JPH0712005B2 - High corrosion resistance rare earth permanent magnet - Google Patents

High corrosion resistance rare earth permanent magnet

Info

Publication number
JPH0712005B2
JPH0712005B2 JP19933387A JP19933387A JPH0712005B2 JP H0712005 B2 JPH0712005 B2 JP H0712005B2 JP 19933387 A JP19933387 A JP 19933387A JP 19933387 A JP19933387 A JP 19933387A JP H0712005 B2 JPH0712005 B2 JP H0712005B2
Authority
JP
Japan
Prior art keywords
weight
rare earth
permanent magnet
corrosion resistance
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19933387A
Other languages
Japanese (ja)
Other versions
JPS6442805A (en
Inventor
昌夫 ▲吉▼川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP19933387A priority Critical patent/JPH0712005B2/en
Publication of JPS6442805A publication Critical patent/JPS6442805A/en
Publication of JPH0712005B2 publication Critical patent/JPH0712005B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高耐食性の希土類永久磁石に関し、特には燃結
磁石体表面に均一な耐食性二重層を有する希土類・鉄・
ボロン系永久磁石の提供を目的とするものである。
Description: TECHNICAL FIELD The present invention relates to a highly corrosion-resistant rare earth permanent magnet, and particularly to a rare earth / iron / iron alloy having a uniform corrosion-resistant double layer on the surface of a fired magnet body.
The purpose is to provide a boron-based permanent magnet.

(従来の技術) 希土類永久磁石はすぐれた磁気特性と経済性のため電気
・電子機器の分野で多用されており、近年ますますその
高性能化が要求されている。これらのうちNd系希土類永
久磁石は、従来のSm系希土類永久磁石と比べて主要元素
であるNdがSmより豊富に存在すること、Coを多量に使用
しないことから原材料費が安価であり、磁気特性もSm系
希土類永久磁石をはるかにしのぐ極めて秀れた永久磁石
材料であるため、これまでSm系希土類磁石が使用されて
きた小型磁気回路はこれによって代替されるだけではな
く、コスト面からハードフエライトあるいは電磁石が使
われていた分野にも広く応用されようとしている。しか
しこの材料は湿度を帯びた空気中で極めて短時間のうち
に容易に酸化するという欠点を有している。酸化は磁石
表面上に酸化物が生成するだけでなく、表面から内部へ
結晶粒界に沿って腐蝕が進行し、いわゆる粒界腐蝕の現
象を生じるが、これはNd磁石の粒界に非常に活性なNdリ
ッチ相が存在するためである。粒界の腐蝕は極めて大き
な磁気特性の劣化を引き起し、もし実用時に腐蝕が進行
すれば、磁石を組み込んだ機器の性能を低下させ、機器
周辺を汚染させる等の問題が生じる。
(Prior Art) Rare earth permanent magnets are widely used in the field of electric and electronic devices due to their excellent magnetic properties and economic efficiency, and in recent years, their performance has been increasingly required. Of these, Nd-based rare earth permanent magnets are cheaper in raw material cost because they contain more abundant Nd, which is the main element than Sm, compared to conventional Sm-based rare earth permanent magnets, and do not use large amounts of Co. Since it is an extremely excellent permanent magnet material whose characteristics far surpass those of Sm-based rare earth permanent magnets, the small magnetic circuit in which Sm-based rare earth magnets have been used up until now is not only replaced by this, but also hard in terms of cost. It is about to be widely applied to fields where ferrites or electromagnets were used. However, this material has the disadvantage that it easily oxidizes in humid air in a very short time. Oxidation not only produces oxides on the surface of the magnet, but also progresses from the surface along the grain boundaries along the grain boundaries, causing the phenomenon of so-called grain boundary corrosion. This is because there is an active Nd-rich phase. Corrosion of grain boundaries causes extremely large deterioration of magnetic properties, and if corrosion progresses during practical use, the performance of the device incorporating the magnet is deteriorated and the surroundings of the device are contaminated.

