and novel features of the present invention will be clarified in embodiments described later.

上記目的を達成するために、本願請求項1の発明に係る樹脂結合型磁石は、希土類系磁性粉と結合用樹脂とを混合してなる樹脂結合型磁石体の表面に、Zn(PO)・4HO及び/又はZnM(PO)・4HO (ここでMはMnを必須とし、Ni、Feの内から1種を含む)が存在し、その上に樹脂被膜が形成されていることを特徴としている。 In order to achieve the above object, a resin-bonded magnet according to the first aspect of the present invention is provided with Zn 3 (PO 4 ) on the surface of a resin-bonded magnet body obtained by mixing rare earth magnetic powder and a binding resin. ) 2 · 4H 2 O and / or Zn 2 M (PO 4 ) 2 · 4H 2 O (where M is an essential component of Mn and includes one of Ni and Fe), and a resin thereon It is characterized in that a film is formed.

本願請求項2の発明に係る樹脂結合型磁石は、請求項1において、前記樹脂被膜の平均膜厚が1〜10μmであることを特徴としている。   The resin-bonded magnet according to the invention of claim 2 is characterized in that, in claim 1, the resin film has an average film thickness of 1 to 10 μm.

本願請求項3の発明に係る樹脂結合型磁石は、請求項1又は2において、前記樹脂被膜が多層構造であることを特徴としている。   A resin-bonded magnet according to a third aspect of the present invention is characterized in that, in the first or second aspect, the resin film has a multilayer structure.

本願請求項4の発明に係る樹脂結合型磁石は、請求項1,2又は3において、前記樹脂結合型磁石体100重量部に対して、前記希土類系磁性粉が95重量部以上であることを特徴としている。   The resin-bonded magnet according to the invention of claim 4 is the resin-bonded magnet according to claim 1, 2 or 3, wherein the rare earth-based magnetic powder is 95 parts by weight or more with respect to 100 parts by weight of the resin-bonded magnet body. It is a feature.

本願請求項5の発明に係る樹脂結合型磁石の製造方法は、希土類系磁性粉と結合用樹脂とを混合し成形した樹脂結合型磁石体の表面を、燐酸亜鉛系及び/又は燐酸マンガン系の燐酸塩を用いて燐酸塩処理し、この燐酸塩処理後の前記樹脂結合型磁石体の表面に樹脂被膜を形成することを特徴としている。   According to a fifth aspect of the present invention, there is provided a method for producing a resin-bonded magnet, wherein the surface of a resin-bonded magnet body formed by mixing a rare earth-based magnetic powder and a binding resin is made of zinc phosphate and / or manganese phosphate. It is characterized in that a phosphate treatment is performed using a phosphate, and a resin film is formed on the surface of the resin-bonded magnet body after the phosphate treatment.

本願請求項6の発明に係る樹脂結合型磁石の製造方法は、請求項5において、前記燐酸塩処理の前に、弱アルカリでエッチングすることを特徴としている。   The method for producing a resin-bonded magnet according to the invention of claim 6 is characterized in that, in claim 5, etching is performed with a weak alkali before the phosphate treatment.

本願請求項7の発明に係る樹脂結合型磁石は、請求項5又は6において、前記燐酸塩処理後の前記樹脂結合型磁石体を樹脂溶液中に複数回繰り返し浸漬して、前記樹脂被膜を形成することを特徴としている。   The resin-bonded magnet according to the invention of claim 7 is the resin-bonded magnet according to claim 5 or 6, wherein the resin-bonded magnet body after the phosphate treatment is repeatedly immersed in a resin solution a plurality of times to form the resin film. It is characterized by doing.

