JP2008010726A - Rare earth bond magnet - Google Patents
Rare earth bond magnet Download PDFInfo
- Publication number
- JP2008010726A JP2008010726A JP2006181335A JP2006181335A JP2008010726A JP 2008010726 A JP2008010726 A JP 2008010726A JP 2006181335 A JP2006181335 A JP 2006181335A JP 2006181335 A JP2006181335 A JP 2006181335A JP 2008010726 A JP2008010726 A JP 2008010726A
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- film
- rare earth
- bonded magnet
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
本発明は希土類ボンド磁石に関し、特に、防錆皮膜を施した希土類ボンド磁石に関する。 The present invention relates to a rare earth bonded magnet, and more particularly to a rare earth bonded magnet having a rust preventive film.
希土類ボンド磁石は、フェライト系ボンド磁石に比べて各段に優れた磁気特性を発揮するため、パソコン用HDDスピンドルモータをはじめとして、各種OA用モータ、自動車電装モータ、携帯電話用振動モータ等に多用されている。しかし、原料に使用されるNdFeB系磁性粉やSmFeN系磁性粉は元素に純鉄を含むために、大気中の酸素によって酸化されて錆を生じ、磁気性能が低下し易いという問題がある。このため、希土類ボンド磁石では、酸化を防止して優れた磁気性能を長期にわたり発揮させるために、エポキシ系カチオン電着塗装や吹付け塗装等により磁石表面に防錆皮膜を形成している。 Rare earth bonded magnets exhibit excellent magnetic properties at each stage compared to ferrite-based bonded magnets, so they are widely used in various types of OA motors, automotive electrical motors, mobile phone vibration motors, etc., including HDD spindle motors for personal computers. Has been. However, since the NdFeB magnetic powder and SmFeN magnetic powder used as raw materials contain pure iron as an element, there is a problem that they are oxidized by oxygen in the atmosphere to cause rust and the magnetic performance is likely to deteriorate. For this reason, in the rare earth bonded magnet, a rust preventive film is formed on the magnet surface by epoxy-based cationic electrodeposition coating, spray coating, or the like in order to prevent oxidation and to exhibit excellent magnetic performance over a long period of time.
ところで、HDD用スピンドルモータ等では製品に使用する部品に対して磁気特性は無論のこと、製品への磁性粉コンタミネーション防止の観点から取り扱い中に皮膜が傷つきにくい強度が要求されてきたが、従来の電着塗装、スプレー塗装のような樹脂系の塗膜では使用中に十分な耐食性と機械強度を発揮できなかった。そこで、樹脂塗装より機械的強度にすぐれ、また防食作用も高い塗装法として、金属メッキ法の実用化が試みられ、例えば特許文献1では、NdFeB系ボンド磁石に電解Niメッキをおこなう方法が開示されている。
しかし、上記従来の電解Niメッキ塗装でリング磁石等に比較的薄い皮膜を形成すると、外周側に比して内周側のメッキ皮膜が薄くなって膜厚が均一にならず、着磁工程や、モータ組立工程で相手側の金属部品に接触することによる皮膜損傷が問題となっている。また、電解Niメッキ塗装は、高温下で使用中にメッキのピンホールから進入してくる酸素分子によって引き起こされる磁石の酸化と磁気特性の低下も問題となっている。 However, if a relatively thin film is formed on a ring magnet or the like by the above conventional electrolytic Ni plating coating, the inner peripheral side plating film becomes thinner than the outer peripheral side, and the film thickness is not uniform. In the motor assembling process, film damage due to contact with the other metal part is a problem. In addition, the electrolytic Ni plating coating is also problematic in that the magnet is oxidized and the magnetic properties are lowered due to oxygen molecules entering from the plating pinhole during use at high temperatures.
そこで、本発明はこのような課題を解決するもので、十分な機械的強度を有しかつ膜厚が均一で酸素遮断性に優れた緻密な防錆皮膜を備える希土類ボンド磁石を提供することを目的とする。 Therefore, the present invention solves such a problem, and provides a rare earth bonded magnet having a dense rust preventive film having sufficient mechanical strength, uniform film thickness and excellent oxygen barrier properties. Objective.