このようなNd磁石の欠点を克服するため各種の表面処理
方法が提案されているが、いずれの方法も耐食性表面処
理として完全なものではない。例えばスプレーまたは電
着塗装による樹脂塗膜では、樹脂の吸湿性のために錆が
発生し、真空蒸着、イオンスパッタリング、イオンプレ
ーティング等の気相メッキ法では、コストがかかりす
ぎ、また内穴、溝部へのコーティングができないなど不
利がある。
Various surface treatment methods have been proposed in order to overcome such drawbacks of Nd magnets, but none of them is perfect as a corrosion-resistant surface treatment. For example, in a resin coating film formed by spraying or electrodeposition coating, rust occurs due to the hygroscopicity of the resin, and vapor deposition methods such as vacuum deposition, ion sputtering, and ion plating are too costly, and the inner hole, There are disadvantages such as not being able to coat the groove.

(発明の構成) 本発明者らはかかる従来の不利、欠点を解消すべく鋭意
検討の結果、長時間にわたって磁気特性の劣化がなく、
外観の美観性が保持できる永久磁石を得ることに成功し
本発明に至った。すなわち、本発明はR(RはYを含む
希土類元素の少なくとも一種)5〜40重量%、Fe50〜90
重量%、Co0.1〜15重量%、B0.2〜8重量%および遷移
金属8重量%以下を主成分とする燃結磁石体表面にCu層
およびNi−P層からなる二重層を有する高耐食性希土類
永久磁石を要旨とするものである。
(Structure of the Invention) As a result of intensive studies to eliminate the disadvantages and drawbacks of the related art, the present inventors have found that the magnetic characteristics are not deteriorated over a long period of time.
We have succeeded in obtaining a permanent magnet that can maintain the aesthetic appearance and have reached the present invention. That is, in the present invention, R (R is at least one kind of rare earth element including Y) is 5 to 40% by weight, and Fe is 50 to 90%.
% Of Co, 0.1 to 15% by weight of Co, 0.2 to 8% by weight of B, and 8% by weight or less of transition metal as main components. The main point is a corrosion resistant rare earth permanent magnet.

以下これについて詳しく説明すると、本発明におけるR
としてはYまたは希土類元素としてLa、Ce、Pr、Nd、P
m、Sm、Gd、Tb、Dy、Ho、Er、Lu、Ybなどが例示され、
これらの1種もしくは2種以上が使用されるが、そのな
かではCe、La、Nd、Pr、Dy、Tbの少なくとも1種を含む
のが好ましい。
This will be described in detail below. In the present invention, R
As Y or as rare earth elements La, Ce, Pr, Nd, P
Examples include m, Sm, Gd, Tb, Dy, Ho, Er, Lu, Yb,
One or more of these are used, and among them, it is preferable to contain at least one of Ce, La, Nd, Pr, Dy and Tb.

遷移金属としてはNi、Nb、Al、Ti、Zr、Cr、V、Mn、M
o、Si、Sn、Cu、Ca、Mg、Pb、Sb、GaおよびZnから選ば
れる少なくとも1種が用いられる。
Transition metals include Ni, Nb, Al, Ti, Zr, Cr, V, Mn, M
At least one selected from o, Si, Sn, Cu, Ca, Mg, Pb, Sb, Ga and Zn is used.