本発明に係る樹脂結合型磁石は、希土類系磁性粉と結合用樹脂とを混合してなる樹脂結合型磁石体の表面に、Zn(PO)・4HO及び/又はZnM(PO)・4HO (ここでMはMnを必須とし、Ni、Feの内から1種を含む)が存在し、その上に樹脂被膜が形成されているので、高磁気特性であって、かつ耐食性の向上、とくに耐塩水性の向上を図ることができる。 The resin-bonded magnet according to the present invention has Zn 3 (PO 4 ) 2 .4H 2 O and / or Zn 2 M on the surface of a resin-bonded magnet body obtained by mixing rare earth-based magnetic powder and a binding resin. (PO 4 ) 2 · 4H 2 O (where M is an essential component of Mn and contains one of Ni and Fe), and a resin film is formed on it. Moreover, it is possible to improve the corrosion resistance, particularly the salt water resistance.

また、本発明に係る樹脂結合型磁石の製造方法は、希土類系磁性粉と結合用樹脂とを混合し成形した樹脂結合型磁石体の表面を燐酸塩処理し、この燐酸塩処理後の前記樹脂結合型磁石体の表面に樹脂被膜を形成することにより、高温高湿度に対する耐食性の向上に止まらず、塩水に対する耐食性に優れ、酸化による錆の発生、ひいては変質による磁気特性の劣化の少ない、高性能で高品質な製品を実現できる。   Further, the method for producing a resin-bonded magnet according to the present invention includes the step of subjecting the surface of a resin-bonded magnet body formed by mixing rare earth-based magnetic powder and a binding resin to a phosphate treatment, and the resin after the phosphate treatment. By forming a resin film on the surface of the combined magnet body, it does not stop improving corrosion resistance against high temperatures and high humidity, it has excellent corrosion resistance against salt water, rust generation due to oxidation, and less deterioration of magnetic properties due to alteration, and high performance Can realize high quality products.

以下、本発明を実施するための最良の形態として、樹脂結合型磁石及びその製造方法の実施の形態を図面に従って説明する。   Hereinafter, as the best mode for carrying out the present invention, embodiments of a resin-bonded magnet and a manufacturing method thereof will be described with reference to the drawings.

図1は本発明の実施の形態であって、樹脂結合型磁石の製造過程を示す工程図である。   FIG. 1 is an embodiment of the present invention, and is a process diagram showing a manufacturing process of a resin-bonded magnet.

まず、混合工程1において、希土類系磁性粉と結合用樹脂としての熱硬化性樹脂とを混合する。希土類系磁性粉(希土類磁石粉)としては、SmCo系やNdFeB系が磁気特性の面から好ましく、その磁性粉の平均粒径は10〜200μm、且つ最大粒径が500μm以下の範囲であることが必要である。―方、使用する結合用樹脂は、熱硬化性の樹脂で、例えばエポキシ樹脂やフェノール樹脂等が好ましい。更に、希土類系磁性粉と結合用樹脂の混合材料を100重量部とした場合、高性能の磁気特性を得るためには、希土類系磁性粉は95重量部(つまり重量比率で95%)以上とすることが好ましい。   First, in the mixing step 1, a rare earth magnetic powder and a thermosetting resin as a binding resin are mixed. As the rare earth magnetic powder (rare earth magnet powder), SmCo type or NdFeB type is preferable from the viewpoint of magnetic properties, and the average particle size of the magnetic powder is in the range of 10 to 200 μm and the maximum particle size is 500 μm or less. is necessary. On the other hand, the binding resin to be used is a thermosetting resin, for example, an epoxy resin or a phenol resin is preferable. Furthermore, when the mixed material of the rare earth magnetic powder and the binding resin is 100 parts by weight, in order to obtain high performance magnetic characteristics, the rare earth magnetic powder is 95 parts by weight (that is, 95% by weight) or more. It is preferable to do.