上記目的を達成するために、本発明では、希土類鉄系合金磁性粉と合成樹脂バインダーよりなるボンド磁石において、磁石表面がリンを含有するNi系無電解メッキによる皮膜で被覆され、前記皮膜の厚みが2μm〜15μmであり、磁石表面積Sに対する磁石体積Vの比V/Sが0.020(cc/cm2)以上であることを特徴としている。ここで、上記皮膜中のリンの含有比率は3%〜12%で、マイクロビッカース硬度HvがHv=500〜1000であることが好ましい。また、120℃の雰囲気中に1000時間暴露したとき、ボンド磁石の表面積あたりの酸化による重量増加の経時変化が経過時間の0.35乗に比例し、かつその比例係数kが0.00030以下であることが望ましい。さらに、下地表面の全面または一部にカーボン粉が被覆されていることが望ましい。 In order to achieve the above object, in the present invention, in a bonded magnet comprising a rare earth iron-based alloy magnetic powder and a synthetic resin binder, the surface of the magnet is coated with a film containing Ni-based electroless plating containing phosphorus, and the thickness of the film Is 2 μm to 15 μm, and the ratio V / S of the magnet volume V to the magnet surface area S is 0.020 (cc / cm 2 ) or more. Here, it is preferable that the content ratio of phosphorus in the film is 3% to 12% and the micro Vickers hardness Hv is Hv = 500 to 1000. When exposed to an atmosphere of 120 ° C. for 1000 hours, the change over time in the weight increase due to oxidation per surface area of the bonded magnet is proportional to the 0.35th power of the elapsed time, and the proportionality coefficient k is 0.00030 or less. It is desirable to be. Furthermore, it is desirable that the entire or part of the base surface is coated with carbon powder.
本発明の希土類ボンド磁石は、十分な機械的強度を有しかつ膜厚が均一で酸素遮断性に優れた緻密な防錆皮膜を備えるものである。 The rare earth bonded magnet of the present invention is provided with a dense rust preventive film having sufficient mechanical strength, uniform film thickness and excellent oxygen barrier properties.
ボンド磁石を成形するための希土類合金磁性粉としてはNdFeB系あるいはSmFeN系のものが使用できる。上記磁性粉単独でも良いが組み合わせて使うのも差し支えない。磁性粉は純鉄を構成元素に含むため、成形加工中および製品使用段階での酸化を防止する目的でカップリング処理を行う。使用するカップリング剤としては、シラン系ではγアミノプロピルトリエトキシシランやγ−アミノプロピルトリエトキシシラン等、チタネート系ではテトライソプロピルチタネートやテトライソブチルオルソチタネート等、アルミニウム系のアセトアルコキシアルミニウムジイソプロピレート等、ジルコニウム系のジルコニウムトリブトキシステアレート等が使用できる。 As the rare earth alloy magnetic powder for forming the bonded magnet, NdFeB-based or SmFeN-based powder can be used. The above magnetic powder may be used alone or in combination. Since magnetic powder contains pure iron as a constituent element, a coupling treatment is performed for the purpose of preventing oxidation during molding and at the stage of using the product. Coupling agents used include γ-aminopropyltriethoxysilane and γ-aminopropyltriethoxysilane for silane type, tetraisopropyl titanate, tetraisobutyl orthotitanate, etc. for titanate type, aluminum-based acetoalkoxyaluminum diisopropylate, etc. Zirconium-based zirconium tributoxy systemate can be used.
