JPH09320826A - Highly anticorrosive rare earth magnet - Google Patents

Highly anticorrosive rare earth magnet

Info

Publication number
JPH09320826A
JPH09320826A JP8156190A JP15619096A JPH09320826A JP H09320826 A JPH09320826 A JP H09320826A JP 8156190 A JP8156190 A JP 8156190A JP 15619096 A JP15619096 A JP 15619096A JP H09320826 A JPH09320826 A JP H09320826A
Authority
JP
Japan
Prior art keywords
layer
plating
rare earth
thickness
electroless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8156190A
Other languages
Japanese (ja)
Inventor
Tetsuharu Hayakawa
徹治 早川
Yukimitsu Miyao
幸光 宮尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP8156190A priority Critical patent/JPH09320826A/en
Publication of JPH09320826A publication Critical patent/JPH09320826A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve anticorrosive property by forming a multilayer film composed of an alkaline electroless nickel plating layer as an underlying layer, an alkaline electroless copper plating layer as an intermediate layer, and an electroless nickel- phosphorus plating layer as a surface layer, with each of these layers having a specified thickness, on the surface of a rare earth, transition metal, boron-based sintered permanent magnet body. SOLUTION: A multilayer film composed of an underlying layer, an intermediate layer and a surface layer which are made of electroless plating layers on the surface of a rare earth, transition metal, boron based sintered permanent magnet body. The underlying layer is an alkaline electroless nickel plating layer having a thickness of 0.1-5μm and the intermediate layer is an alkaline electroless copper plating layer having a thickness of 5-15μm, while the surface layer is an electroless nickel-phosphorus plating layer having a thickness of 5-15μm, thus forming a high anticorrosive rare earth magnet. Thus, a uniform plating film thickness may be obtained, and the adhesiveness between the plating film and the sintered permanent magnet body may be improved. In addition, a magnet may be provided which exhibits a high anticorrosive property and has no temporal change in magnetic property at the time of plating and after plating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、希土類・遷移金
属・硼素系燒結永久磁石体の表面に無電解めっき層のみ
の多層被膜を形成し、耐食性を向上させるとともに密着
性に優れた均一なめっき層を被膜した高耐食性希土類磁
石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention forms a multi-layer coating of only an electroless plating layer on the surface of a rare earth / transition metal / boron-based sintered permanent magnet body to improve corrosion resistance and uniform plating with excellent adhesion. TECHNICAL FIELD The present invention relates to a highly corrosion-resistant rare earth magnet coated with a layer.

【0002】[0002]

【従来の技術】希土類・遷移金属・硼素系燒結永久磁石
は、R(但しRはYを含む希土類元素のうち少なくとも
1種)、B、Feを主成分とし、従来から知られる希土
類・コバルト系燒結永久磁石に比べ磁気特性が格段に優
れていることから、高性能・小型化を要求される電気・
電子機器分野だけでなく、広範囲の分野において多用さ
れている。
2. Description of the Related Art A rare earth / transition metal / boron-based sintered permanent magnet is a rare earth / cobalt-based permanent magnet, which has R (where R is at least one of rare earth elements including Y), B, and Fe as main components. Magnetic properties are significantly superior to those of sintered permanent magnets.
It is widely used not only in the electronic equipment field but also in a wide range of fields.

【0003】この希土類・遷移金属・硼素系燒結永久磁
石は上記のような長所を有する反面、多相組織からなり
粒界に存在する、例えば、Ndリッチ相などのRリッチ
相が電位的に極めて卑であるために、局部電池作用によ
り粒界腐食が起こり易く耐食性に劣るという短所を有す
る。
This rare earth / transition metal / boron-based sintered permanent magnet has the above-mentioned advantages, but on the other hand, an R-rich phase such as an Nd-rich phase, which is present in the grain boundary and has a multiphase structure, is extremely potential. Since it is base, intergranular corrosion is likely to occur due to the action of the local battery, and the corrosion resistance is poor.

【0004】そこで、希土類・遷移金属・硼素系燒結永
久磁石の耐食性を向上させるために、該磁石体の表面に
各種の耐食性被膜を形成する表面処理技術が提案され、
工業的規模の生産においても実用化されているものが多
数ある。例えば、上記の表面処理技術としては、電着塗
装・スプレー塗装等による樹脂被膜を形成する方法、イ
オンプレーティング・スパッタリング・真空蒸着等の気
相めっき被膜を形成する方法、電気めっき・無電解めっ
き等の湿式めっき被膜を形成する方法が知られている。
しかし、それぞれ一長一短があり、必ずしも各種分野か
らの要望を満足させるまでに至っていない。
Therefore, in order to improve the corrosion resistance of the rare earth / transition metal / boron-based sintered permanent magnet, a surface treatment technique for forming various corrosion-resistant coatings on the surface of the magnet body has been proposed,
Many are put to practical use in industrial scale production. For example, the above-mentioned surface treatment techniques include a method of forming a resin film by electrodeposition coating / spray coating, a method of forming a vapor phase coating film such as ion plating / sputtering / vacuum deposition, electroplating / electroless plating. There is known a method of forming a wet plating film such as.
However, there are merits and demerits, and they do not necessarily meet the demands from various fields.

【0005】[0005]

【発明が解決しようとする課題】今日、上記の表面処理
技術の中でも、コストや耐食性の面で優れている湿式め
っき被膜を形成する方法が主流となっている(特公平3
−74012号)。特に工業的規模の生産においては、
電気めっきが無電解めっきに比較してコスト及びめっき
液の管理面等で優れていることから多用されている。例
えば、希土類・遷移金属・硼素系燒結永久磁石体の表面
に下地層として電気ニッケルめっき層、中間層として電
気銅めっき層、表層として電気ニッケル・リンめっき層
からなる3層の電気めっき被膜を形成した耐食性被膜の
構成が提案されている(特開平7−331486号)。
Among the above-mentioned surface treatment techniques, a method of forming a wet plating film, which is excellent in cost and corrosion resistance, has become mainstream today (Japanese Patent Publication No.
-74012). Especially in industrial scale production,
Electroplating is widely used because it is superior to electroless plating in terms of cost and control of plating solution. For example, a three-layer electroplating film consisting of an electronickel plating layer as an underlayer, an electrocopper plating layer as an intermediate layer, and an electronickel / phosphorus plating layer as a surface layer is formed on the surface of a rare earth / transition metal / boron-based sintered permanent magnet body. The structure of the corrosion-resistant coating is proposed (Japanese Patent Laid-Open No. 7-331486).