本発明はR5〜40重量%、Fe50〜90重量%、Co0.1〜15重
量%、B0.2〜8重量%および遷移金属8重量%以下を含
有し、これにC、O、P、S等の工業的に不可避な微量
不純物とを含有するNd系希土類燃結磁石体を使用し、こ
の表面にCu層とNi−P合金の二重層を設けるのである
が、この場合、電気メッキ法、無電解メッキ法によれば
よく、好ましい方法として無電解メッキ法により燃結磁
石体表面にまずCu層、その上にNi−P合金層を析出させ
るのがよい。
The present invention contains R5 to 40% by weight, Fe50 to 90% by weight, Co0.1 to 15% by weight, B0.2 to 8% by weight and transition metal of 8% by weight or less, in which C, O, P, S A Nd-based rare earth burned magnet body containing industrially unavoidable trace impurities is used, and a Cu layer and a Ni-P alloy double layer are provided on this surface. In this case, the electroplating method, The electroless plating method may be used, and a preferable method is to first deposit the Cu layer on the surface of the fired magnet body and then deposit the Ni—P alloy layer thereon by the electroless plating method.

この場合に用いるCuの無電解液の組成としては、金属塩
として硫酸銅、硝酸銅、塩化銅のうち少なくとも一種を
100g/以下含有し、還元剤としてホルマリン、ヒドラ
ジンおよびその誘導体、ハイドロキノン、次亜リン酸ソ
ーダ、ギ酸塩、ショ糖等の配合剤のうち少なくとも一種
を200g/以下含むものが好ましい。なお、この電解液
には錯化剤として、ロッシエル塩、EDTA、トリエタノー
ルアミン、グルコン酸塩、サルチル酸塩のうち少なくと
も一種を180g/以下、pH調整剤、緩衝剤として炭酸
塩、アンモニア、青化ソーダのうち少なくとも一種を10
0g/以下含むほか促進剤、安定剤として10g/以下の
硫化物、二硫化物、塩化物、フッ化物、界面活性剤をそ
れぞれ含有することができ、この水溶液はpH8〜14の範
囲で用い、メッキ時の浴温は10〜60℃の範囲である。
The composition of the Cu electroless solution used in this case is at least one of copper sulfate, copper nitrate, and copper chloride as a metal salt.
It is preferable to contain 100 g / or less and 200 g / or less as a reducing agent of at least one compounding agent such as formalin, hydrazine and its derivatives, hydroquinone, sodium hypophosphite, formate and sucrose. In this electrolyte, as a complexing agent, at least one of Rossiel salt, EDTA, triethanolamine, gluconate, and salicylate is 180 g / or less, a pH adjuster, carbonate as a buffer, ammonia, and blue. 10 of at least one of soda
In addition to containing 0 g / or less accelerator, 10 g / or less as a stabilizer, sulfide, disulfide, chloride, fluoride, can each contain a surfactant, this aqueous solution is used in the range of pH 8-14, The bath temperature during plating is in the range of 10 to 60 ° C.

またNi−P無電解液の組成としては、金属塩として塩化
ニッケル、硫酸ニッケル、次亜リン酸ニッケルのうち少
なくとも一種を100g/以下含有し、還元剤として次亜
リン酸ナトリウムを100g/以下、pH調整剤として水酸
化ナトリウム、水酸化アンモニウム等の塩基性化合物、
無機酸、有機酸のうち少なくとも一種を150g/以下含
むものが好ましい。なおこの電解液には緩衝剤としてク
エン酸ナトリウム、酢酸ナトリウム等のオキシカルボン
酸、あるいはほう酸、炭酸等の無機酸のうち少なくとも
1種を150g/以下、錯化剤としてクエン酸ナトリウ
ム、酢酸ナトリウム、水酸化アンモニウム、エチレング
リコール、さらには有機酸(酢酸、グリコール酸、クエ
ン酸、酒石酸等)のアルカリ塩、チオグリコール酸、ア
ンモニア、トリエタノールアミン、エチレンジアミン、
グリシン、ピリジンの少なくとも1種を100g/含むほ
か促進剤、安定剤として10g/以下の硫化物、塩化物、
フッ化物、界面活性剤をそれぞれ含有することができ、
この水溶液はpH3〜13の範囲で用い、メッキ時の浴温は2
0〜100℃の範囲である。
The composition of the Ni-P electroless solution contains at least one of nickel chloride, nickel sulfate, and nickel hypophosphite as a metal salt in an amount of 100 g / or less, and sodium hypophosphite as a reducing agent in an amount of 100 g / or less, Sodium hydroxide as a pH adjuster, basic compounds such as ammonium hydroxide,
It is preferable that at least one kind of inorganic acid and organic acid is contained in an amount of 150 g / or less. In this electrolytic solution, at least one kind of an oxycarboxylic acid such as sodium citrate and sodium acetate as a buffering agent, or an inorganic acid such as boric acid and carbonic acid is 150 g or less, sodium citrate and sodium acetate as a complexing agent, Ammonium hydroxide, ethylene glycol, alkaline salts of organic acids (acetic acid, glycolic acid, citric acid, tartaric acid, etc.), thioglycolic acid, ammonia, triethanolamine, ethylenediamine,
In addition to 100 g / at least one of glycine and pyridine, accelerators and stabilizers of 10 g / s or less of sulfides and chlorides,
Fluoride and surfactant can be contained respectively,
This aqueous solution is used in the pH range of 3 to 13, and the bath temperature during plating is 2
It is in the range of 0 to 100 ° C.