カップリング処理した磁性粉を合成樹脂バインダーと混合、成形する。使用する合成樹脂としてはナイロン6,ナイロン12,ポリエチレン、塩素化ポリエチレン、ポリ塩化ビニル、ポフェニレンサルファイド、ポリプロピレン、エチレン酢酸ビニルコーポリマーに代表される熱可塑性樹脂、ビスフェノール型、ノボラック型の各種エポキシ樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂に代表される熱硬化性樹脂が使用できる。熱可塑性樹脂をバインダーに使用する場合には、磁性粉と混合した後、混練造粒を経たうえ射出成形あるいは押出し成形によりリング状のボンド磁石を成形することができる。熱硬化性樹脂の場合には、磁性粉と混合後、粉末状態にて圧縮成形により所望の形状のグリーン成形体を得たのち加熱処理にて硬化させてボンド磁石の成形を完成させる。本発明が適用される磁石形状はリング形状、円柱状、円板状、球状等が可能だが、これらに限定するものではない。 The coupled magnetic powder is mixed with a synthetic resin binder and molded. Synthetic resins to be used include nylon 6, nylon 12, polyethylene, chlorinated polyethylene, polyvinyl chloride, polyphenylene sulfide, polypropylene, thermoplastic resins typified by ethylene vinyl acetate copolymer, and various epoxy resins of bisphenol type and novolac type. Thermosetting resins represented by phenol resin, melamine resin and urea resin can be used. When a thermoplastic resin is used as a binder, a ring-shaped bonded magnet can be formed by mixing with magnetic powder, followed by kneading granulation and then by injection molding or extrusion molding. In the case of a thermosetting resin, after mixing with magnetic powder, a green molded body having a desired shape is obtained by compression molding in a powder state, and then cured by heat treatment to complete the molding of a bonded magnet. The magnet shape to which the present invention is applied may be a ring shape, a cylindrical shape, a disk shape, a spherical shape, or the like, but is not limited thereto.
リング状に成形されたボンド磁石には微細な空孔が表面に存在しているため、無機系微粉末をボンド磁石の表面に被覆させると良い。この無機系微粉末としてはカーボン、マイカ、タルク、炭酸カルシウム等が使用できる。被覆の方法としては振動バレル内にボンド磁石、振動メディアと無機質微粉末を充填する方法や、溶剤にこれら無機質微粉末を分散させ、その液体中に浸漬する方法等が使用できる。無機質微粉末を被覆したのち塩化パラジウム溶液に浸漬させて、以下の無電解メッキにおける金属析出を促進させるための触媒化処理を行うことが好ましい。 Since a fine hole exists on the surface of the ring-shaped bonded magnet, it is preferable to coat the surface of the bonded magnet with an inorganic fine powder. Carbon, mica, talc, calcium carbonate, etc. can be used as this inorganic fine powder. As a coating method, there can be used a method in which a bond magnet, a vibration medium and an inorganic fine powder are filled in a vibration barrel, a method in which these inorganic fine powders are dispersed in a solvent, and a method of immersing in the liquid. It is preferable to coat the inorganic fine powder and then immerse it in a palladium chloride solution to perform a catalytic treatment for promoting metal deposition in the following electroless plating.
このようにして成形された希土類ボンド磁石に対してNi−P系の合金無電解メッキを実施する。この合金無電解メッキにより、Pを含有した皮膜のマイクロビッカース硬度はHv=500〜900程度と、電解Niメッキの数倍という硬さが実現できた。また電解Niメッキ皮膜は結晶質の磁性材料であるがNi−P系無電解メッキ皮膜は非晶質で非磁性であるので、磁石の磁力線が電解Niメッキ皮膜のように皮膜を通じて隣接する極に漏洩するという問題が生じない。また、無電解Ni−Pメッキは磁石下地の微細な空孔に対する封止効果(カバリング性)が従来の電解Niメッキより優れているから、磁石内部に容易に酸素原子が侵入しない。ここで、上記無電解メッキにおける皮膜のマイクロビッカース硬度Hvは、概ね皮膜中に含有されるPの量に比例するから、マイクロビッカース硬度Hv=500〜1000を得るには皮膜中のPの含有率は3%〜12%であることが好ましい。3%以下では皮膜硬度が不足し、12%を超えると皮膜が磁性を帯びて好ましくない。 The rare earth bonded magnet thus formed is subjected to Ni-P alloy electroless plating. By this alloy electroless plating, the micro Vickers hardness of the coating containing P was about Hv = 500 to 900, which was several times that of electrolytic Ni plating. In addition, the electrolytic Ni plating film is a crystalline magnetic material, but the Ni-P electroless plating film is amorphous and non-magnetic. Therefore, the magnetic field lines of the magnet are adjacent to the adjacent poles through the film like the electrolytic Ni plating film. The problem of leakage does not occur. In addition, since electroless Ni—P plating has a better sealing effect (covering property) against fine holes in the magnet base than conventional electrolytic Ni plating, oxygen atoms do not easily enter the magnet. Here, since the micro Vickers hardness Hv of the film in the electroless plating is substantially proportional to the amount of P contained in the film, in order to obtain the micro Vickers hardness Hv = 500 to 1000, the content ratio of P in the film Is preferably 3% to 12%. If it is 3% or less, the film hardness is insufficient, and if it exceeds 12%, the film becomes magnetized, which is not preferable.