圧縮成形工程2では、前記混合工程1で作製した希土類系磁性粉と結合用樹脂の混合材料を圧縮成形する。この圧縮成形は通常の圧縮成形機を用いればよく、必要に応じて磁場中成形機を用いても良い。この場合、高性能の磁気特性を得るために、高い圧力(784〜980Mpa(8〜10tf/cm)以上)で前記混合材料を圧縮成形することが好ましい。なお、熱硬化性樹脂の結合用樹脂を硬化させるために圧縮成形後に100〜200℃で加熱硬化処理を行う。 In the compression molding process 2, the mixed material of the rare earth magnetic powder and the binding resin produced in the mixing process 1 is compression molded. For this compression molding, a normal compression molding machine may be used, and a magnetic field molding machine may be used as necessary. In this case, in order to obtain high-performance magnetic characteristics, it is preferable to compression-mold the mixed material at a high pressure (784 to 980 Mpa (8 to 10 tf / cm 2 or more)). In addition, in order to cure the binding resin of the thermosetting resin, a heat curing process is performed at 100 to 200 ° C. after the compression molding.

弱アルカリエッチング工程3では、圧縮成形工程2で形成された樹脂結合型磁石体の表面を弱アルカリでエッチングする(弱アルカリ液に磁石体を浸す)。これは、次工程である燐酸塩処理に際して、樹脂結合型磁石体の表面がエッチングされている(表面が粗化されて磁性粉の金属が露出した状態にする)ことにより、反応を促進させるために必要となる。   In the weak alkali etching step 3, the surface of the resin-bonded magnet body formed in the compression molding step 2 is etched with a weak alkali (soak the magnet body in a weak alkaline solution). This is because the surface of the resin-bonded magnet body is etched (the surface is roughened so that the metal of the magnetic powder is exposed) at the time of phosphating, which is the next step. Is required.

燐酸塩処理工程4では、前記弱アルカリエッチング工程3における処理が終わった樹脂結合型磁石体の表面を燐酸塩溶液に浸漬して燐酸塩処理を行う。燐酸塩としては、燐酸マンガン系、燐酸亜鉛系、燐酸鉄系、燐酸ナトリウム系が挙げられるが、とくに燐酸マンガン系や燐酸亜鉛系が好ましい。また、燐酸塩溶液の湯温は室温〜100℃が好ましく、樹脂結合型磁石体を燐酸塩溶液に浸漬する時間は5分間以上とすることが好ましい。   In the phosphate treatment step 4, the surface of the resin-bonded magnet body that has been subjected to the treatment in the weak alkali etching step 3 is immersed in a phosphate solution to perform the phosphate treatment. Examples of the phosphate include manganese phosphate, zinc phosphate, iron phosphate, and sodium phosphate, with manganese phosphate and zinc phosphate being particularly preferred. The hot water temperature of the phosphate solution is preferably room temperature to 100 ° C., and the time for immersing the resin-bonded magnet body in the phosphate solution is preferably 5 minutes or more.

乾燥工程5では、燐酸塩処理工程4による燐酸塩処理後の樹脂結合型磁石体を乾燥させる。乾燥後、その樹脂結合型磁石体の表面に燐酸塩の被膜が形成される(とくに、磁性粉が表面に露出していた部分が被覆される。)。   In the drying step 5, the resin-bonded magnet body after the phosphate treatment in the phosphate treatment step 4 is dried. After drying, a phosphate coating is formed on the surface of the resin-bonded magnet body (particularly, the portion where the magnetic powder is exposed on the surface is coated).

樹脂塗装工程6では、乾燥工程5での乾燥処理が終わった樹脂結合型磁石体の表面に形成した燐酸塩の被膜の外周に樹脂を塗装する。塗装する樹脂の種類としては、耐熱性の良好なフェノール系の熱硬化性樹脂等が好ましい。樹脂の種類は、該樹脂結合型磁石体に用いる結合用樹脂の種類と同じであっても、また、異なっていてもよい。   In the resin coating process 6, a resin is applied to the outer periphery of the phosphate coating formed on the surface of the resin-bonded magnet body after the drying process in the drying process 5. As the type of resin to be coated, a phenol-based thermosetting resin having good heat resistance is preferable. The type of resin may be the same as or different from the type of binding resin used in the resin-bonded magnet body.