前記焼結磁石体をメッキ液に浸潰する方法は、バレル法
または引っ掛け治具法のいずれでもよく、燃結磁石体の
寸法および形状によって適当に選択される。
The method of immersing the sintered magnet body in the plating solution may be either the barrel method or the hooking jig method, and is appropriately selected depending on the size and shape of the fired magnet body.

上記方法によって燃結磁石体表面に形成されるCu層とこ
の上のNi−P合金からなる二重層は極めて秀れた耐食性
を示し、Cu層あるいはNi−P合金層を燃結磁石体表面に
単独に被覆した場合と比べて、耐食性が優れている。こ
の理由は、無電解Cuメッキ皮膜に存在するピンホール
が、この上に新たにNi−P合金を被覆することにより中
断され、Ni−P合金皮膜に覆われ、またNi−P皮膜にあ
るピンホールは下地にCu層が存在することによって耐食
性が保たれるからである。このようにして皮膜表面から
下地へ到達するようなピンホールは極めて少なく、高耐
食性が保証される。
The Cu layer formed on the surface of the fired magnet body by the above method and the double layer consisting of the Ni-P alloy on it exhibit extremely excellent corrosion resistance, and the Cu layer or the Ni-P alloy layer is formed on the surface of the fired magnet body. Corrosion resistance is excellent as compared with the case of coating alone. The reason for this is that the pinhole existing in the electroless Cu plating film is interrupted by newly coating the Ni-P alloy thereon, and the pinhole is covered with the Ni-P alloy coating, and the pin in the Ni-P coating is also interrupted. This is because the hole has corrosion resistance due to the presence of the Cu layer in the base. In this way, there are very few pinholes that reach the substrate from the film surface, and high corrosion resistance is guaranteed.

さらに両層のイオン化傾向の関係から次のような防食機
構が成立する。Cu皮膜よりもイオン化傾向の大きいNi−
P皮膜がCu皮膜上に存在する。従って腐食は卑なNi−P
皮膜がアノード的に溶解することによって進行し、貴な
Cu皮膜はカソード的に防食される。同時に下地も守られ
る。つまりNi−P皮膜が鉄素地上の亜鉛メッキと同様な
防食機構を持ち、これが犠牲的に腐食して下地を守るこ
とになる。
Furthermore, the following corrosion protection mechanism is established from the relationship of the ionization tendency of both layers. Ni-, which has a greater ionization tendency than the Cu film
P coating is present on Cu coating. Therefore, corrosion is base Ni-P
It progresses as the film dissolves anodically,
The Cu coating is cathodically protected. At the same time, the groundwork is protected. In other words, the Ni-P coating has the same anticorrosion mechanism as zinc plating on the iron substrate, which sacrifices corrosion and protects the substrate.