メッキに際しては市販のメッキ浴が使用できるが独自に調合した浴を使用することもできる。この無電解メッキ浴とは塩化物や硫酸塩などの金属塩類、ヒドラジン、リン酸水素ナトリウムなどの還元剤、アンモニア、クエン酸などのさっ化剤、PH調整剤、緩衝剤などを含むものが使用される。無電解メッキは電解メッキと異なり、リング形状の内周、外周、コーナー部の金属析出厚みのバラツキがなく、均一な仕上がりを得ることが可能である。なお、上記Ni−P系無電解メッキを行うのに先立ち、無電解Cuメッキを行うのも採り得る態様である。Cu皮膜の上にNi−P皮膜を形成することにより、密着性が向上する。 In plating, a commercially available plating bath can be used, but a uniquely prepared bath can also be used. This electroless plating bath contains metal salts such as chlorides and sulfates, reducing agents such as hydrazine and sodium hydrogen phosphate, sacrificial agents such as ammonia and citric acid, pH adjusting agents, buffering agents, etc. Is done. Unlike electroplating, electroless plating has no unevenness in the metal deposition thickness of the ring-shaped inner periphery, outer periphery, and corner, and can achieve a uniform finish. In addition, prior to performing the Ni-P-based electroless plating, electroless Cu plating may be performed. By forming the Ni-P film on the Cu film, the adhesion is improved.
発明者等は磁石の体積に対する磁石表面積の比が大きいほど酸化による重量増加の影響が抑制されることを見出した。高温雰囲気下で磁石が暴露された際に皮膜の空孔を通過しあるいは拡散侵入する酸素原子は、皮膜直下の磁性粉から磁石の奥に向かって酸化反応を進行させるため、酸化による磁気性能の低下の影響を抑制するには、磁石体積Vと磁石表面積Sの比を一定値以上に設定することが有効であることを見出した。具体的には磁石体積Vを磁石表面積Sで除した値V/Sを0.020(cc/cm2)以上とすることが好ましい。 The inventors have found that the larger the ratio of the magnet surface area to the magnet volume, the more the influence of weight increase due to oxidation is suppressed. When the magnet is exposed in a high temperature atmosphere, oxygen atoms that pass through or penetrate the diffusion of the film cause an oxidation reaction to proceed from the magnetic powder directly under the film to the back of the magnet. In order to suppress the influence of the decrease, it has been found effective to set the ratio of the magnet volume V and the magnet surface area S to a certain value or more. Specifically, the value V / S obtained by dividing the magnet volume V by the magnet surface area S is preferably 0.020 (cc / cm 2 ) or more.
発明者等はさらにボンド磁石の高温下暴露状態における表面積あたり酸化増量値が暴露時間の0.35乗にほぼ比例していることを見出した。そして本発明のボンド磁石の防錆皮膜は従来の樹脂塗装や電解メッキによる皮膜に比べて、酸化増量値の、経過時間の0.35乗に対する比例係数が小さく、酸化の進行が遅いことを見出した。図1に酸化増量の経時変化直線xを示し、その比例係数kは0.00030以下であることが好ましい。 The inventors have further found that the value of the increase in oxidation per surface area of the bonded magnet exposed under high temperature is approximately proportional to the 0.35th power of the exposure time. And the anticorrosive film of the bonded magnet of the present invention has found that the proportionality factor of the oxidation increase value to the 0.35th power of the elapsed time is small and the progress of the oxidation is slow compared with the conventional resin coating or electrolytic plating film. It was. FIG. 1 shows a change line x with time of oxidation increase, and the proportional coefficient k is preferably 0.00030 or less.