前記樹脂の塗装は浸漬法により行い、燐酸塩処理後の樹脂結合型磁石体を樹脂溶液中に複数回浸漬し、該樹脂の塗装膜の厚さを平均で1〜10μm(より好ましくは2〜5μm)にすることが好ましい。平均膜厚が10μmを超えると樹脂結合型磁石体(成形体)の相対比率が低下し、磁気特性が低下することとなる。また、平均膜厚を1μm未満にしようとすると、部分的に被膜が形成されない部分が発生する虞があり、好ましくない。   The resin coating is performed by a dipping method, and the resin-bonded magnet body after the phosphate treatment is dipped in the resin solution a plurality of times, and the average thickness of the resin coating film is 1 to 10 μm (more preferably 2 to 2 μm). 5 μm) is preferable. When the average film thickness exceeds 10 μm, the relative ratio of the resin-bonded magnet body (molded body) is lowered, and the magnetic properties are lowered. Further, if the average film thickness is to be less than 1 μm, there is a possibility that a part where a film is not partially formed may occur, which is not preferable.

前記樹脂溶液中に浸漬する場合、1回では樹脂結合型磁石体の表面全体を余す所なく被覆することが困難であり、該樹脂結合型磁石体の表面に前記樹脂の塗装膜の形成されていない個所があると、耐食性が劣化し、酸化による錆の発生、ひいては変質による磁気特性の劣化という問題を生じる。前記樹脂溶液中に複数回浸漬することより多層構造の塗装膜を形成して、前記樹脂結合型磁石体の表面全体を余す所なく被覆することが可能となる。   When immersed in the resin solution, it is difficult to cover the entire surface of the resin-bonded magnet body all at once, and a coating film of the resin is formed on the surface of the resin-bonded magnet body. If there is no part, the corrosion resistance is deteriorated, and rust is generated due to oxidation, and as a result, magnetic properties are deteriorated due to alteration. By immersing the resin solution in the resin solution a plurality of times, it is possible to form a multi-layered coating film so that the entire surface of the resin-bonded magnet body can be fully covered.

なお、樹脂を塗装する方法としては、浸漬法以外に、スプレー法や電着法が挙げられるが、スプレー法や電着法では1回に塗装する量が多く非常に厚い膜が形成されやすい問題があり、浸漬法で複数回処理することで均一な薄い樹脂塗装膜を形成することが可能になる。   In addition to the dipping method, the spraying method and the electrodeposition method can be cited as a method for coating the resin. However, the spray method and the electrodeposition method tend to form a very thick film with a large amount of coating at a time. Therefore, it is possible to form a uniform thin resin coating film by performing the treatment a plurality of times by the dipping method.

乾燥工程7では、樹脂結合型磁石体の表面に塗装した熱硬化性樹脂の塗装膜を100〜200℃で加熱乾燥・硬化させる。加熱乾燥後、該樹脂結合型磁石体の表面に熱硬化性樹脂の硬化した被膜が形成される。   In the drying step 7, a thermosetting resin coating film applied to the surface of the resin-bonded magnet body is heated and dried and cured at 100 to 200 ° C. After heat drying, a cured film of the thermosetting resin is formed on the surface of the resin-bonded magnet body.

なお、本発明の実施の形態において、燐酸塩処理と樹脂塗装とを合わせ見たとき、樹脂結合型磁石体の表面に(1)Zn(PO)・4HO、及び/又は(2)ZnM(PO)・4HO(ここでMはMnを必須とし、Ni、Feの内から1種を含む)が形成されることが好ましい。更に、(1)と(2)の相が65:35〜90:10の比率で存在することが好ましい。これらの相は、燐酸塩の中でも燐酸亜鉛系の処理で形成することが出来る。より具体的には、燐酸亜鉛マンガン処理することで形成することが出来るものである。 In the embodiment of the present invention, when the phosphate treatment and the resin coating are taken together, (1) Zn 3 (PO 4 ) 2 · 4H 2 O and / or ( 2) It is preferable to form Zn 2 M (PO 4 ) 2 .4H 2 O (where M is an essential component of Mn and includes one of Ni and Fe). Furthermore, it is preferred that the phases (1) and (2) are present in a ratio of 65:35 to 90:10. These phases can be formed by zinc phosphate processing among phosphates. More specifically, it can be formed by treating with zinc manganese phosphate.