以上の理由によりCU層とNi−P合金層の二重層を有する
燃結磁石合金は極めて秀れた耐食性を持つ、Cu層上に形
成されるNi−P合金層は、NiとPを主成分とし、PがNi
中に過飽和に固溶したアモルファス相、あるいはニッケ
ルとNi3P等のリン化ニッケル相との微細混合相からなる
もので、この層中のPの割合は1〜14重量%が好まし
い。Niのみの無電解メッキ膜では、ピンホールが多い
か、あるいは下層との密着性が悪いため、腐食性が劣
り、使用できない。またNi−BあるいはNi−Nの合金皮
膜も、ピンホールが多く密着性が悪いため充分な耐食性
が得られない。
For the above reasons, the burned magnet alloy having the double layer of the CU layer and the Ni-P alloy layer has extremely excellent corrosion resistance. The Ni-P alloy layer formed on the Cu layer contains Ni and P as main components. And P is Ni
It is composed of a supersaturated solid solution in an amorphous phase or a fine mixed phase of nickel and a nickel phosphide phase such as Ni 3 P. The P content in this layer is preferably 1 to 14% by weight. An electroless plating film containing only Ni cannot be used because it has many pinholes or has poor adhesion to the lower layer, resulting in poor corrosiveness. Also, the Ni-B or Ni-N alloy coating cannot provide sufficient corrosion resistance because it has many pinholes and poor adhesion.

Cu層の厚みは、1〜10μm、好ましくは2〜5μmが適
当であり、Ni−P合金層の厚みは、1〜30μm、好まし
くは5〜15μmである。すなわち二重層としての厚みは
10〜20μmが適当であり、30μm以上は、メッキに要す
る時間および薬剤量が多大で費用がかかりすぎるため実
用的でない。また均一な二重層であれば、10μm以下で
も実用上使用できる。この二重層はメッキ後熱処理する
ことによって耐食性、密着力、耐摩耗性を向上させるこ
とができる。その温度範囲は100〜500℃で時間は10分間
〜数時間である。
The thickness of the Cu layer is appropriately 1 to 10 μm, preferably 2 to 5 μm, and the thickness of the Ni—P alloy layer is 1 to 30 μm, preferably 5 to 15 μm. That is, the thickness of the double layer is
10 to 20 μm is suitable, and 30 μm or more is not practical because the time and amount of chemicals required for plating are large and it is too expensive. Also, if it is a uniform double layer, it can be practically used even if it is 10 μm or less. This double layer can be improved in corrosion resistance, adhesion and wear resistance by heat treatment after plating. The temperature range is 100 to 500 ° C. and the time is 10 minutes to several hours.

次に本発明によるR−Fe−Co−Bを必須元素とする永久
磁石の構成成分についてその限定理由を述べる。本発明
に用いられる永久磁石中の主成分として含まれるRの量
が、5重量%以下ではα鉄の析出量が多すぎるため高保
磁力が得られず、また40重量%を越えると、希土類を含
有する非磁性相が多くなりすぎて残留磁束密度が低下
し、磁石特性が得られない。したがって主成分としての
Rの量は5〜40重量%とするものである。
Next, the reasons for limiting the constituent components of the permanent magnet containing R-Fe-Co-B as an essential element according to the present invention will be described. When the amount of R contained as the main component in the permanent magnet used in the present invention is 5% by weight or less, a high coercive force cannot be obtained because the amount of α iron deposited is too large. The amount of non-magnetic phase contained is too much, the residual magnetic flux density is lowered, and the magnet characteristics cannot be obtained. Therefore, the amount of R as a main component is 5 to 40% by weight.

Bは0.2重量%以下では保磁力が得られず、8重量%以
上ではBを含有する非磁性相が多くなりすぎて残留磁束
密度で低下し、磁石特性が得られない。よってBの量は
0.2〜8重量%とするものである。
When B is 0.2% by weight or less, coercive force cannot be obtained, and when it is 8% by weight or more, the nonmagnetic phase containing B is too much and the residual magnetic flux density is lowered, so that magnet characteristics cannot be obtained. Therefore, the amount of B is
It is 0.2 to 8% by weight.