無電解Ni−Pメッキの皮膜厚は2μm〜15μmが好ましい。2μm以下では皮膜が均一になり難く、皮膜強度も十分でない。また、微細なピンホールが生じて、高温下で使用中に酸素がピンホールを通じて磁石内部に侵入し、酸化が進行することがある。一方、膜厚を15μmに以上にすると、磁石表面とモータコア等との距離が遠くなり、十分な磁力を利用できないという問題を生じる。以下、表1を参照しつつ各実施例と比較例を説明する。 The film thickness of the electroless Ni—P plating is preferably 2 μm to 15 μm. If the thickness is 2 μm or less, the film is difficult to be uniform and the film strength is not sufficient. In addition, fine pinholes are generated, and oxygen may enter the magnet through the pinholes during use at high temperatures, and oxidation may proceed. On the other hand, when the film thickness is set to 15 μm or more, the distance between the magnet surface and the motor core or the like is increased, which causes a problem that sufficient magnetic force cannot be used. Hereinafter, examples and comparative examples will be described with reference to Table 1.
(実施例1)
超急冷法にて製造されたNdFeB系合金磁性粉を0.1wt%濃度のアミノプロピルトリエトキシシランで処理した後、ノボラック型エポキシ樹脂と混合、乾燥し、磁性粉重量比率93wt%の混合物を得た。これを圧縮成形機で、10ton/cm2の加圧力にて外径9mm,内径7mm,長さ1.4mmのリング状成形体を製作し、180℃にて加熱硬化させた。この成形体の表面積Sあたりの容積Vの比V/Sは0.029cc/cm2である。この後、表2に示す条件・組成の無電解メッキ浴中にてNi-P皮膜(皮膜中のP含有率8%)を形成した。この場合の皮膜厚は11μm〜12μmと内外周でほぼ均一であり、皮膜のマイクロビッカース硬度Hvは700と十分大きく、120℃暴露下での酸化増量経時変化の比例係数kは0.00017(g・cm-2・Hr-0.35)と十分小さいものとなった。
(Example 1)
The NdFeB alloy magnetic powder produced by the ultra-quenching method is treated with 0.1 wt% aminopropyltriethoxysilane, then mixed with a novolac type epoxy resin and dried to obtain a mixture having a magnetic powder weight ratio of 93 wt%. It was. A ring-shaped molded body having an outer diameter of 9 mm, an inner diameter of 7 mm, and a length of 1.4 mm was produced using a compression molding machine with a pressing force of 10 ton / cm 2 , and heat-cured at 180 ° C. The ratio V / S of the volume V per surface area S of this molded body is 0.029 cc / cm 2 . Thereafter, a Ni—P film (P content 8% in the film) was formed in an electroless plating bath having the conditions and composition shown in Table 2. In this case, the film thickness is 11 μm to 12 μm, which is almost uniform on the inner and outer circumferences, the micro Vickers hardness Hv of the film is sufficiently large as 700, and the proportional coefficient k of the change with time in oxidation increase under 120 ° C. exposure is 0.00017 (g・ Cm −2 · Hr −0.35 ) and sufficiently small.
(実施例2)
実施例1と同様の組成で、外径9mm,長さ(厚さ)1.4mmの円板状磁石を作成し、同様の無電解メッキを施した。この成形体の表面積Sあたり容積Vの比V/Sは0.053cc/cm2である。Ni-P皮膜(皮膜中のP含有率8%)厚は約13μmである。この場合の皮膜のマイクロビッカース硬度Hvは630と十分大きく、酸化増量経時変化の比例係数kは0.00015(g・cm-2・Hr-0.35)と十分小さかった。
(Example 2)
A disc-shaped magnet having an outer diameter of 9 mm and a length (thickness) of 1.4 mm was prepared with the same composition as in Example 1, and the same electroless plating was performed. The ratio V / S of the volume V per surface area S of this molded body is 0.053 cc / cm 2 . The thickness of the Ni—P film (P content 8% in the film) is about 13 μm. The micro Vickers hardness Hv of the film in this case was sufficiently large as 630, and the proportionality coefficient k of the change over time in oxidation increase was sufficiently small as 0.00015 (g · cm −2 · Hr −0.35 ).