【0006】この3層の電気めっき構成は、めっき被膜
中におけるピンホールの生成を抑制することが可能であ
り、耐食性向上を達成できるが、電気めっきが有する本
質的な欠点を解決するものではない。すなわち、電気め
っきによる被膜は、被めっき材への電流分布により偏り
があるため、例えば円筒形状の磁石体においては、該磁
石体の内周部への付き迴りが悪く外周部と比較して内周
部のめっき被膜厚が薄くなり、また、薄型偏平形状の磁
石体においては、該磁石体のエッジ部に電流が集中し中
央部と比較してエッジ部のめっき被膜が厚く成り過ぎ、
いずれの形状の場合も均一なめっき被膜厚を得ることが
困難となる。したがって、高い寸法精度が要求される用
途には使用できないという問題点を有している。
[0006] This three-layer electroplating structure can suppress the formation of pinholes in the plating film and can improve the corrosion resistance, but it does not solve the essential drawbacks of electroplating. . That is, since the coating film formed by electroplating is biased due to the current distribution to the material to be plated, for example, in a cylindrical magnet body, the sticking to the inner peripheral portion of the magnet body is poor and compared with the outer peripheral portion. The plating film thickness of the inner peripheral portion becomes thin, and in the thin flat magnet body, the electric current is concentrated at the edge portion of the magnet body and the plating film at the edge portion becomes too thick compared to the central portion,
In any case, it is difficult to obtain a uniform plating film thickness. Therefore, it has a problem that it cannot be used in applications requiring high dimensional accuracy.

【0007】上記のような磁石体形状でも均一なめっき
被膜厚を得るためには、無電解めっきのみでめっき被膜
を形成することが望ましい。例えば、希土類・遷移金属
・硼素系燒結永久磁石体の表面に、下地層として電気的
に貴な無電解銅めっき層(めっき液はpH8〜14)を
析出させ、その上に電気的に卑な無電解ニッケル・リン
めっき層(めっき液はpH3〜13)を析出させ、無電
解めっきのみの2層被膜を形成した構成が提案されてい
る(特公平7−12005号、特公平7−56849
号)。
In order to obtain a uniform plating film thickness even with the above magnet shape, it is desirable to form the plating film only by electroless plating. For example, an electrically noble electroless copper plating layer (plating solution has a pH of 8 to 14) is deposited as a base layer on the surface of a rare earth / transition metal / boron-based sintered permanent magnet body, and an electrically baseless layer is formed on it. A configuration has been proposed in which an electroless nickel-phosphorus plating layer (plating solution has a pH of 3 to 13) is deposited to form a two-layer coating of only electroless plating (Japanese Patent Publication No. 7-2005, Japanese Patent Publication No. 7-56849).
issue).

【0008】この2層の無電解めっき構成は、均一なめ
っき被膜厚を得ることが可能であるが、本質的に無電解
銅めっき層が下地層となっているため、磁石体との密着
性が劣り、いわゆるクロスカット基盤目テストでは、ナ
イフにより切り込んだ被膜部が浮き上がる現象が生じ
る。
With this two-layer electroless plating structure, it is possible to obtain a uniform plating film thickness, but since the electroless copper plating layer is essentially the underlayer, the adhesion to the magnet body is improved. In the so-called cross-cut substrate test, the coating cut by the knife floats up.

【0009】この被膜剥離現象は、無電解銅めっきの場
合、初期析出部がまず粒子状に析出し、その後被膜が粒
子間を埋めるように成長するため、素材(磁石体)の粒
界部分までの析出が起こり難く、アンカー効果が低いた
めと推測される((株)ティー・アイ・シー発行、ニュ
ーセラミックス(1991)No.11 P88〜P9
6「無電解めっきによるセラミック基板の導電化コーテ
ィング」)。
[0009] In the case of electroless copper plating, this film peeling phenomenon occurs because the initial precipitation portion first precipitates in the form of particles, and then the film grows so as to fill the spaces between the particles, so that even the grain boundary portion of the material (magnet body) It is presumed that the precipitation of the powder does not occur easily, and the anchor effect is low (New Ceramics (1991) No. 11 P88-P9, issued by TIC Co., Ltd.).
6 "Conductive coating of ceramic substrates by electroless plating").

【0010】さらに、無電解めっき被膜と電気めっき被
膜を併用した3層のめっき被膜を形成した構成も提案さ
れている。すなわち、希土類・遷移金属・硼素系燒結永
久磁石体の表面に、下地層として該磁石体表面を中和さ
せて経時変化に伴う腐食劣化を防止するためにアルカリ
性無電解銅めっき層又はニッケル・リンめっき層を形成
した後に、中間層として電気銅めっき層又はニッケルめ
っき層、表層として電気ニッケル・リンめっき層からな
る3層のめっき被膜を形成した構成が提案されている
(特開平8−3763号)。
Furthermore, there has been proposed a structure in which a three-layer plating film is formed by using an electroless plating film and an electroplating film together. That is, the surface of a rare earth / transition metal / boron-based sintered permanent magnet body is neutralized as a base layer to prevent the corrosion deterioration due to aging, and an alkaline electroless copper plating layer or nickel / phosphorus is used. A configuration has been proposed in which, after forming a plating layer, a three-layer plating film including an electrolytic copper plating layer or a nickel plating layer as an intermediate layer and an electrolytic nickel / phosphorus plating layer as a surface layer is formed (Japanese Patent Laid-Open No. 8-3763). ).

【0011】この3層の無電解めっきと電気めっきの構
成においても、めっき被膜の主体が電気めっき被膜であ
ることから均一なめっき被膜厚を得ることは困難であ
り、また、電気めっきと無電解めっきの複合めっきであ
ることから、めっき作業面でも煩雑である。
Even in the three-layer electroless plating and electroplating structure, it is difficult to obtain a uniform plating film thickness because the main constituent of the plating film is the electroplating film. Since it is a composite plating of plating, it is complicated in terms of plating work.

【0012】この発明は、上述の問題点を解決し、特に
無電解めっきの長所を積極的に活用することにより均一
なめっき被膜厚を得るとともに、めっき被膜と希土類・
遷移金属・硼素系燒結永久磁石体との密着性を改善し、
さらに、優れた耐食性を示すとともにめっき時及びめっ
き後においても磁気特性の経時変化(特性劣化)のない
高耐食性希土類磁石の提供を目的とするものである。
The present invention solves the above problems and, in particular, positively utilizes the advantages of electroless plating to obtain a uniform coating film thickness, and the plating film and rare earth /
Improves adhesion with transition metal / boron-based sintered permanent magnets,
Further, it is an object of the present invention to provide a highly corrosion-resistant rare earth magnet which exhibits excellent corrosion resistance and has no change over time in magnetic characteristics (deterioration of characteristics) during and after plating.