Feは50重量%以下では残留磁束密度が低くて磁石特性が
得られず、90重量%以上ではα鉄の析出量が多すぎて高
保磁力が得られない。よってFeの量は50〜90重量%とす
るものである。
When Fe is less than 50% by weight, the residual magnetic flux density is low and the magnetic properties cannot be obtained, and when it is more than 90% by weight, the amount of α iron precipitated is too large to obtain a high coercive force. Therefore, the amount of Fe is 50 to 90% by weight.

Coは残留磁束密度の温度変化を改善するのに有効であ
り、Coの添加量が0.1重量%以下では十分な効果が得ら
れず、一方、15重量%を超えると、保磁力が低下するの
でその量は0.1〜15重量%、好ましくは0.5〜10重量%と
するものである。
Co is effective in improving the temperature change of the residual magnetic flux density, and if the addition amount of Co is less than 0.1% by weight, a sufficient effect cannot be obtained, while if it exceeds 15% by weight, the coercive force decreases. The amount is 0.1 to 15% by weight, preferably 0.5 to 10% by weight.

なお、前記必須元素と置換可能な遷移金属は磁気特性の
改善あるいは、コスト低減のために添加するのであっ
て、その量は単独あるいは二種類以上の合計で8重量%
以下である。しかしいずれの元素も、上記の量を越えて
添加すると磁気特性が劣化するので避けるべきである。
本発明の永久磁石は、結晶質の合金粉末を磁場中プレス
で異方性化した後、燃結して得られる燃結異方性永久磁
石で、その磁気特性は最大エネルギー積で20MGOe以上50
MGOeまでであり、20MGOe以下は特性不良品であり、わざ
わざ表面処理するにはあたらない。
The transition metal that can replace the essential element is added to improve the magnetic properties or to reduce the cost, and the amount thereof is 8% by weight alone or in a total of two or more kinds.
It is the following. However, any of these elements should be avoided because if added in excess of the above amounts, the magnetic properties will deteriorate.
The permanent magnet of the present invention is a burned anisotropic permanent magnet obtained by anisotropy of crystalline alloy powder in a magnetic field press, and then fired, and its magnetic property is 20 MGOe or more at the maximum energy product.
It is up to MGOe, and 20 MGOe or less is a defective product and it is not suitable for surface treatment.

つぎに本発明による実施例をあげる。Next, examples according to the present invention will be described.

実施例1 Ar雰囲気の高周波溶解により重量比で、32Nd−1.2B−5
9.8Fe−7Coなる組成の鋳塊を作製した。
Example 1 By high frequency melting in an Ar atmosphere, the weight ratio was 32Nd-1.2B-5.
An ingot having a composition of 9.8Fe-7Co was prepared.

このインゴットをジョウクラッシャーで粗粉砕し、さら
にN2ガスによるジェットミルで微粉砕を行って、平均粒
径が3.5μmの微粉末を得た。
This ingot was roughly crushed with a jaw crusher and then finely crushed with a jet mill using N 2 gas to obtain fine powder having an average particle size of 3.5 μm.

次にこの微粉末を、10000Oe磁界が印加された金型内に
充填し、0.8t/cm2の圧力で成形した。ついで真空中1100
℃で2時間燃結し、さらに550℃で1時間時効処理を施
して永久磁石とした。得られた永久磁石から外径30mm、
内径10mm、高さ2mmの円筒形試験片を切り出した。異方
性の方向は高さ方向である。
Next, this fine powder was filled in a mold to which a magnetic field of 10000 Oe was applied, and molded at a pressure of 0.8 t / cm 2 . Then in vacuum 1100
It was burned at ℃ for 2 hours and further aged at 550 ° C for 1 hour to obtain a permanent magnet. 30 mm outer diameter from the obtained permanent magnet,
A cylindrical test piece having an inner diameter of 10 mm and a height of 2 mm was cut out. The anisotropic direction is the height direction.