この実施の形態によれば、次の通りの効果を得ることができる。   According to this embodiment, the following effects can be obtained.

(1) 高温、高湿度下に晒された場合でも、酸化による錆の発生の防止し、ひいては変質による磁気特性の劣化を生じることのない樹脂結合型磁石を実現可能である。 (1) Even when exposed to high temperatures and high humidity, it is possible to realize a resin-bonded magnet that prevents the occurrence of rust due to oxidation and that does not cause deterioration of magnetic properties due to alteration.

(2) 高温、高湿度に対する耐食性の向上に止まらず、塩水に対する耐食性に優れ、酸化による錆の発生、ひいては変質による磁気特性の劣化の少ない高性能で、高品質な樹脂結合型磁石を実現可能である。 (2) Not only the improvement of corrosion resistance against high temperature and high humidity, but also high corrosion resistance against salt water, high performance with less rust due to oxidation, and less deterioration of magnetic properties due to alteration, can be realized. It is.

本発明に係る樹脂結合型磁石体の製造方法を実施例で詳述する。始めに、希土類系磁性粉(希土類磁石粉)として平均粒径が50μmのNdFeB系磁石粉末、結合用樹脂としてエポキシ樹脂を選定し、磁性粉と結合用樹脂との重量配合比率を97:3とした混合材料を作製した。   The manufacturing method of the resin-bonded magnet body according to the present invention will be described in detail in Examples. First, an NdFeB magnet powder having an average particle size of 50 μm is selected as a rare earth magnetic powder (rare earth magnet powder), an epoxy resin is selected as a binding resin, and the weight blending ratio of the magnetic powder and the binding resin is 97: 3. A mixed material was prepared.

次に、成形機により、成形圧力として980Mpa(10tf/cm)を加え、外径(直径)が4mmで高さが8mmの円柱形の試料を作製した。 Next, 980 Mpa (10 tf / cm 2 ) was applied as a molding pressure by a molding machine to produce a cylindrical sample having an outer diameter (diameter) of 4 mm and a height of 8 mm.

上記の試料の表面に、燐酸亜鉛マンガン処理により、被膜を形成した。この場合、Zn(PO)・4HOとZnM(PO)・4HO(ここでMはMnを必須とし、Ni、Feの内から1種を含む)の比率は3:1とした。 A film was formed on the surface of the sample by a zinc manganese phosphate treatment. In this case, the ratio of Zn 3 (PO 4 ) 2 .4H 2 O to Zn 2 M (PO 4 ) 2 .4H 2 O (where M is an essential component of Mn and includes one of Ni and Fe). Was 3: 1.

更に、燐酸亜鉛マンガン処理により形成した被膜の外周表面に、フェノール樹脂溶液に浸漬する回数を4回、2回、1回と変えて、それぞれ平均の膜厚が3μm、2μm、1μmの塗装膜を形成し、3種類の試料A、B、Cを作製した。   Furthermore, on the outer peripheral surface of the coating formed by the zinc-manganese phosphate treatment, the number of immersions in the phenol resin solution was changed to 4, 2, and 1 to obtain coating films with average film thicknesses of 3 μm, 2 μm, and 1 μm, respectively. Three types of samples A, B, and C were prepared.

加えて、試料の表面に、燐酸亜鉛マンガン処理による被膜を形成した場合の効果を調べるために、燐酸ナトリウム処理による被膜を形成した試料及び燐酸塩処理を一切施さない試料を準備し、それぞれをフェノール樹脂溶液に4回浸漬し、平均の厚さが3μmの塗装膜を形成した2種類の試料D及びEを作製した。   In addition, in order to investigate the effect of forming a coating with zinc manganese phosphate on the surface of the sample, a sample with a coating with sodium phosphate treatment and a sample without any phosphate treatment were prepared. Two types of samples D and E were prepared, which were immersed in the resin solution four times to form a coating film having an average thickness of 3 μm.