(実施例3)
実施例1と同様の組成で、リング状磁石を作成し、カーボン粉にて成形体表面を被覆したのち同様の無電解メッキをした。成形体の表面積Sあたり容積Vの比V/Sは0.029cc/cm2である。この場合のNi-P皮膜(皮膜中のP含有率4%)厚は12μm〜13μm程度で内外周でほぼ均一であり、皮膜のマイクロビッカース硬度Hvは550と十分大きく、酸化増量経時変化の比例係数kは0.00012(g・cm-2・Hr-0.35)と十分小さかった。
(Example 3)
A ring-shaped magnet having the same composition as in Example 1 was prepared, and the surface of the molded body was covered with carbon powder, followed by the same electroless plating. The ratio V / S of the volume V per surface area S of the molded body is 0.029 cc / cm 2 . In this case, the thickness of the Ni-P film (P content 4% in the film) is about 12 μm to 13 μm and is almost uniform on the inner and outer circumferences, and the micro Vickers hardness Hv of the film is sufficiently large as 550, which is proportional to the change over time in oxidation increase The coefficient k was 0.00012 (g · cm −2 · Hr −0.35 ) and sufficiently small.
(実施例4)
実施例1と同様の組成で、外径20mm,内径18mm,長さ10mmのリング磁石を作成し、同様の無電解メッキを施した。成形体の表面積Sあたり容積Vの比V/Sは0.045cc/cm2である。この場合のNi−P皮膜(皮膜中のP含有率10%)厚は11μm程度で内外周で均一であり、皮膜のマイクロビッカース硬度Hvは900と十分大きく、酸化増量経時変化の比例係数kは0.00017(g・cm-2・Hr-0.35)と十分小さかった。
Example 4
A ring magnet having an outer diameter of 20 mm, an inner diameter of 18 mm, and a length of 10 mm having the same composition as in Example 1 was prepared and subjected to the same electroless plating. The ratio V / S of the volume V per surface area S of the molded body is 0.045 cc / cm 2 . In this case, the thickness of the Ni-P film (P content 10% in the film) is about 11 μm, uniform on the inner and outer circumferences, the micro Vickers hardness Hv of the film is sufficiently large as 900, and the proportionality coefficient k of the change over time in oxidation increase is 0.00017 sufficiently as small as (g · cm -2 · Hr -0.35 ).
(比較例1)
実施例1と同様の組成、同様の形状で製造したリング磁石に対して、表3に示す組成で回転バレル中で電解Niメッキを行った。この成形体の表面積あたり容積の比V/Sは0.029cc/cm2である。この場合の皮膜厚は外周が20μm程度に対して内周は5μm程度と不均一であり、皮膜のマイクロビッカース硬度Hvも150と小さい。また、120℃暴露下での酸化増量経時変化の比例係数kは0.00039(g・cm-2・Hr-0.35)と大きくなる。
(Comparative Example 1)
Electrolytic Ni plating was carried out in a rotating barrel with the composition shown in Table 3 on a ring magnet manufactured with the same composition and the same shape as in Example 1. The volume ratio V / S per surface area of the molded body is 0.029 cc / cm 2 . In this case, the film thickness is not uniform, with the outer circumference being about 20 μm and the inner circumference being about 5 μm, and the micro Vickers hardness Hv of the film is as small as 150. Further, the proportional coefficient k of the oxidation increase aging under 120 ° C. exposure increases the 0.00039 (g · cm -2 · Hr -0.35).
(比較例2)
実施例1と同様の組成、同様の方法で外径9mm,内径8mm,長さ1.4mmのリング状成形体を製作し、実施例1と同様の無電解メッキ(皮膜中のP含有率8%)を施した。この成形体の表面積Sあたり容積Vの比V/Sは0.018cc/cm2である。この場合には、酸化増量経時変化の比例係数kが0.00033(g・cm-2・Hr-0.35)と大きくなってしまう。
(Comparative Example 2)
A ring-shaped molded body having an outer diameter of 9 mm, an inner diameter of 8 mm, and a length of 1.4 mm was produced in the same manner and in the same manner as in Example 1, and the same electroless plating as in Example 1 (P content in the coating was 8). %). The ratio V / S of the volume V per surface area S of this molded body is 0.018 cc / cm 2 . In this case, the proportional coefficient k of the oxidation increment aging increases with 0.00033 (g · cm -2 · Hr -0.35).
(比較例3)
実施例1と同様の組成、同様の方法で外径20mm,内径18mm,長さ10mmのリング状成形体を製作し、表3に示す条件・組成にて回転バレル中で電解Niメッキを行った。この成形体の表面積Sあたり容積Vの比V/Sは0.045cc/cm2である。この場合の皮膜厚は外周が12μm程度に対して内周は4μm程度と不均一であり、皮膜のマイクロビッカース硬度Hvも130と小さい。酸化増量経時変化の比例係数kは0.00051(g・cm-2・Hr-0.35)と大きくなる。
(Comparative Example 3)
A ring-shaped molded body having an outer diameter of 20 mm, an inner diameter of 18 mm, and a length of 10 mm was manufactured in the same manner and in the same manner as in Example 1, and electrolytic Ni plating was performed in a rotating barrel under the conditions and compositions shown in Table 3. . The ratio V / S of the volume V per surface area S of this molded body is 0.045 cc / cm 2 . In this case, the film thickness is non-uniform such that the outer circumference is about 12 μm and the inner circumference is about 4 μm, and the micro Vickers hardness Hv of the film is as small as 130. Proportionality factor k of oxidation weight gain aging increases the 0.00051 (g · cm -2 · Hr -0.35).
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006181335A JP2008010726A (en) | 2006-06-30 | 2006-06-30 | Rare earth bond magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006181335A JP2008010726A (en) | 2006-06-30 | 2006-06-30 | Rare earth bond magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008010726A true JP2008010726A (en) | 2008-01-17 |
Family
ID=39068653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006181335A Pending JP2008010726A (en) | 2006-06-30 | 2006-06-30 | Rare earth bond magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008010726A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010016091A (en) * | 2008-07-02 | 2010-01-21 | Canon Electronics Inc | Compact and method of manufacturing the same |
US11289249B2 (en) | 2017-08-30 | 2022-03-29 | Kabushiki Kaisha Toshiba | Permanent magnet, rotary electrical machine, and vehicle |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0472702A (en) * | 1990-07-13 | 1992-03-06 | Furukawa Electric Co Ltd:The | Rare earth element-fe-b plastic magnet |
JPH0582322A (en) * | 1991-09-19 | 1993-04-02 | Hitachi Metals Ltd | R-tm-b series permanent magnet having improved corrosion resistance and film thickness uniformity |
JPH0594914A (en) * | 1991-05-09 | 1993-04-16 | Hitachi Metals Ltd | Film forming method for rare earth-iron permanent magnet and rare earth-iron permanent magnet |
JPH09320826A (en) * | 1996-05-27 | 1997-12-12 | Sumitomo Special Metals Co Ltd | Highly anticorrosive rare earth magnet |
JP2000049007A (en) * | 1998-07-27 | 2000-02-18 | Minebea Co Ltd | Rare earth bond magnet |
JP2000091112A (en) * | 1998-09-07 | 2000-03-31 | Daidoo Denshi:Kk | Rare earth bond magnet and its manufacture |
JP2001230106A (en) * | 2000-02-15 | 2001-08-24 | Citizen Watch Co Ltd | Permanent magnet material |
JP2003158008A (en) * | 2001-11-21 | 2003-05-30 | Sumitomo Special Metals Co Ltd | Rare-earth bonded magnet and its manufacturing method |
JP2004253742A (en) * | 2003-02-21 | 2004-09-09 | Tdk Corp | Rare earth magnet and its manufacturing method |
JP2006158012A (en) * | 2004-11-25 | 2006-06-15 | Honda Motor Co Ltd | Method of manufacturing permanent magnet for use in ipm-type motor for automobile |
-
2006
- 2006-06-30 JP JP2006181335A patent/JP2008010726A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0472702A (en) * | 1990-07-13 | 1992-03-06 | Furukawa Electric Co Ltd:The | Rare earth element-fe-b plastic magnet |
JPH0594914A (en) * | 1991-05-09 | 1993-04-16 | Hitachi Metals Ltd | Film forming method for rare earth-iron permanent magnet and rare earth-iron permanent magnet |
JPH0582322A (en) * | 1991-09-19 | 1993-04-02 | Hitachi Metals Ltd | R-tm-b series permanent magnet having improved corrosion resistance and film thickness uniformity |
JPH09320826A (en) * | 1996-05-27 | 1997-12-12 | Sumitomo Special Metals Co Ltd | Highly anticorrosive rare earth magnet |
JP2000049007A (en) * | 1998-07-27 | 2000-02-18 | Minebea Co Ltd | Rare earth bond magnet |
JP2000091112A (en) * | 1998-09-07 | 2000-03-31 | Daidoo Denshi:Kk | Rare earth bond magnet and its manufacture |
JP2001230106A (en) * | 2000-02-15 | 2001-08-24 | Citizen Watch Co Ltd | Permanent magnet material |
JP2003158008A (en) * | 2001-11-21 | 2003-05-30 | Sumitomo Special Metals Co Ltd | Rare-earth bonded magnet and its manufacturing method |
JP2004253742A (en) * | 2003-02-21 | 2004-09-09 | Tdk Corp | Rare earth magnet and its manufacturing method |
JP2006158012A (en) * | 2004-11-25 | 2006-06-15 | Honda Motor Co Ltd | Method of manufacturing permanent magnet for use in ipm-type motor for automobile |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010016091A (en) * | 2008-07-02 | 2010-01-21 | Canon Electronics Inc | Compact and method of manufacturing the same |
US11289249B2 (en) | 2017-08-30 | 2022-03-29 | Kabushiki Kaisha Toshiba | Permanent magnet, rotary electrical machine, and vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4650593B2 (en) | Iron-based magnet alloy powder containing rare earth element, method for producing the same, obtained resin composition for bonded magnet, bonded magnet, and compacted magnet | |
WO2010067592A1 (en) | Rare earth-based bonded magnet | |
JP2001115125A (en) | Adhesive for neodymium magnet, and motor | |
JP6028322B2 (en) | Compound for bonded magnet | |
JP2000208321A (en) | Molded plastic magnet molding | |
JP3709292B2 (en) | Resin bonded rare earth magnet | |
JP2008010726A (en) | Rare earth bond magnet | |
JP2015115529A (en) | Compressed bond magnet with case | |
JP2006332311A (en) | Bond magnet | |
JPH0927432A (en) | Manufacture of highly anticorrosive r-fe-b bond magnet | |
EP1583111A1 (en) | Oxidation-resistant rare earth based magnet powder and method for production thereof, compound for rare earth based bonded magnet, rare earth based bonded magnet and method for production thereof | |
JP2009212102A (en) | Method of manufacturing bond magnet | |
JP2000133541A (en) | Manufacture of corrosion-resistant r-fe-b bonded magnet | |
JP2001172782A (en) | Treating agent for magnetic stock, magnetic member with coating film and producing method therefor | |
JP4561987B2 (en) | Resin-coated magnet and method for producing the same | |
JP2016072406A (en) | Bond magnet | |
JP2001189214A (en) | Bonded rare earth magnet and manufacturing method therefor | |
JP3236815B2 (en) | High corrosion resistance R-Fe-B bonded magnet and method for producing the same | |
JP2004266093A (en) | Method of manufacturing rare earth bonded magnet | |
JP2008078211A (en) | Bond magnet, and method for manufacturing the same | |
JPH0927433A (en) | Manufacture of highly acticorrosive r-fe-b bond magnet | |
JPH06333713A (en) | Bonded magnet and manufacture of bonded magnet | |
JP4131385B2 (en) | Rare earth permanent magnet manufacturing method | |
JP4265168B2 (en) | Method for manufacturing permanent magnet | |
JP2010103180A (en) | Rare earth magnet and method of manufacturing the same, and electric pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100922 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110201 |