【0013】[0013]

【課題を解決するための手段】発明者らは、上記の目的
を達成するために無電解めっき層のみで多層被膜を形成
する構成に着目し、種々の実験の結果、特に希土類・遷
移金属・硼素系燒結永久磁石体との密着性を改善するた
めに、下地層として無電解ニッケルめっき層を析出させ
ることとした。すなわち、無電解ニッケルめっきの場合
は、極めて薄い被膜の状態から平滑で緻密な析出をし、
その後も均一な成長をすることが認められており、素材
(磁石体)の粒界部分までの析出が容易に起こり、それ
が形成された被膜のアンカー効果を高めると推測される
からである(前掲のニューセラミックス(1991)N
o.11)。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the inventors have paid attention to a structure in which a multi-layer coating is formed only by an electroless plating layer, and as a result of various experiments, particularly rare earth / transition metal / In order to improve the adhesiveness with the boron-based sintered permanent magnet body, an electroless nickel plating layer was deposited as an underlayer. That is, in the case of electroless nickel plating, smooth and dense deposition is performed from an extremely thin film state,
It has been confirmed that uniform growth continues thereafter, and it is presumed that precipitation easily up to the grain boundary part of the material (magnet body) and that it enhances the anchoring effect of the formed coating ( New Ceramics (1991) N
o. 11).

【0014】しかし、無電解ニッケルめっきのうち、無
電解ニッケル・リンめっき液は、還元剤として次亜リン
酸を使用するために、副反応として亜リン酸と水素ガス
が生成し、リン(P)と水素(H2)がニッケルめっき
被膜中に含まれる。特に希土類・遷移金属・硼素系燒結
永久磁石は水素を非常に吸蔵しやすく、多量に吸蔵する
と粒界が脱落しめっき被膜との密着性が著しく低下する
こととなる。また、無電解ニッケル・硼素めっき液の場
合も、副反応により硼素(B)と水素(H2)がニッケ
ルめっき被膜中に含まれ同様な現象を生じることとな
る。
However, among the electroless nickel plating, the electroless nickel / phosphorus plating solution uses hypophosphorous acid as a reducing agent, so that phosphorous acid and hydrogen gas are generated as a side reaction, and phosphorus (P ) And hydrogen (H 2 ) are contained in the nickel plating film. In particular, a rare earth / transition metal / boron-based sintered permanent magnet is very likely to absorb hydrogen, and if a large amount of hydrogen is absorbed, grain boundaries will drop and the adhesion to the plating film will be significantly reduced. Further, also in the case of the electroless nickel / boron plating solution, boron (B) and hydrogen (H 2 ) are contained in the nickel plating film by the side reaction, and a similar phenomenon occurs.

【0015】このため、無電解ニッケルめっき液のpH
を種々検討した結果、該めっき液がアルカリ性液の場合
においては、上記の磁石体への水素吸蔵が著しく少なく
なると同時に磁石体の粒界を腐食させないことが分か
り、該下地層としてアルカリ性無電解ニッケルめっき層
を形成した構成は、従来の無電解銅めっき層(めっき液
はpH8〜14)を形成した構成と比較して優れた密着
性が得られることを知見した。また、該下地層の膜厚
は、ニッケル・リンめっきの場合、リンを含むことから
膜が厚くなるにつれて硬く脆くなるため、0.1〜5μ
mの範囲から選定することが必要であることを確認し
た。ニッケル・硼素めっきの場合も、硼素を含むことか
ら同様な理由により0.1〜5μmの範囲から選定する
ことが必要であることを確認した。
Therefore, the pH of the electroless nickel plating solution is
As a result of various studies, it was found that when the plating solution is an alkaline solution, hydrogen absorption in the magnet body is significantly reduced and at the same time the grain boundaries of the magnet body are not corroded. It has been found that the configuration in which the plating layer is formed has excellent adhesion as compared with the configuration in which the conventional electroless copper plating layer (plating solution has a pH of 8 to 14) is formed. In the case of nickel-phosphorus plating, the thickness of the underlayer is 0.1 to 5 μm because it becomes harder and brittle as the film becomes thicker because it contains phosphorus.
It was confirmed that it was necessary to select from the range of m. Also in the case of nickel / boron plating, it was confirmed that it is necessary to select from the range of 0.1 to 5 μm for the same reason because it contains boron.

【0016】また、表層には、耐食性とともに表面性状
の観点からピンホールのない緻密な被膜となる酸性ある
いはアルカリ性の無電解ニッケル・リンめっき層を採用
することとし、該表層の膜厚は、貫通ピンホールを無く
すためには5〜15μmの範囲から選定することが必要
であることを確認した。さらに、この無電解ニッケル・
リンめっき層は、磁石体への水素アタックが非常に大き
いため、前記の下地層であるアルカリ性無電解ニッケル
めっき層を貫通して水素吸蔵を起こさせ磁石体の粒界脱
落を招く懸念があることから、水素バリアとして有効な
中間層を形成する必要がある。
The surface layer is an acidic or alkaline electroless nickel-phosphorus plating layer which forms a dense film without pinholes from the viewpoint of corrosion resistance and surface properties, and the thickness of the surface layer is It was confirmed that it is necessary to select from the range of 5 to 15 μm in order to eliminate pinholes. In addition, this electroless nickel
Since the phosphorus plating layer has a very large hydrogen attack on the magnet body, it may penetrate the alkaline electroless nickel plating layer, which is the underlayer, and cause hydrogen absorption, resulting in loss of grain boundaries of the magnet body. Therefore, it is necessary to form an intermediate layer effective as a hydrogen barrier.

【0017】また、発明者らは、水素バリアとしての機
能だけでなく防食機構及びめっき被膜に柔軟性を与え耐
熱ショックをやわらげる効果、さらに下地層であるアル
カリ性無電解層ニッケルめっきのピンホールを通しての
磁石体の腐食防止等の観点から、中間層としてアルカリ
性無電解銅めっき層を形成することとした。該中間層の
膜厚は、水素バリアとしての機能を果すためには5〜1
5μmの範囲から選定することが必要であることを確認
した。
In addition to the function as a hydrogen barrier, the present inventors have also provided an anticorrosion mechanism and an effect of softening the heat resistance of the plating film to alleviate the heat shock, and further, through the pinhole of the alkaline electroless layer nickel plating as the underlayer. From the viewpoint of preventing corrosion of the magnet body, an alkaline electroless copper plating layer is formed as the intermediate layer. The film thickness of the intermediate layer is 5 to 1 in order to function as a hydrogen barrier.
It was confirmed that it was necessary to select from the range of 5 μm.