下記、表1は、試料A〜Eについて温度60℃、相対湿度90%の恒温、恒湿槽内に120時間放置した後、又はNaClの1%溶液中に24時間放置後の錆の発生状態をそれぞれ目視で観察した結果である。   Table 1 below shows the state of rust generation after the samples A to E were left at a constant temperature of 60 ° C. and a relative humidity of 90% for 120 hours in a constant humidity bath or left in a 1% solution of NaCl for 24 hours. Is the result of visual observation.

表1から、樹脂結合型磁石体を燐酸亜鉛マンガン処理した後の外周表面に平均の厚さが2μm以上のフェノール樹脂の塗装膜を形成することにより、高温高湿度試験並びに塩水浸漬試験後の錆の発生を防止可能であることがわかる。 From Table 1, rust after high-temperature and high-humidity test and salt water immersion test by forming a coating film of phenol resin with an average thickness of 2 μm or more on the outer peripheral surface after the resin-bonded magnet body was treated with zinc manganese phosphate It can be seen that the occurrence of this can be prevented.

図2(A)は、樹脂結合型磁石体の表面に燐酸塩処理を行わずに平均の厚さが3μmのフェノール樹脂塗装膜を形成した従来品の試料と、樹脂結合型磁石体の表面に燐酸亜鉛マンガン処理を施し、その外周表面に多数回浸漬処理した平均の厚さが3μmのフェノール樹脂塗装膜を形成した本発明品の試料について、表1の高温高湿度試験を実施した後の表面状態を写真撮影した結果である。従来品の試料並びに本発明品の試料共に、上述の高温高湿度試験条件に関する限り、樹脂結合型磁石の表面上に、錆の発生は認められなかった。   FIG. 2 (A) shows a sample of a conventional product in which a phenol resin coating film having an average thickness of 3 μm is formed on the surface of the resin-bonded magnet body without performing phosphate treatment, and the surface of the resin-bonded magnet body. Surface after the high temperature and high humidity test shown in Table 1 was performed on samples of the present invention in which a phenolic resin coating film having an average thickness of 3 μm was formed by applying zinc manganese phosphate treatment to the outer peripheral surface many times. It is the result of taking a picture of the state. As far as the above-mentioned high-temperature and high-humidity test conditions are concerned, no rust was observed on the surface of the resin-bonded magnet in both the conventional sample and the sample of the present invention.

更に、図2(B)は、図2(A)に記載の従来品の試料と本発明品の試料について、表1の塩水浸漬試験を実施した後の表面状態を写真撮影した結果である。従来品の試料においては、樹脂結合型磁石の表面上に、錆の発生が認められた。本発明品の試料においては、錆の発生は認められなかった。   Further, FIG. 2 (B) is a result of taking a photograph of the surface state after the salt water immersion test shown in Table 1 was performed on the sample of the conventional product and the sample of the present invention shown in FIG. 2 (A). In the conventional sample, rust was observed on the surface of the resin-bonded magnet. In the sample of the present invention, no rust was observed.

以上本発明の実施の形態及び実施例について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。   Although the embodiments and examples of the present invention have been described above, it is obvious to those skilled in the art that the present invention is not limited thereto and various modifications and changes can be made within the scope of the claims. I will.

本発明に係る樹脂結合型磁石及びその製造方法によれば、大きな最大エネルギー積を持つ等、磁気性能の高い希土類系磁性粉を用いた樹脂結合型磁石の水、塩水に対する耐食性を高め得るため、小型のモータ、プランジャーを始めとしたアクチュエーター類の車載用機器等への応用を図ることができる。   According to the resin-bonded magnet and the manufacturing method thereof according to the present invention, the corrosion resistance to water and salt water of a resin-bonded magnet using a rare earth-based magnetic powder having high magnetic performance, such as having a large maximum energy product, can be improved. Applications of in-vehicle devices such as small motors, plungers, and other actuators can be achieved.