この試験片1、2、3および4をトリクロルエチレンに
て溶剤洗浄した後、水酸化ナトリウム30g/、炭酸ナト
リウム20g/、オルソけい酸ナトリウム50g/の混合ア
ルカリ水溶液中に10分間浸潰してアルカリ脱脂した後水
洗し、硫酸25ml/とフッ化水素酸25ml/の混酸中で30
秒間酸洗いしてから水洗した。これを硫酸Cu14g/、ロ
ッシエル塩45.5g/、ホルマリン53g/、水酸化ナトリ
ウム10g/、炭酸ナトリウム4.2g/を含む水溶液中に3
0℃で試験片1,2は10分、試験片3,4は60分間浸潰してCu
層をそれぞれ1,5μmの厚さに被覆した。その後水洗
し、塩化Ni30g/、次亜リン酸ナトリウム10g/、ヒド
ロキシ酢酸ナトリウム50g/を含む水溶液中に90℃で試
験片1,2,3および4をそれぞれ4分、20分、20分、40分
間浸潰してNi−Pの合金層を1,5,5,10μmの厚さに被覆
した。メッキ後、水洗し、150℃で30分間熱処理した。
These test pieces 1, 2, 3 and 4 were solvent washed with trichlorethylene, and then immersed in a mixed alkaline aqueous solution of sodium hydroxide 30g /, sodium carbonate 20g /, sodium orthosilicate 50g / for 10 minutes to degrease with alkali. After washing, wash with water and add 30 ml of sulfuric acid 25 ml / and hydrofluoric acid 25 ml / in mixed acid.
It was pickled for 2 seconds and then washed with water. 3 g of this in an aqueous solution containing 14 g of Cu sulfate, 45.5 g of Rossiel salt, 53 g of formalin, 10 g of sodium hydroxide, and 4.2 g of sodium carbonate.
Immerse the test pieces 1 and 2 at 0 ° C for 10 minutes and the test pieces 3 and 4 for 60 minutes by Cu
The layers were each coated to a thickness of 1.5 μm. Then, wash with water, and test pieces 1, 2, 3 and 4 at 90 ° C in an aqueous solution containing 30 g of Ni chloride / 10 g of sodium hypophosphite / 50 g of sodium hydroxyacetate for 4 minutes, 20 minutes, 20 minutes and 40 minutes, respectively. It was smashed for a minute and coated with a Ni-P alloy layer to a thickness of 1,5,5,10 µm. After plating, the plate was washed with water and heat-treated at 150 ° C for 30 minutes.

各試験片を60℃、95%相対湿度の試験槽中に600時間保
持した後、外観を観察して、耐食性を評価した。また耐
食試験前後の磁気特性も測定した。
After each test piece was kept in a test tank at 60 ° C. and 95% relative humidity for 600 hours, the appearance was observed to evaluate the corrosion resistance. The magnetic properties before and after the corrosion resistance test were also measured.

実施例と比較のため、切り出し後表面処理を行っていな
い同一寸法の試験片Aと、Ni−P合金層のみを無電解析
出させた同一寸法の試験片Bも同じ耐食試験を行った。
結果を表1に示す。
For comparison with the examples, the same corrosion resistance test was performed on a test piece A of the same size, which was not subjected to surface treatment after cutting, and a test piece B of the same size, in which only the Ni—P alloy layer was electrolessly deposited.
The results are shown in Table 1.

表1より明らかなように、この発明によるCu層およびNi
−P層の二重層を有する希土類永久磁石は、外観・磁気
特性の面で秀れた耐食性を示すことがわかる。
As is clear from Table 1, the Cu layer and Ni according to the present invention
It can be seen that the rare earth permanent magnet having the double layer of the P layer exhibits excellent corrosion resistance in terms of appearance and magnetic characteristics.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】R(RはYを含む希土類元素の少なくとも
一種)5〜40重量%、Fe50〜90重量%、Co0.1〜15重量
%、B0.2〜8重量%および遷移金属8重量%以下を主成
分とする燃結体表面にCu層およびNi−P層からなる二重
層を有する高耐食性希土類永久磁石。
1. R (R is at least one of rare earth elements including Y) 5 to 40% by weight, Fe 50 to 90% by weight, Co 0.1 to 15% by weight, B 0.2 to 8% by weight and transition metal 8% by weight % Of the main component is a highly corrosion-resistant rare earth permanent magnet having a double layer consisting of a Cu layer and a Ni-P layer on the surface of a burned body.
JP19933387A 1987-08-10 1987-08-10 High corrosion resistance rare earth permanent magnet Expired - Lifetime JPH0712005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19933387A JPH0712005B2 (en) 1987-08-10 1987-08-10 High corrosion resistance rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19933387A JPH0712005B2 (en) 1987-08-10 1987-08-10 High corrosion resistance rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JPS6442805A JPS6442805A (en) 1989-02-15
JPH0712005B2 true JPH0712005B2 (en) 1995-02-08

Family

ID=16406050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19933387A Expired - Lifetime JPH0712005B2 (en) 1987-08-10 1987-08-10 High corrosion resistance rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JPH0712005B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314756A (en) * 1991-11-27 1994-05-24 Hitachi Metals, Ltd. Permanent magnet of rare-earth-element/transition-metal system having improved corrosion resistance and manufacturing method thereof
JP4577486B2 (en) * 2004-03-31 2010-11-10 Tdk株式会社 Rare earth magnet and method for producing rare earth magnet

Also Published As

Publication number Publication date
JPS6442805A (en) 1989-02-15

Similar Documents

Publication Publication Date Title
US7473343B2 (en) Method of manufacturing rare-earth magnet, and plating bath
JP4033241B2 (en) Method for producing rare earth based permanent magnet having copper plating film on its surface
US5332488A (en) Surface treatment for iron-based permanent magnet including rare-earth element
JPH03173106A (en) Rare earth permanent magnet with corrosion resistant film and manufacture thereof
JP4548377B2 (en) Plating solution and method for producing conductive material
JP3994847B2 (en) Method for producing rare earth based permanent magnet having copper plating film on its surface
JPH0712005B2 (en) High corrosion resistance rare earth permanent magnet
JP2004039917A (en) Permanent magnet and manufacturing method therefor
JP4538959B2 (en) Electric Ni plating method for rare earth permanent magnet
JP2009176880A (en) Permanent magnet
JPH069168B2 (en) High corrosion resistance rare earth permanent magnet
JP3614754B2 (en) Surface treatment method and magnet manufacturing method
JP2968605B2 (en) Manufacturing method of permanent magnet
US5286366A (en) Surface treatment for iron-based permanent magnet including rare-earth element
JPH0945567A (en) Rare earth-iron-boron permanent magnet manufacturing method
JP3650141B2 (en) permanent magnet
JPS63211703A (en) High corrosionproof rare-earth permanent magnet
JP3337558B2 (en) Corrosion resistant magnetic alloy
JP3248982B2 (en) Permanent magnet and manufacturing method thereof
JP3580521B2 (en) Manufacturing method of high corrosion resistant permanent magnet
JP2003249405A (en) Rare-earth permanent magnet and surface treatment method thereof
JPH0756849B2 (en) Method for manufacturing corrosion resistant rare earth magnet
JPH01223712A (en) Manufacture of corrosion-resistant permanent magnet
JPH09320826A (en) Highly anticorrosive rare earth magnet
JP2696757B2 (en) permanent magnet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080208

Year of fee payment: 13