【0018】この発明は、以上のような検討結果に基づ
き完成されたものであり、希土類・遷移金属・硼素系燒
結永久磁石体の表面に無電解めっき層からなる下地層と
中間層及び表層とからなる多層被膜を形成し、該下地層
が膜厚0.1〜5μmのアルカリ性無電解ニッケルめっ
き層、中間層が膜厚5〜15μmのアルカリ性無電解銅
めっき層、表層が膜厚5〜15μmの無電解ニッケル・
リンめっき層であることを特徴とする高耐食性希土類磁
石である。
The present invention has been completed on the basis of the above-described examination results, and an underlayer consisting of an electroless plating layer, an intermediate layer and a surface layer are formed on the surface of a rare earth / transition metal / boron based sintered permanent magnet body. Of the alkaline electroless nickel plating layer having a film thickness of 0.1 to 5 μm, the intermediate layer having an alkaline electroless copper plating layer having a film thickness of 5 to 15 μm, and the surface layer having a film thickness of 5 to 15 μm. Of electroless nickel
It is a highly corrosion-resistant rare earth magnet characterized by being a phosphorus-plated layer.

【0019】[0019]

【発明の実施の形態】この発明の耐食性希土類磁石にお
いて、希土類・遷移金属・硼素系燒結永久磁石体とは、
R(但しRはYを含む希土類元素のうち少なくとも1
種)とFe及びBを主成分とする公知の燒結永久磁石体
であればよく、特に、R8〜30原子%、B2〜28原
子%、Fe42〜90原子%を主成分とする組成の燒結
永久磁石体が好ましい。また、Rとしては軽希土類をも
って足り、特にNd、Prが好ましい。通常Rの1種を
もって足りるが、必要に応じて2種以上の混合物(ミッ
シュメタル、ジジム等)を用いることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the corrosion resistant rare earth magnet of the present invention, the rare earth / transition metal / boron based sintered permanent magnet body is
R (where R is at least one of the rare earth elements including Y
Seed) and a known sintered permanent magnet body containing Fe and B as main components, and in particular, a sintered permanent body having a composition containing R8 to 30 atom%, B2 to 28 atom% and Fe42 to 90 atom% as main components. A magnet body is preferred. As R, a light rare earth is sufficient, and Nd and Pr are particularly preferable. Usually, one type of R is sufficient, but if necessary, a mixture of two or more types (Misch metal, didymium, etc.) can be used.

【0020】Feの50%以下(好ましくは20%以
下)をCoで置換することにより、温度特性及び耐食性
を向上することができる。また、高保磁力化等を目的と
して、Al(9.5原子%以下)、Ti(4.5原子%
以下)、V(9.5原子%以下)、Cr(8.5原子%
以下)、Mn(8.0原子%以下)、Bi(5原子%以
下)、Nb(12.5原子%以下)、Ta(10.5原
子%以下)、Mo(9.5原子%以下)、W(9.5原
子%以下)、Sb(2.5原子%以下)、Ge(7原子
%以下)、Sn(3.5原子%以下)、Zr(5.5原
子%以下)、Hf(5.5原子%以下)の少なくとも1
種を添加含有することも可能である。
By substituting 50% or less (preferably 20% or less) of Fe with Co, temperature characteristics and corrosion resistance can be improved. In addition, Al (9.5 atom% or less), Ti (4.5 atom%) for the purpose of increasing the coercive force.
Below), V (9.5 atom% or less), Cr (8.5 atom%)
Below), Mn (8.0 atom% or less), Bi (5 atom% or less), Nb (12.5 atom% or less), Ta (10.5 atom% or less), Mo (9.5 atom% or less) , W (9.5 atom% or less), Sb (2.5 atom% or less), Ge (7 atom% or less), Sn (3.5 atom% or less), Zr (5.5 atom% or less), Hf At least 1 of (5.5 atomic% or less)
It is also possible to additionally contain a seed.

【0021】上記のR、Fe、B、Co、Al等の添加
元素は、要求される磁気特性等に応じて各々の含有量を
適宜選定することが望ましい。さらに、C、O、P、S
等の工業的生産上不可避的不純物の存在を許容できる。
It is desirable that the content of each of the additive elements such as R, Fe, B, Co and Al is appropriately selected according to the required magnetic characteristics and the like. Furthermore, C, O, P, S
The presence of impurities that are unavoidable in industrial production such as

【0022】この発明の耐食性希土類磁石において、希
土類・遷移金属・硼素系燒結永久磁石体は上記の組成か
らなり、公知の粉末冶金方法によって得られる燒結体永
久磁石であればよく、永久磁石粉末の製造方法や、成型
方法、燒結方法、時効処理方法等によって目的とする効
果が損なわれるものではない。
In the corrosion-resistant rare earth magnet of the present invention, the sintered rare earth / transition metal / boron based permanent magnet body may be a sintered permanent magnet having the above composition and obtained by a known powder metallurgy method. The intended effect is not impaired by the manufacturing method, molding method, sintering method, aging treatment method and the like.

【0023】この発明の耐食性希土類磁石において、主
たる特徴である無電解めっき層のみからなる多層被膜
は、先に説明した知見に基づき下地層がアルカリ性無電
解ニッケルめっき層、中間層がアルカリ性無電解銅めっ
き層、表層が無電解ニッケル・リンめっき層から形成さ
れている。
In the corrosion-resistant rare earth magnet of the present invention, the main feature of the multi-layer coating consisting of only the electroless plating layer is that the base layer is an alkaline electroless nickel plating layer and the intermediate layer is an alkaline electroless copper based on the above-mentioned findings. The plating layer and the surface layer are formed of an electroless nickel / phosphorus plating layer.