本発明の実施の形態であって、樹脂結合型磁石の製造工程を示すブロック図である。It is an embodiment of the present invention and is a block diagram showing a manufacturing process of a resin-bonded magnet. 高温高湿度試験実施後及び塩水浸漬試験実施後の樹脂結合型磁石の表面を写真撮影した結果を示すもので、(A)は高温高湿度試験実施後の従来品及び本発明品の写真図、(B)は塩水浸漬試験実施後の従来品及び本発明品の写真図である。The results of taking a photograph of the surface of the resin-bonded magnet after the high temperature and high humidity test and after the salt water immersion test are shown. (B) is a photograph of the conventional product and the product of the present invention after the salt water immersion test.

符号の説明Explanation of symbols

1 混合工程
2 圧縮成形工程
3 弱アルカリエッチング工程
4 燐酸塩処理工程
5 乾燥工程
6 樹脂塗装工程
7 乾燥工程
DESCRIPTION OF SYMBOLS 1 Mixing process 2 Compression molding process 3 Weak alkali etching process 4 Phosphate treatment process 5 Drying process 6 Resin coating process 7 Drying process

Claims (7)

希土類系磁性粉と結合用樹脂とを混合してなる樹脂結合型磁石体の表面に、Zn(PO)・4HO及び/又はZnM(PO)・4HO (ここでMはMnを必須とし、Ni、Feの内から1種を含む)が存在し、その上に樹脂被膜が形成されていることを特徴とする樹脂結合型磁石。 Zn 3 (PO 4 ) 2 .4H 2 O and / or Zn 2 M (PO 4 ) 2 .4H 2 O (on the surface of a resin-bonded magnet body obtained by mixing rare earth magnetic powder and a binding resin. Here, M is a resin-bonded magnet characterized in that Mn is essential and includes one of Ni and Fe), and a resin film is formed thereon. 前記樹脂被膜の平均膜厚が1〜10μmである請求項1記載の樹脂結合型磁石。   The resin-bonded magnet according to claim 1, wherein the resin film has an average film thickness of 1 to 10 μm. 前記樹脂被膜が多層構造である請求項1又は2記載の樹脂結合型磁石。   The resin-bonded magnet according to claim 1 or 2, wherein the resin coating has a multilayer structure. 前記樹脂結合型磁石体100重量部に対して、前記希土類系磁性粉が95重量部以上である請求項1,2又は3記載の樹脂結合型磁石。   The resin-bonded magnet according to claim 1, 2, or 3, wherein the rare earth-based magnetic powder is 95 parts by weight or more with respect to 100 parts by weight of the resin-bonded magnet body. 希土類系磁性粉と結合用樹脂とを混合し成形した樹脂結合型磁石体の表面を、燐酸亜鉛系及び/又は燐酸マンガン系の燐酸塩を用いて燐酸塩処理し、この燐酸塩処理後の前記樹脂結合型磁石体の表面に樹脂被膜を形成することを特徴とする樹脂結合型磁石の製造方法。   The surface of a resin-bonded magnet body formed by mixing rare earth-based magnetic powder and a binding resin is subjected to a phosphate treatment using a zinc phosphate-based and / or manganese phosphate-based phosphate, and after the phosphate treatment, A method for producing a resin-bonded magnet, comprising forming a resin film on a surface of a resin-bonded magnet body. 前記燐酸塩処理の前に、弱アルカリでエッチングする請求項5記載の樹脂結合型磁石の製造方法。   The method for producing a resin-bonded magnet according to claim 5, wherein etching is performed with a weak alkali before the phosphating treatment. 前記燐酸塩処理後の前記樹脂結合型磁石体を樹脂溶液中に複数回繰り返し浸漬して、前記樹脂被膜を形成する請求項5又は6記載の樹脂結合型磁石の製造方法。   The method for producing a resin-bonded magnet according to claim 5 or 6, wherein the resin-bonded magnet body after the phosphate treatment is repeatedly immersed in a resin solution a plurality of times to form the resin film.
JP2004075551A 2004-03-17 2004-03-17 Resin-bonded magnet and manufacturing method thereof Expired - Fee Related JP4140778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004075551A JP4140778B2 (en) 2004-03-17 2004-03-17 Resin-bonded magnet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004075551A JP4140778B2 (en) 2004-03-17 2004-03-17 Resin-bonded magnet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005268352A true JP2005268352A (en) 2005-09-29
JP4140778B2 JP4140778B2 (en) 2008-08-27