【0024】各々のめっき層は前記の説明のように所要
膜厚とする必要があるが、それぞれのめっき層の機能を
一層向上させるためには、下地層を形成するアルカリ性
無電解ニッケルめっき層の膜厚は0.3〜3μmの範
囲、中間層を形成するアルカリ性無電解銅めっき層の膜
厚は8〜12μmの範囲、表層を形成する無電解ニッケ
ル・リンめっき層の膜厚は8〜12μmの範囲から選定
することが特に好ましい。
Although it is necessary that each plating layer has a required film thickness as described above, in order to further improve the function of each plating layer, the alkaline electroless nickel plating layer forming the underlayer is formed. The thickness is in the range of 0.3 to 3 μm, the thickness of the alkaline electroless copper plating layer forming the intermediate layer is in the range of 8 to 12 μm, and the thickness of the electroless nickel-phosphorus plating layer forming the surface layer is 8 to 12 μm. It is particularly preferable to select from the range.

【0025】なお、これらの下地層、中間層、表層を合
わせた3層全体の厚さは、被膜全体の強度や製品の寸法
精度、コスト等の観点からして35μm以下が好ましい
が、要求される諸特性に応じて30μm以下、あるいは
さらに25μm以下とすることが好ましい。
The total thickness of the three layers including the underlayer, the intermediate layer and the surface layer is preferably 35 μm or less in view of the strength of the entire coating, the dimensional accuracy of the product, the cost, etc., but is required. It is preferably 30 μm or less, or even 25 μm or less, depending on various characteristics.

【0026】下地層は、アルカリ性無電解ニッケルめっ
き浴で形成されるが、公知のニッケル・リンめっき浴ま
たはニッケル・硼素めっき浴の採用が可能である。これ
らのアルカリ性無電解ニッケルめっき浴の組成として
は、ニッケル源として硫酸ニッケル等、還元剤として次
亜リン酸ナトリウム・水素化硼素ナトリウム等、錯化剤
としてクエン酸ソーダ等、その他の所要成分(安定剤
等)を含む公知のアルカリ性無電解ニッケルめっき浴を
使用することができ、その常法に従っためっき条件でめ
っきすることにより、この発明の下地層に適したアルカ
リ性無電解ニッケルめっき層を形成することができる。
The underlayer is formed by an alkaline electroless nickel plating bath, but a known nickel / phosphorus plating bath or nickel / boron plating bath can be adopted. The composition of these alkaline electroless nickel plating baths includes nickel sulfate as a nickel source, sodium hypophosphite / sodium borohydride as a reducing agent, sodium citrate as a complexing agent, and other required components (stability). A known alkaline electroless nickel plating bath containing an agent) can be used, and an alkaline electroless nickel plating layer suitable for the underlayer of the present invention is formed by plating under the plating conditions according to the ordinary method. can do.

【0027】なお、ニッケル・リンめっき浴を使用した
場合、下地層中のリン含有量は特に限定されないが、2
重量%以上が好ましく、特に3〜10重量%とすること
が好ましい。また、ニッケル・硼素めっき浴を使用した
場合は、下地層中の硼素含有量は特に限定されないが、
0.5重量%以上が好ましく、特に3〜6重量%とする
ことが好ましい。これらのアルカリ性無電解ニッケルめ
っき浴は、希土類・遷移金属・硼素系燒結永久磁石体の
粒界腐食を防止するための理由から、pH≧9とするこ
とが好ましい。
When a nickel-phosphorus plating bath is used, the phosphorus content in the underlayer is not particularly limited, but 2
It is preferably at least wt%, and particularly preferably at 3 to 10 wt%. When a nickel-boron plating bath is used, the boron content in the underlayer is not particularly limited,
It is preferably 0.5% by weight or more, and particularly preferably 3 to 6% by weight. These alkaline electroless nickel plating baths preferably have pH ≧ 9 for the reason of preventing intergranular corrosion of the rare earth / transition metal / boron-based sintered permanent magnet body.

【0028】中間層は、アルカリ性無電解銅めっき浴で
形成されるが、浴の組成としては、銅源として硫酸銅
等、還元剤としてホルマリン・パラホルムアルデヒド
等、錯化剤としてロッシェル塩・EDTA等、その他の
所要成分(水酸化ナトリウム・安定剤・湿潤剤等)を含
む公知の化学銅めっきを使用することができ、その常法
に従っためっき条件でめっきすることにより、この発明
の中間層に適したアルカリ性無電解銅めっき層を形成す
ることができる。
The intermediate layer is formed by an alkaline electroless copper plating bath. The composition of the bath is copper sulfate as a copper source, formalin / paraformaldehyde as a reducing agent, and Rochelle salt / EDTA as a complexing agent. A known chemical copper plating containing other necessary components (sodium hydroxide, stabilizer, wetting agent, etc.) can be used, and the intermediate layer of the present invention can be obtained by plating under the plating conditions according to the conventional method. A suitable alkaline electroless copper plating layer can be formed.

【0029】この無電解銅めっき浴は、下地層の無電解
ニッケルめっき層のピンホールを通して希土類・遷移金
属・硼素系燒結永久磁石体の粒界を腐食する恐れがある
ため、これを防止するためにアルカリ性でありpH≧9
とすることが好ましい。
Since this electroless copper plating bath may corrode the grain boundaries of the rare earth / transition metal / boron based sintered permanent magnet body through the pinholes of the electroless nickel plating layer of the underlayer, in order to prevent this Alkaline and pH ≧ 9
It is preferable that

【0030】表層は、無電解ニッケル・リンめっき浴で
形成されるが、浴の組成としては、ニッケル源として硫
酸ニッケル等、還元剤として次亜リン酸ナトリウム等、
錯化剤としてクエン酸ソーダ等、その他の所要成分(安
定剤等)を含む公知の酸性浴・アルカリ浴を使用するこ
とができ、その常法に従っためっき条件でめっきするこ
とにより、この発明の表層に適した無電解ニッケル・リ
ンめっき層を形成することができる。なお、表層中のリ
ン含有量は特に限定されないが、2重量%以上が好まし
く、特に7〜12重量%とすることが好ましい。
The surface layer is formed by an electroless nickel / phosphorus plating bath. The composition of the bath is nickel sulfate as a nickel source, sodium hypophosphite as a reducing agent, and the like.
As the complexing agent, a known acid bath or alkali bath containing other required components (stabilizer, etc.) such as sodium citrate can be used. By plating under the plating conditions according to the usual method, the present invention can be used. An electroless nickel / phosphorus plating layer suitable for the surface layer of can be formed. The phosphorus content in the surface layer is not particularly limited, but is preferably 2% by weight or more, and particularly preferably 7 to 12% by weight.

【0031】この無電解ニッケル・リンめっきは、酸性
浴・アルカリ浴のいずれを用いることも可能であるが、
めっき被膜形成速度が早く、かつめっき浴が安定で使い
やすいことから、pH≦5の酸性浴で形成された構成が
好ましい。
For this electroless nickel / phosphorus plating, either an acidic bath or an alkaline bath can be used.
Since the plating film formation rate is high, and the plating bath is stable and easy to use, the composition formed in an acidic bath having pH ≦ 5 is preferable.

【0032】上記の各々めっき浴中に磁石体を浸漬する
方法は、バレル法、引っ掛け治具法等公知の方法を採用
できる。さらに、酸洗処理、表面活性化処理、スマット
除去処理等の前処理も必要に応じて実施することが好ま
しい。
As a method of immersing the magnet body in each of the above plating baths, a known method such as a barrel method or a hooking jig method can be adopted. Furthermore, it is preferable to carry out a pretreatment such as a pickling treatment, a surface activation treatment and a smut removing treatment, if necessary.

【0033】[0033]

【実施例】12.6Nd−1.2Dy−7.2B−0.
5Al−1.1Co−残部Feからなる組成の合金を高
周波溶解にて作成し、得られたインゴットをスタンプミ
ル及びディスクミルにて粗粉砕した後、さらにN2ガス
を粉砕媒体としてジェットミルで微粉砕し粒度3.5μ
mの原料粉末を得た。得られた原料粉末を10kOeの
磁界中で配向しながら1.5ton/cm2の圧力で成
形した。この成形体をアルゴン雰囲気中で1100℃×
1時間の燒結を行ない、さらに放冷後、アルゴン雰囲気
中で600℃×2時間の時効処理を施して、希土類・遷
移金属・硼素系燒結永久磁石体を得た。
EXAMPLE 12.6Nd-1.2Dy-7.2B-0.
An alloy having a composition of 5Al-1.1Co-balance Fe was prepared by high frequency melting, the obtained ingot was coarsely pulverized by a stamp mill and a disc mill, and then finely divided by a jet mill using N 2 gas as a pulverizing medium. Grain size 3.5μ
m raw material powder was obtained. The obtained raw material powder was molded under a pressure of 1.5 ton / cm 2 while orienting in a magnetic field of 10 kOe. This molded body was heated at 1100 ° C in an argon atmosphere.
Sintering was performed for 1 hour, and after further cooling, aging treatment was performed at 600 ° C. for 2 hours in an argon atmosphere to obtain a rare earth / transition metal / boron-based sintered permanent magnet body.

【0034】上記の燒結永久磁石体から30mm×12
mm×3mm寸法に素材を切り出し以下のめっき試験片
とした。無電解めっきを施す前に、該試験片を、硝酸ナ
トリウム0.2モル%、硫酸1.5vol%の水溶液か
らなる液温度30℃の酸洗液に4分間浸漬することによ
り、表面研削を行なった。その後、水洗を行ない、さら
に水中での超音波洗浄を30秒間施し、試験片に付着し
たスマットを除去した。
30 mm × 12 from the above sintered permanent magnet body
The material was cut into a size of 3 mm × 3 mm to obtain the following plating test pieces. Before subjecting to electroless plating, the test piece is surface-ground by immersing the test piece in a pickling solution having a solution temperature of 30 ° C. and containing an aqueous solution of sodium nitrate 0.2 mol% and sulfuric acid 1.5 vol% for 4 minutes. It was Then, it was washed with water and further ultrasonically washed in water for 30 seconds to remove the smut attached to the test piece.

【0035】引き続き各試験片に表1に示す条件にて無
電解めっき処理を施した。なお、アルカリ性無電解ニッ
ケル・リンめっき浴の組成は、硫酸ニッケル25g/
l、次亜リン酸ナトリウム20g/l、クエン酸ナトリ
ウム60g/l、微量の安定剤からなり、pH9(アン
モニア水調整)、液温度60℃とし、成膜速度を6μm
/時間に調整して目的とする膜厚のめっき層を得た。ま
た、形成されたアルカリ性無電解ニッケル・リンめっき
層中のリン含有率は5重量%であった。
Subsequently, each test piece was subjected to electroless plating under the conditions shown in Table 1. The composition of the alkaline electroless nickel / phosphorus plating bath is nickel sulfate 25 g /
1, sodium hypophosphite 20 g / l, sodium citrate 60 g / l, and a trace amount of stabilizer, pH 9 (ammonia water adjustment), liquid temperature 60 ° C., film formation rate 6 μm
/ Hour to obtain a plating layer having a target film thickness. The phosphorus content in the formed alkaline electroless nickel / phosphorus plating layer was 5% by weight.

【0036】同様に、アルカリ性無電解銅めっき浴の組
成は、硫酸銅(CuSO4・5H2O) 10g/l、ホ
ルマリン(37%HCHO) 20ml/l、水酸化ナ
トリウム(NaOH) 10g/l、EDTA4Na
25g/l、微量の安定剤と湿潤剤からなり、pH1
2、液温度65℃とし、成膜速度を2.5μm/時間に
調整して目的とする膜厚のめっき層を得た。
Similarly, the composition of the alkaline electroless copper plating bath is as follows: copper sulfate (CuSO 4 .5H 2 O) 10 g / l, formalin (37% HCHO) 20 ml / l, sodium hydroxide (NaOH) 10 g / l, EDTA4Na
25g / l, consisting of a small amount of stabilizer and wetting agent, pH 1
2. The liquid temperature was set to 65 ° C. and the film formation rate was adjusted to 2.5 μm / hour to obtain a plating layer having a target film thickness.

【0037】さらに、酸性無電解ニッケル・リンめっき
浴の組成は、硫酸ニッケル20g/l、次亜リン酸ソー
ダ24g/l、乳酸27g/l、プロピオン酸2g/
l、微量の安定剤からなり、pH4.5、液温度90℃
とし、成膜速度を15μm/時間に調整して目的とする
膜厚のめっき層を得た。なお、形成された酸性無電解ニ
ッケル・リンめっき層中のリン含有率は8重量%であっ
た。
Further, the composition of the acidic electroless nickel-phosphorus plating bath is as follows: nickel sulfate 20 g / l, sodium hypophosphite 24 g / l, lactic acid 27 g / l, propionic acid 2 g / l.
1, consisting of a small amount of stabilizer, pH 4.5, liquid temperature 90 ℃
Then, the film forming rate was adjusted to 15 μm / hour to obtain a plating layer having a target film thickness. The phosphorus content in the formed acidic electroless nickel / phosphorus plating layer was 8% by weight.

【0038】表1に示す条件にて無電解めっき処理を施
した各々試験片に、プレッシャークッカーテスト、塩水
噴霧試験、恒温恒湿試験、クロスカット基盤目テスト、
大気中加熱後の放冷試験、水素ガス放出試験等の試験を
施し、各々試験片の耐食性、密着性等を比較し、その結
果を表2に示す。さらに、めっき処理前、めっき処理
後、恒温恒湿試験後における各々試験片の磁気特性の変
化を測定し、その結果を表3に示す。
A pressure cooker test, a salt spray test, a constant temperature and constant humidity test, a cross-cut substrate test, and an electroless plating treatment were carried out under the conditions shown in Table 1.
Tests such as a cooling test after heating in air and a hydrogen gas releasing test were performed, and the corrosion resistance and adhesion of each test piece were compared, and the results are shown in Table 2. Further, the change in the magnetic property of each test piece was measured before the plating treatment, after the plating treatment, and after the constant temperature and constant humidity test, and the results are shown in Table 3.

【0039】めっき厚分布と水素ガス放出試験における
この発明の高耐食性希土類磁石と従来の電気めっきによ
る高耐食性希土類磁石との比較を表4に示す。この発明
の高耐食性希土類磁石においては、各々試験片の被膜寸
法のばらつき(最終製品における被膜寸法のばらつき)
が、5μm以下(20±3μm)であることが確認でき
た。なお、この試験に使用した希土類・遷移金属・硼素
系燒結永久磁石体も先の試験に使用した磁石体と同様な
組成・製造方法で得たものである。また、この発明の高
耐食性希土類磁石の3層の無電解めっき層を形成するた
めのめっき浴の組成・作業条件も先の試験と同様とし
た。水素ガス放出試験の条件も同様である。
Table 4 shows a comparison between the high corrosion resistance rare earth magnet of the present invention and the conventional high corrosion resistance rare earth magnet obtained by electroplating in the plating thickness distribution and hydrogen gas release test. In the highly corrosion-resistant rare-earth magnet of the present invention, the variation of the coating size of each test piece (the variation of the coating size in the final product)
Was 5 μm or less (20 ± 3 μm). The rare earth / transition metal / boron-based sintered permanent magnet body used in this test was also obtained by the same composition and manufacturing method as the magnet body used in the previous test. In addition, the composition and working conditions of the plating bath for forming the three electroless plating layers of the highly corrosion-resistant rare earth magnet of the present invention were the same as in the previous test. The hydrogen gas release test conditions are also the same.

【0040】以上の実施例においては、下地層がアルカ
リ性無電解ニッケル・リンめっき層、中間層がアルカリ
性無電解銅めっき層、表層が酸性無電解ニッケル・リン
めっき層の構成からなる高耐食性希土類磁石について説
明したが、下地層がアルカリ性無電解ニッケル・硼素め
っき層、中間層がアルカリ性無電解銅めっき層、表層が
アルカリ性無電解ニッケル・リンめっき層の構成からな
る高耐食性希土類磁石の場合も、めっき浴を構成する薬
液(組成)・作業条件が異なるだけで、評価特性に大差
がなく、同様な作用効果が得られることを確認した。
In the above examples, a highly corrosion-resistant rare earth magnet having a base layer of an alkaline electroless nickel / phosphorus plating layer, an intermediate layer of an alkaline electroless copper plating layer, and a surface layer of an acidic electroless nickel / phosphorus plating layer. However, even in the case of a highly corrosion-resistant rare earth magnet with a base layer consisting of an alkaline electroless nickel / boron plating layer, an intermediate layer consisting of an alkaline electroless copper plating layer, and a surface layer consisting of an alkaline electroless nickel / phosphorus plating layer, It was confirmed that there was no great difference in the evaluation characteristics and that the same action and effect could be obtained, only by changing the chemical liquid (composition) and working conditions that compose the bath.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【表4】 [Table 4]

【0045】[0045]

【発明の効果】この発明の高耐食性希土類磁石は、前記
の実施例からも明らかなように、従来技術に相当する比
較例1、2、3のように下地層として無電解銅めっき
層、表層として無電解ニッケル・リンめっき層を形成し
た構成の磁石と比較して、プレッシャークッカーテス
ト、塩水噴霧試験、恒温恒湿試験ともに良好であり、優
れた耐食性を有することが確認できた。また、同様にク
ロスカット基盤目テストでも被膜が浮き上がることな
く、優れた密着性を有することが確認できた。
The high corrosion resistance rare earth magnet of the present invention has an electroless copper plating layer and a surface layer as an underlayer as in Comparative Examples 1, 2 and 3 corresponding to the prior art, as is clear from the above-mentioned Examples. As a result, it was confirmed that the pressure cooker test, the salt spray test, and the constant temperature and constant humidity test were better than those of the magnet having the electroless nickel-phosphorus plated layer, and that it had excellent corrosion resistance. Similarly, in the cross-cut substrate test, it was confirmed that the coating did not lift and had excellent adhesion.

【0046】さらに、この発明の高耐食性希土類磁石
は、大気中加熱後の放冷試験にも耐えることから、めっ
き被膜の柔軟性に富かつ素材との密着性に優れているこ
とが分かる。また、水素ガス放出試験の結果からも電気
めっきの場合と同等レベルであり、水素吸蔵量が極めて
少なく、粒界の脱落のない高密着性被膜であることが確
認された。また、めっき処理後及び恒温恒湿試験後にお
ける磁気特性に経時変化がなく、無電解めっき層からな
る下地層と中間層及び表層とからなる多層被膜を形成し
たこの発明の高耐食性希土類磁石が、広範囲の用途にお
いて有効であることが確認できた。
Furthermore, since the highly corrosion-resistant rare earth magnet of the present invention withstands the cooling test after heating in the air, it is found that the plating film is rich in flexibility and has excellent adhesion to the material. Further, the results of the hydrogen gas release test confirmed that the film had the same level as in the case of electroplating, had a very small hydrogen storage amount, and had a high adhesion film with no drop of grain boundaries. Further, there is no change with time in the magnetic characteristics after the plating treatment and after the constant temperature and humidity test, and the highly corrosion-resistant rare earth magnet of the present invention in which a multi-layer coating consisting of an underlayer consisting of an electroless plating layer and an intermediate layer and a surface layer is formed, It was confirmed to be effective in a wide range of applications.

【0047】すなわち、この発明の高耐食性希土類磁石
は、無電解めっきの長所を積極的に活用することにより
均一なめっき被膜厚を得るとともに、めっき被膜と希土
類・遷移金属・硼素系燒結永久磁石体との密着性を改善
し、さらに、優れた耐食性を示すとともにめっき時及び
めっき後においても磁気特性の経時変化(特性劣化)の
ない磁石の提供を可能とするものである。
That is, the highly corrosion-resistant rare earth magnet of the present invention obtains a uniform coating film thickness by positively utilizing the advantages of electroless plating, and the plated coating and the rare earth / transition metal / boron based sintered permanent magnet body. It is possible to provide a magnet that has improved adhesion with and that exhibits excellent corrosion resistance and that has no change in magnetic characteristics over time (deterioration of characteristics) during and after plating.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 希土類・遷移金属・硼素系燒結永久磁石
体の表面に無電解めっき層からなる下地層と中間層及び
表層とからなる多層被膜を形成し、該下地層が膜厚0.
1〜5μmのアルカリ性無電解ニッケルめっき層、中間
層が膜厚5〜15μmのアルカリ性無電解銅めっき層、
表層が膜厚5〜15μmの無電解ニッケル・リンめっき
層であることを特徴とする高耐食性希土類磁石。
1. A rare earth / transition metal / boron-based sintered permanent magnet body is provided with a multi-layer coating consisting of an undercoat layer consisting of an electroless plating layer, an intermediate layer and a surface layer on the surface thereof, and the undercoat layer having a thickness of 0.
An alkaline electroless nickel plating layer having a thickness of 1 to 5 μm, an intermediate electroless copper plating layer having a thickness of 5 to 15 μm,
A highly corrosion-resistant rare earth magnet, wherein the surface layer is an electroless nickel-phosphorus plated layer having a film thickness of 5 to 15 μm.
【請求項2】 下地層の膜厚が0.3〜3μm、中間層
の膜厚が8〜12μm、表層の膜厚が8〜12μmであ
る請求項1に記載の高耐食性希土類磁石。
2. The highly corrosion-resistant rare earth magnet according to claim 1, wherein the underlayer has a thickness of 0.3 to 3 μm, the intermediate layer has a thickness of 8 to 12 μm, and the surface layer has a thickness of 8 to 12 μm.
【請求項3】 下地層がアルカリ性無電解ニッケルめっ
き浴で形成され、中間層がアルカリ性無電解銅めっき浴
で形成され、表層が無電解ニッケル・リンめっき浴で形
成された請求項1に記載の高耐食性希土類磁石。
3. The method according to claim 1, wherein the underlayer is formed by an alkaline electroless nickel plating bath, the intermediate layer is formed by an alkaline electroless copper plating bath, and the surface layer is formed by an electroless nickel-phosphorus plating bath. High corrosion resistance rare earth magnet.
【請求項4】 希土類・遷移金属・硼素系燒結永久磁石
体が、R(但しRはYを含む希土類元素のうち少なくと
も1種)8〜30原子%、B2〜28原子%、Fe42
〜90原子%を主成分とする請求項1に記載の高耐食性
希土類磁石。
4. The rare earth / transition metal / boron-based sintered permanent magnet body has 8 to 30 atomic% of R (where R is at least one of rare earth elements including Y), B2 to 28 atomic% and Fe42.
The highly corrosion resistant rare earth magnet according to claim 1, wherein the main component is ˜90 atomic%.
JP8156190A 1996-05-27 1996-05-27 Highly anticorrosive rare earth magnet Pending JPH09320826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8156190A JPH09320826A (en) 1996-05-27 1996-05-27 Highly anticorrosive rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8156190A JPH09320826A (en) 1996-05-27 1996-05-27 Highly anticorrosive rare earth magnet

Publications (1)

Publication Number Publication Date
JPH09320826A true JPH09320826A (en) 1997-12-12

Family

ID=15622345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8156190A Pending JPH09320826A (en) 1996-05-27 1996-05-27 Highly anticorrosive rare earth magnet

Country Status (1)

Country Link
JP (1) JPH09320826A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004068673A1 (en) * 2003-01-28 2006-05-25 本田技研工業株式会社 Rotor for permanent magnet motor
JP2008010726A (en) * 2006-06-30 2008-01-17 Daido Electronics Co Ltd Rare earth bond magnet
CN113795376A (en) * 2019-04-02 2021-12-14 住友电气工业株式会社 Composite member and heat-dissipating member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004068673A1 (en) * 2003-01-28 2006-05-25 本田技研工業株式会社 Rotor for permanent magnet motor
JP2008010726A (en) * 2006-06-30 2008-01-17 Daido Electronics Co Ltd Rare earth bond magnet
CN113795376A (en) * 2019-04-02 2021-12-14 住友电气工业株式会社 Composite member and heat-dissipating member

Similar Documents

Publication Publication Date Title
EP0361308B1 (en) Corrosion-resistant permanent magnet and method for preparing the same
US5275891A (en) R-TM-B permanent magnet member having improved corrosion resistance and method of producing same
JP4033241B2 (en) Method for producing rare earth based permanent magnet having copper plating film on its surface
JPH03173106A (en) Rare earth permanent magnet with corrosion resistant film and manufacture thereof
JPH09320826A (en) Highly anticorrosive rare earth magnet
JP2004039917A (en) Permanent magnet and manufacturing method therefor
JP3337558B2 (en) Corrosion resistant magnetic alloy
JP2968605B2 (en) Manufacturing method of permanent magnet
JPH04288804A (en) Permanent magnet and manufacture thereof
JP3650141B2 (en) permanent magnet
JPH069168B2 (en) High corrosion resistance rare earth permanent magnet
KR20020050829A (en) Ni multilayer plated Nd-Fe-B magnet and its manufacturing method
JP2696757B2 (en) permanent magnet
JP3652816B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JPH04287302A (en) Permanent magnet and its manufacture
JPH0594914A (en) Film forming method for rare earth-iron permanent magnet and rare earth-iron permanent magnet
JP2652688B2 (en) Permanent magnet and manufacturing method thereof
JP2003249405A (en) Rare-earth permanent magnet and surface treatment method thereof
JPH0712005B2 (en) High corrosion resistance rare earth permanent magnet
JPH08264310A (en) Manufacture of rare earth-iron-boron permanent magnet
JPS63254702A (en) Manufacture of corrosion resisting permanent magnet
JPH083763A (en) Corrosion resistant magnetic alloy
JPH01223712A (en) Manufacture of corrosion-resistant permanent magnet
JPH03116703A (en) Fe-b-r resin bond magnet having high corrosion resistance
JP2002353057A (en) Rare earth permanent magnet having superior oxidataion resistance, and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060110