Family

ID=35092617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004075551A Expired - Fee Related JP4140778B2 (en) 2004-03-17 2004-03-17 Resin-bonded magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4140778B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535503A (en) * 2006-04-25 2009-10-01 ファキュウムシュメルゼ ゲーエムベーハー ウント コンパニー カーゲー Permanent magnet without magnetic withstand produced from alloy powder and method for producing the same
JP2013258169A (en) * 2012-06-11 2013-12-26 Panasonic Corp Bond magnet, method of manufacturing the same, and motor
JP2014154517A (en) * 2013-02-13 2014-08-25 Omron Corp Switching unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535503A (en) * 2006-04-25 2009-10-01 ファキュウムシュメルゼ ゲーエムベーハー ウント コンパニー カーゲー Permanent magnet without magnetic withstand produced from alloy powder and method for producing the same
JP2013258169A (en) * 2012-06-11 2013-12-26 Panasonic Corp Bond magnet, method of manufacturing the same, and motor
JP2014154517A (en) * 2013-02-13 2014-08-25 Omron Corp Switching unit

Also Published As

Publication number Publication date
JP4140778B2 (en) 2008-08-27

Similar Documents

Publication Publication Date Title
KR101751780B1 (en) Coil component
WO2010071111A1 (en) Iron-based magnetic alloy powder containing rare earth element, method for producing same, resin composition for bonded magnet obtained from same, bonded magnet, and compacted magnet
JP2008263208A (en) Corrosion-resistant rare earth magnet
KR20140061036A (en) Multilayered power inductor and method for preparing the same
JP2006228824A (en) Inductor and its manufacturing method
KR100374398B1 (en) HIGH CORROSION-RESISTANT R-Fe-B BASE BONDED MAGNET AND METHOD OF MANUFACTURING THE SAME
JP2005187918A (en) Insulating coated iron powder for powder compact magnetic core
JP4325793B2 (en) Manufacturing method of dust core
JP4140778B2 (en) Resin-bonded magnet and manufacturing method thereof
JP2008063649A (en) Powder for dust core, its production method and method for producing dust core
JPS63217601A (en) Corrosion-resistant permanent magnet and manufacture thereof
KR100371786B1 (en) METHOD OF MANUFACTURING R-Fe-B BOND MAGNETS OF HIGH CORROSION RESISTANCE
JP2000133541A (en) Manufacture of corrosion-resistant r-fe-b bonded magnet
JP2005268685A (en) Powder magnetic core and manufacturing method of the same
KR101094839B1 (en) Non-ageing permanent magnet made from an alloy powder and method for the production thereof
JP7251468B2 (en) Composite magnetic materials, magnetic cores and electronic components
WO2004064086A1 (en) Oxidation-resistant rare earth based magnet powder and method for production thereof, compound for rare earth based bonded magnet, rare earth based bonded magnet and method for production thereof
JP2010263223A (en) Corrosion-resistant magnet and method of manufacturing the same
JP2014120492A (en) High heat resistant bond magnet, process of manufacturing the same, and motor
JP2003064454A (en) Corrosion resistant rare earth magnet, and production method therefor
JP2013258169A (en) Bond magnet, method of manufacturing the same, and motor
US11682510B2 (en) Composite magnetic material, magnetic core, and electronic component
JPS6362303A (en) Permanent magnet of good corrosion-resisting property and manufacture thereof
JPH05175024A (en) Rare earth bonded magnet materilal, rare earth bonded magnet and manufacture of the magnet
JPH01114006A (en) Manufacture of resin bond type magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140620

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees