JP2002353057A - Rare earth permanent magnet having superior oxidataion resistance, and method of manufacturing the same - Google Patents

Rare earth permanent magnet having superior oxidataion resistance, and method of manufacturing the same

Info

Publication number
JP2002353057A
JP2002353057A JP2001160017A JP2001160017A JP2002353057A JP 2002353057 A JP2002353057 A JP 2002353057A JP 2001160017 A JP2001160017 A JP 2001160017A JP 2001160017 A JP2001160017 A JP 2001160017A JP 2002353057 A JP2002353057 A JP 2002353057A
Authority
JP
Japan
Prior art keywords
oxidation
rare earth
permanent magnet
earth permanent
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001160017A
Other languages
Japanese (ja)
Inventor
Yasuki Takashima
康樹 鷹島
Hideki Matsuzawa
秀樹 松沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2001160017A priority Critical patent/JP2002353057A/en
Publication of JP2002353057A publication Critical patent/JP2002353057A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To form an oxidation resistive film, having superior reliability on a surface of a rare earth permanent magnet made of Nd2 Fe14 B-based alloy as a typical material. SOLUTION: Electrolysis is carried out in an electrolytic solution, having a triazone dithiol derivative dissolved into an organic solvent with use of a rare earth permanent magnet as an anode to form a film obtained by the electrolysis of the composition on the surface of the magnet, an oxidation resistive film is formed by metal plating on the obtained oxidation resistive film, and further a film obtained by the triazone dithiol derivative is formed thereon. Water, which causes rust, is not used for the formation of the film using triazone dithiol derivative, the formed film is water repellent but is not oriented. Thus the film is higher in reliability than a prior art oxidation resistive film. Since films made by metal plating and using triazone dithiol derivative are further formed on the above film, the reliability to oxidation is improved significantly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Nd2Fe14B系
合金で代表される、希土類元素:Rと、遷移金属:Tと
を含むR214B系金属間化合物磁石に関し、特に耐酸
化性を向上したR214B系希土類永久磁石、及びその
製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention is represented by Nd 2 Fe 14 B-based alloy, rare earth elements: and R, a transition metal: relates R 2 T 14 B system intermetallic compound magnet comprising a T, particularly acid TECHNICAL FIELD The present invention relates to an R 2 T 14 B-based rare-earth permanent magnet having improved chemical properties and a method for producing the same.

【0002】[0002]

【従来の技術】Nd−Fe−Bで代表されるR−Fe−
B系磁石は、従来の希土類永久磁石であるSm−Co系
磁石に比較して、高い磁気特性を有する。しかし、この
ような磁石合金は、組織中に極めて酸化しやすいNd−
Fe合金相を含み、さらにR2Fe14Bも酸化しやすい
ため、Sm−Coに比較して磁石の酸化による磁気特性
の劣化やバラツキが大きい。
2. Description of the Related Art R-Fe- represented by Nd-Fe-B
The B-based magnet has higher magnetic characteristics than a conventional rare-earth permanent magnet, Sm-Co-based magnet. However, such a magnetic alloy contains Nd-
Since it contains an Fe alloy phase and R 2 Fe 14 B is also easily oxidized, deterioration and variation in magnetic properties due to oxidation of the magnet are greater than Sm—Co.

【0003】さらに、磁気回路などの装置に組み込んだ
場合、磁石から発生した酸化物の飛散による周辺部品へ
の汚染を引き起こす虞がある。
[0003] Further, when incorporated in a device such as a magnetic circuit, there is a possibility that contamination of peripheral components may be caused by scattering of oxides generated from the magnet.

【0004】この問題を解決する方法として、特開昭6
0−54406号公報や特開昭60−63903号公報
が提案されている。しかしながら、これらの公報に提案
されている耐酸化性被膜は、被膜形成工程中で多量の水
を使用するため、処理工程中で磁石材料が酸化したり、
処理後であっても微量の水分の残留が原因となって酸化
したりする場合が多く、耐酸化性が十分とは言い難い。
As a method for solving this problem, Japanese Patent Laid-Open Publication No.
JP-A-54406 and JP-A-60-63903 have been proposed. However, the oxidation-resistant coatings proposed in these publications use a large amount of water during the coating formation process, so that the magnet material is oxidized during the treatment process,
Even after the treatment, a small amount of moisture remains often causes oxidation, and it is hard to say that the oxidation resistance is sufficient.

【0005】また、金属の防錆表面処理の一般的方法で
ある塗装法では、塗料の基材が有機高分子であるため、
金属との親和性が不十分で、磁石の部品化工程や使用時
において亀裂や剥離を生じ易いこと、また、特に反応硬
化型の塗料の場合は、痕跡程度の未反応官能基の経時変
化が錆発生の原因となることもあり、特に、このような
合金系では信頼性が不十分で、用途が限定されているの
が現状である。
[0005] In the coating method, which is a general method of surface treatment for rust prevention of metal, since the base material of the coating is an organic polymer,
Insufficient affinity for metal, which easily causes cracking and peeling during the process of forming and using magnet parts.Especially in the case of reaction-curable coatings, changes over time of traces of unreacted functional groups It may cause rusting, and in particular, the reliability of such an alloy system is insufficient, and the application is currently limited.

【0006】さらに、スパッター、イオン蒸着法を用い
た金属被膜形成による酸化防止法は、磁石全体への均一
コーティングが困難であること、また被覆層組織が下地
面に垂直方向に方向性を持つため、被覆層に微細な間隙
を生じ、十分な耐酸化性が期待できないなどの問題があ
る。
Further, the oxidation prevention method by forming a metal film using sputtering or ion vapor deposition is difficult because it is difficult to uniformly coat the entire magnet and the coating layer structure has directionality in the direction perpendicular to the underlying surface. In addition, there is a problem that minute gaps are formed in the coating layer and sufficient oxidation resistance cannot be expected.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明の技術
的課題は、上記欠点に鑑み、より耐酸化性に優れた希土
類永久磁石およびその製造方法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a rare earth permanent magnet having better oxidation resistance and a method for producing the same in view of the above-mentioned drawbacks.

【0008】[0008]

【課題を解決するための手段】本発明は、従来の塗装、
電解めっき、スパッター、イオン蒸着などと、これらの
方法とはまったく異なった方法を併用することにより、
214B系希土類永久磁石に、より強固な耐酸化性の
被膜を形成する方法を検討した結果なされたものであ
る。
SUMMARY OF THE INVENTION The present invention provides a conventional coating,
By using electrolytic plating, sputtering, ion deposition, etc., and completely different from these methods,
This is a result of studying a method of forming a stronger oxidation-resistant film on an R 2 T 14 B-based rare earth permanent magnet.

【0009】即ち、本発明は、R−T−Bを主成分とす
るR214B系合金[R:イットリウム(Y)を含む希
土類元素のうち少なくとも1種以上、T:遷移金属、
B:ホウ素]からなる焼結型希土類永久磁石の表面に、
1,3,5−トリアジンの2、4、6の位置のいずれか
を−R、残部を−SM[RはSHまたはNR12で、R
1、R2は水素、アルキル基、フェニル基のいずれか、M
は水素、アルカリ金属、アルカリ土類金属のいずれか、
Sはイオウ、Nは窒素]で置換したトリアジンジチオー
ル誘導体の少なくとも1種の電解によって形成されてな
る第1の耐酸化性被膜と、第1の耐酸化性被膜の上に形
成されてなるメッキ被膜からなる第2の耐酸化性被膜
と、第2の耐酸化性被膜の上に形成されてなる第1の耐
酸化性被膜と同一の構成を有する第3の耐酸化性被膜を
有することを特徴とする希土類永久磁石である。
That is, the present invention comprises RTB as a main component.
RTwoT14B-based alloy [R: rare earth containing yttrium (Y)
At least one or more of the earth elements, T: transition metal,
B: boron] on the surface of the sintered rare earth permanent magnet
Any of positions 2, 4, and 6 of 1,3,5-triazine
Is -R, the remainder is -SM [R is SH or NR1RTwoAnd R
1, RTwoIs any of hydrogen, an alkyl group and a phenyl group, M
Is hydrogen, alkali metal, or alkaline earth metal,
S is sulfur, N is nitrogen]
Formed by at least one electrolysis of
A first oxidation resistant coating, and a first oxidation resistant coating formed on the first oxidation resistant coating.
Second oxidation-resistant coating made of plated coating formed
And a first oxidation-resistant film formed on the second oxidation-resistant film.
A third oxidation-resistant coating having the same configuration as the oxidation-resistant coating;
It is a rare earth permanent magnet characterized by having.

【0010】また、本発明は、R−T−Bを主成分とす
るR214B系合金[R:イットリウム(Y)を含む希
土類元素のうち少なくとも1種以上、T:遷移金属、
B:ホウ素]の焼結型希土類永久磁石を、1,3,5−
トリアジンの2、4、6の位置のいずれかを−R、残部
を−SM[RはSHまたはNR12で、R1、R2は水
素、アルキル基、フェニル基のいずれか、Mは水素、ア
ルカリ金属、アルカリ土類金属のいずれか、Sはイオ
ウ、Nは窒素]で置換したトリアジンジチオール誘導体
の少なくとも1種の溶液中で、電解処理することによ
り、前記焼結型希土類永久磁石の表面に第1の耐酸化性
被膜を形成し、第1の耐酸化性被膜の上に、電解メッキ
あるいは無電解メッキの少なくとも一方の方法で、メッ
キ被膜からなる第2の耐酸化性被膜を形成し、第2の耐
酸化性被膜の上に、第1の耐酸化性被膜の場合と同一の
手順で第3の耐酸化性被膜を形成することを特徴とする
前記の希土類永久磁石の製造方法である。
Further, the present invention provides an R 2 T 14 B-based alloy containing R—T—B as a main component [R: at least one or more rare earth elements including yttrium (Y);
B: Boron] sintered rare earth permanent magnet
-R any position 2,4,6 triazine, is -SM [R a balance with SH or NR 1 R 2, R 1, R 2 is hydrogen, an alkyl group, or a phenyl group, M is Any one of hydrogen, an alkali metal and an alkaline earth metal, S is sulfur, and N is nitrogen]. A first oxidation-resistant film is formed on the surface, and a second oxidation-resistant film made of a plating film is formed on the first oxidation-resistant film by at least one of electrolytic plating and electroless plating. And forming a third oxidation-resistant coating on the second oxidation-resistant coating in the same procedure as in the case of the first oxidation-resistant coating. It is.

【0011】また、本発明は、前記の希土類永久磁石の
製造方法において、前記溶液の溶媒が有機溶媒であるこ
とを特徴とする希土類永久磁石の製造方法である。
The present invention also provides a method for producing a rare earth permanent magnet as described above, wherein the solvent of the solution is an organic solvent.

【0012】また、本発明は、前記の希土類永久磁石の
製造方法において、前記溶液の温度を0〜80℃とする
ことを特徴とする希土類永久磁石の製造方法である。
The present invention also provides a method for producing a rare-earth permanent magnet, wherein the temperature of the solution is 0 to 80 ° C.

【0013】また、本発明は、前記の希土類永久磁石の
製造方法において、前記第1の耐酸化性被膜及び第3の
耐酸化性被膜を得る電解処理を、電圧が20V以下(0
を含まず)、電流密度が10mA/dm2〜10A/d
2の範囲で行うことを特徴とする希土類永久磁石の製
造方法である。
Further, according to the present invention, in the above-mentioned method for producing a rare earth permanent magnet, the electrolytic treatment for obtaining the first oxidation-resistant film and the third oxidation-resistant film is performed by applying a voltage of 20 V or less (0
), And the current density is 10 mA / dm 2 to 10 A / d
A method for producing a rare earth permanent magnet, characterized in that the method is performed in the range of m 2 .

【0014】また、本発明は、前記の希土類永久磁石の
製造方法において、前記第1の耐酸化性被膜及び第3の
耐酸化性被膜を得る電解処理時間を、0.1秒〜10分
とすることを特徴とする希土類永久磁石の製造方法であ
る。
Further, according to the present invention, in the above-mentioned method for producing a rare earth permanent magnet, the electrolytic treatment time for obtaining the first oxidation-resistant film and the third oxidation-resistant film is 0.1 seconds to 10 minutes. A method for manufacturing a rare earth permanent magnet.

【0015】[0015]

【作用】本発明の耐酸化性被膜の形成方法によれば、電
解液中で、トリアジンジチオール誘導体が電離して、マ
イナスイオンを生じるため、磁石を陽極とすることによ
って、磁石表面にトリアジンジチオール誘導体が与える
マイナスイオンが電着して、被膜を形成することができ
る。
According to the method for forming an oxidation-resistant coating of the present invention, the triazinedithiol derivative is ionized in the electrolytic solution to generate negative ions. The negative ions provided by are electrodeposited to form a film.

【0016】また、トリアジンチオール誘導体から得ら
れる耐酸化性被膜の上に、メッキによる金属被膜を形成
し、更にその上にトリアジンチオール誘導体から得られ
る耐酸化性被膜を形成することにより、耐酸化性の被膜
をより強固にし、極めて耐酸化性が大きい希土類永久磁
石を得ることができる。
Further, by forming a metal film by plating on the oxidation-resistant film obtained from the triazinethiol derivative, and further forming an oxidation-resistant film obtained from the triazinethiol derivative on the oxidation-resistant film, the oxidation-resistant film is formed. And a rare earth permanent magnet having extremely high oxidation resistance can be obtained.

【0017】トリアジンジチオール誘導体より磁石表面
に生成された被膜は、従来の化成被膜などに比較して極
めて耐食性、耐久性に優れ、金属表面との結合力が大き
い。更に、撥水性及び潤滑性が付与されるので着水、着
氷などを防止できる。また、安価で短時間に、剥離し難
い薄膜が形成できる。
The film formed on the magnet surface from the triazinedithiol derivative has extremely excellent corrosion resistance and durability and has a large bonding force with the metal surface as compared with conventional conversion films. Furthermore, since water repellency and lubricity are provided, it is possible to prevent water landing, icing, and the like. In addition, a thin film that is difficult to peel off can be formed inexpensively in a short time.

【0018】そして、電解液は、トリアジンジチオール
誘導体を有機溶媒に溶解させることにより調整できる。
溶媒として有機化合物を用いる理由は、溶媒として水を
用いた場合では、被膜への水の残留により、磁石表面で
の錆の発生を完全に防止できないためである。
The electrolytic solution can be prepared by dissolving the triazinedithiol derivative in an organic solvent.
The reason for using an organic compound as the solvent is that when water is used as the solvent, rust on the surface of the magnet cannot be completely prevented due to water remaining in the coating.

【0019】有機溶媒としては、0〜80℃の温度範囲
で低粘度の液体であれば、特に限定されるものではな
く、殆どのものを使用できる。例えば、メチルアルコー
ル、エチルアルコール、イソプロピルアルコール、エチ
ルセルソルブのようなアルコール、アセトン、メチルエ
チルケトンのようなケトン、ジメチルホルムアミドのよ
うなアミド、酢酸エチルのようなエステル、テトラヒド
ロフランのようなフラン、ベンゼン、トルエンのような
芳香族炭化水素などを使用することができる。溶液の濃
度はトリアゾンジチオール化合物が1×10−1〜1×
10−6モル/l、好ましくは5×10−2〜5×10
−4モル/lになるようにする。
The organic solvent is not particularly limited as long as it is a liquid having a low viscosity in a temperature range of 0 to 80 ° C., and most of them can be used. For example, alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, and ethyl cellosolve, ketones such as acetone and methyl ethyl ketone, amides such as dimethylformamide, esters such as ethyl acetate, furans such as tetrahydrofuran, benzene, and toluene And the like can be used. The concentration of the solution is from 1 × 10 −1 to 1 × of the triazonedithiol compound.
10 −6 mol / l, preferably 5 × 10 −2 to 5 × 10
-4 mol / l.

【0020】また、陰極には、陰極からの溶出物が被膜
中に混入するのを避けるため不溶性材料を使用する。こ
のような材料としては、例えば、白金、チタン、ステン
レス鋼、カーボン、グラファイトなどがある。
In addition, an insoluble material is used for the cathode in order to prevent a substance eluted from the cathode from being mixed into the coating. Such materials include, for example, platinum, titanium, stainless steel, carbon, graphite, and the like.

【0021】電解は、溶液の温度を0〜80℃に調整し
て、電圧20V以下、電流密度10mA/dm2〜10
A/dm2で0.1秒〜10分間電解する。溶液の温度を
限定した理由は、温度を0℃より低くすると、被膜を形
成するために長時間を要し、80℃より高くすると、被
膜の厚さをコントロールするのが困難となるからであ
る。
In the electrolysis, the temperature of the solution is adjusted to 0 to 80 ° C., the voltage is 20 V or less, and the current density is 10 mA / dm 2 to 10
Electrolyze at A / dm 2 for 0.1 second to 10 minutes. The reason for limiting the temperature of the solution is that if the temperature is lower than 0 ° C., it takes a long time to form the coating, and if it is higher than 80 ° C., it becomes difficult to control the thickness of the coating. .

【0022】また、電圧を限定した理由は、電圧を20
Vより高くすると、磁石表面への被膜の形成が不均一と
なるからである。さらに、電流密度を限定した理由は、
電流密度を10mA/dm2より小さくすると、被膜が
形成されず、電流密度を10A/dm2より大きくする
と、被膜形成が不均一となるからである。
The reason for limiting the voltage is that the voltage is
If it is higher than V, the formation of the coating on the magnet surface becomes non-uniform. Furthermore, the reason for limiting the current density is that
If the current density is less than 10 mA / dm 2 , no film is formed, and if the current density is more than 10 A / dm 2 , the film formation becomes non-uniform.

【0023】また、電解時間を限定した理由は、電解時
間が0.1秒未満であると、電流密度を10A/dm2
しても、磁石表面全体に被膜を形成できず、10分を超
えると、被膜が絶縁体として機能することから、電解が
実質的に不可能となるからである。
The reason why the electrolysis time is limited is that if the electrolysis time is less than 0.1 second, a coating cannot be formed on the entire magnet surface even if the current density is 10 A / dm 2 , and the electrolysis time exceeds 10 minutes. This is because the coating functions as an insulator, so that electrolysis is substantially impossible.

【0024】なお、一般に電解に用いる溶液には、溶液
の伝導性を向上したり、泳動電流を減少したりするた
め、電極で酸化還元を受け難い塩などを支持電解質とし
て加えるが、この場合も支持電解質の添加は一定の効果
を発現する。
In general, a salt or the like which is hardly subjected to oxidation and reduction at an electrode is added to a solution used for electrolysis as a supporting electrolyte in order to improve the conductivity of the solution or to reduce the electrophoretic current. The addition of the supporting electrolyte exhibits a certain effect.

【0025】また、トリアジンチオール誘導体による耐
酸化性被膜の上に形成する耐酸化メッキ被膜としては、
Ni、Cu、Znなどの耐酸化性を有する金属または合
金が用いられ、これらの複合メッキも適用可能である。
メッキ処理方法としては、無電解メッキ、電解メッキ、
あるいはこれらの併用が挙げられる。
The oxidation-resistant plating film formed on the oxidation-resistant film made of the triazinethiol derivative includes:
An oxidation-resistant metal or alloy such as Ni, Cu, or Zn is used, and composite plating of these metals is also applicable.
Plating methods include electroless plating, electrolytic plating,
Alternatively, these may be used in combination.

【0026】そして、メッキ被膜の厚みは、25μmを
超える厚みでは、メッキ被膜の強度が劣化するととも
に、製品の寸法精度を確保することが困難になり、かつ
メッキ処理に長時間を要することとなり、製造コストの
面からもメッキ被膜の厚みは25μm以下が好ましい。
If the thickness of the plating film exceeds 25 μm, the strength of the plating film deteriorates, it becomes difficult to secure the dimensional accuracy of the product, and it takes a long time for the plating process. From the viewpoint of manufacturing cost, the thickness of the plating film is preferably 25 μm or less.

【0027】[0027]

【実施例】以下に、本発明について具体的な実施例を挙
げ、説明する。
The present invention will be described below with reference to specific examples.

【0028】(実施例1)純度99%以上のNd、純度
99%の電解鉄、フェロボロン合金をそれぞれ所要量秤
量し、アルゴン雰囲気中で高周波加熱により溶解して鋳
込み、64.9重量%Fe−34重量%Nd−1.1重量
%Bのインゴットを得た。次に、このインゴットをディ
スクミルで粗粉砕し、更にボールミルで微粉砕し、平均
粒径が3μmの原料粉末を得た。
(Example 1) Nd with a purity of 99% or more, electrolytic iron with a purity of 99%, and a ferroboron alloy were weighed in required amounts, melted by high frequency heating in an argon atmosphere and cast, and 64.9 wt% Fe- An ingot of 34% by weight Nd-1.1% by weight B was obtained. Next, the ingot was roughly pulverized with a disk mill and further finely pulverized with a ball mill to obtain a raw material powder having an average particle diameter of 3 μm.

【0029】この原料粉末を1600kA/mの磁界中
で、10kPaの圧力で成形した。得られた成形体を1
050〜1100℃、2時間真空焼結後、炉冷して焼結
体を得、この焼結体を500〜600℃で1時間熱処理
した後、急冷した。このようにして得られた希土類永久
磁石を1辺が10mmの立方体形状に切断し、耐酸化性
を評価するための試験片とした。
This raw material powder was molded at a pressure of 10 kPa in a magnetic field of 1600 kA / m. The obtained molded body is
After vacuum sintering at 050 to 1100 ° C for 2 hours, the resultant was furnace-cooled to obtain a sintered body. This sintered body was heat-treated at 500 to 600 ° C for 1 hour and then rapidly cooled. The rare earth permanent magnet thus obtained was cut into a cubic shape with one side of 10 mm, and used as a test piece for evaluating oxidation resistance.

【0030】次に、トリアジンジチオール誘導体とし
て、化1に示した2−ジブチルアミノ−4,6−ジチオ
ール−トリアジンを5×10-2モル/lの濃度となるよ
うに、支持電解質として、過塩素酸リチウム(LiCl
4)を5×10-4モル/lとなるように、それぞれエ
チルアルコールに溶解し、電解液を調製した。
Next, as a triazine dithiol derivative, 2-dibutylamino-4,6-dithiol-triazine shown in Chemical Formula 1 was used as a supporting electrolyte so as to have a concentration of 5 × 10 -2 mol / l. Lithium oxide (LiCl
O 4 ) was dissolved in ethyl alcohol at a concentration of 5 × 10 −4 mol / l to prepare an electrolytic solution.

【0031】[0031]

【化1】 Embedded image

【0032】次に、この電解液を用いて、アセトンで洗
浄した前記の試験片を陽極、ステンレス(SUS30
4)鋼板を陰極として、溶液温度25〜30℃、電流密
度1.0〜2.0A/dm2で、10〜240秒間電解
し、第1の耐酸化性被膜を得た。
Next, using the electrolytic solution, the test piece washed with acetone was placed on the anode, stainless steel (SUS30).
4) Using a steel plate as a cathode, electrolysis was performed at a solution temperature of 25 to 30 ° C. and a current density of 1.0 to 2.0 A / dm 2 for 10 to 240 seconds to obtain a first oxidation-resistant coating.

【0033】その後、この試験片を、メッキ浴に液温度
を50℃に設定したワット浴を用い、電流密度2.0A
/dm2で処理時間を変化させ、厚みが3、5、10μ
mのニッケルメッキからなる第2の耐酸化性被膜を形成
した。また、別の試験片については、メッキ浴に液温度
を室温とした青化浴を用い、電流密度2.0A/dm2
処理時間を変化させ、厚みが3、5、10μmの銅メッ
キからなる第2の耐酸化性被膜を形成した。更に、別の
試験片についても、メッキ浴に液温度を30℃とした青
化浴を用い、電流密度2.0A/dm2で処理時間を変化
させ、厚みが3、5、10μmの亜鉛メッキからなる第
2の耐酸化被膜を形成した。
Thereafter, the test piece was subjected to a current density of 2.0 A using a Watt bath having a solution temperature set at 50 ° C. as a plating bath.
/ Dm 2 to change the processing time, the thickness is 3, 5, 10 μm
A second oxidation-resistant film made of nickel plating was formed. In addition, another test piece was prepared by changing the treatment time at a current density of 2.0 A / dm 2 using a bluing bath having a solution temperature of room temperature as a plating bath, and changing the copper plating of 3, 5, and 10 μm in thickness. A second oxidation resistant coating was formed. Further, with respect to another test piece, zinc plating having a thickness of 3, 5, and 10 μm was performed by changing the treatment time at a current density of 2.0 A / dm 2 using a bluing bath having a solution temperature of 30 ° C. as a plating bath. A second oxidation-resistant film was formed.

【0034】更に、これらのメッキからなる第2の耐酸
化性被膜を形成した試験片に、前記2−ジブチルアミノ
−4,6−ジチオール−トリアジンと、過塩素酸リチウ
ムを含む前記電解液を用い、前記の場合とまったく同じ
条件で第3の耐酸化性被膜を形成した。
Further, a test piece on which a second oxidation-resistant film made of these platings was formed was coated with the above-mentioned electrolytic solution containing 2-dibutylamino-4,6-dithiol-triazine and lithium perchlorate. A third oxidation-resistant film was formed under exactly the same conditions as described above.

【0035】また、比較のため、前記と同一条件で第1
の耐酸化性被膜を形成した試験片に、前記のメッキ浴を
用いる方法で、ニッケル、銅、亜鉛のメッキ層のみを、
それぞれ、厚み5、10、15μmとなるように形成し
た試験片を調製した。これらの試験片について、5%食
塩水を72時間噴霧する試験、及び碁盤目テストを行っ
た。表1には、3層の耐酸化性被膜を形成した試験片の
結果を、表2には、2層の耐酸化性被膜を形成した試験
片の結果をまとめて示す。
For comparison, the first condition was the same under the same conditions as above.
On the test piece on which the oxidation-resistant coating was formed, only the plating layer of nickel, copper, and zinc was formed using the plating bath described above.
Test pieces formed to have thicknesses of 5, 10, and 15 μm, respectively, were prepared. These test pieces were subjected to a test of spraying a 5% saline solution for 72 hours and a grid test. Table 1 shows the results of the test pieces having three oxidation-resistant films formed thereon, and Table 2 shows the results of the test pieces having two oxidation-resistant films formed thereon.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】(実施例2)トリアジンジチオール誘導体
として、化2に示した2−オレイルアミノ−4,6−ジ
メルカプト−トリアジンモノナトリウムを、濃度が5×
10−4モル/lとなるように、支持電解質として、フ
ッ化ホウ素酸リチウム(LiBF)を、濃度が5×1
−4/lとなるように、それぞれエチルアルコールに
溶解して、電解液を調製した。この電解液を用い、実施
例1と同一の条件で調製した希土類永久磁石に対し、実
施例1と同様に電解を行い、第1の耐酸化性被膜を形成
した。
Example 2 As a triazine dithiol derivative, 2-oleylamino-4,6-dimercapto-triazine monosodium shown in Chemical formula 2 was used at a concentration of 5 ×.
Lithium fluoroborate (LiBF 4 ) was used as a supporting electrolyte at a concentration of 5 × 1 so as to be 10 −4 mol / l.
Each was dissolved in ethyl alcohol so as to be 0 −4 / l to prepare an electrolytic solution. Using this electrolytic solution, electrolysis was performed on the rare-earth permanent magnet prepared under the same conditions as in Example 1 in the same manner as in Example 1 to form a first oxidation-resistant film.

【0039】[0039]

【化2】 Embedded image

【0040】その後、この試験片に、メッキ浴に液温度
を50℃に設定したワット浴を用い、電流密度2.0A
/dm2で処理時間を変化させ、厚みが3、5、10μ
mのニッケルメッキからなる第2の耐酸化性被膜を形成
した。また、別の試験片については、メッキ浴に液温度
を室温に設定した青化浴を用い、電流密度2.0A/d
2で処理時間を変化させ、厚みが3、5、10μmの
銅メッキからなる第2の耐酸化性被膜を形成した。更
に、別の試験片については、メッキ浴に液温度を30℃
に設定した青化浴を用い、電流密度2.0A/dm2で処
理時間を変化させ、厚みが3、5、10μmの亜鉛メッ
キからなる第2の耐酸化性被膜を形成した。
Thereafter, a current density of 2.0 A was applied to the test piece using a Watt bath in which a solution temperature was set to 50 ° C. as a plating bath.
/ Dm 2 to change the processing time, the thickness is 3, 5, 10 μm
A second oxidation-resistant film made of nickel plating was formed. As for another test piece, a bluing bath in which the solution temperature was set to room temperature was used as a plating bath, and the current density was 2.0 A / d.
The treatment time was changed by m 2 to form a second oxidation-resistant film made of copper plating having a thickness of 3, 5, or 10 μm. Further, for another test piece, the solution temperature was set to 30 ° C. in the plating bath.
Using a bluing bath set as described above, the treatment time was changed at a current density of 2.0 A / dm 2 , and a second oxidation-resistant coating made of zinc plating having a thickness of 3, 5, or 10 μm was formed.

【0041】更に、前記メッキ層を形成した試験片に、
2−オレイルアミノ−4,6−ジメルカプト−トリアジ
ンモノナトリウムと、フッ化ホウ素酸リチウムを含む前
記電解液を用い、前記とまったく同一の条件で、第3の
耐酸化性被膜を形成した。
Further, the test piece on which the plating layer was formed,
Using the electrolyte containing 2-oleylamino-4,6-dimercapto-triazine monosodium and lithium fluoroborate, a third oxidation-resistant film was formed under exactly the same conditions as above.

【0042】また、比較のため、前記と同一条件で第1
の耐酸化性被膜を形成した試験片に、前記のメッキ浴を
用いる方法で、ニッケル、銅、亜鉛のメッキ層のみを、
それぞれ、厚み5、10、15μmとなるように形成し
た試験片を調製した。これらの試験片について、5%食
塩水を72時間噴霧する試験、及び碁盤目テストを行っ
た。表3には、3層の耐酸化性被膜を形成した試験片の
結果を、表4には、2層の耐酸化性被膜を形成した試験
片の結果をまとめて示す。
For comparison, the first condition was the same under the same conditions as above.
On the test piece on which the oxidation-resistant coating was formed, only the plating layer of nickel, copper, and zinc was formed using the plating bath described above.
Test pieces formed to have thicknesses of 5, 10, and 15 μm, respectively, were prepared. These test pieces were subjected to a test of spraying a 5% saline solution for 72 hours and a grid test. Table 3 shows the results of the test pieces on which the three oxidation-resistant films were formed, and Table 4 shows the results of the test pieces on which the two oxidation-resistant films were formed.

【0043】[0043]

【表3】 [Table 3]

【0044】[0044]

【表4】 [Table 4]

【0045】表1、表3に示すように、本発明の方法
で、表面に3層の耐酸化性被膜を形成した試験片は、錆
などの発生が見られず、外観的な変化は何ら観察されな
かった。これに対し、表2、表4に示すように、第3の
耐酸性被膜を形成していない試験片では、金属メッキ層
の厚みが同一であっても、著しい腐食が認められ、本発
明の3層からなる耐酸化性被膜の効果が明らかであっ
た。
As shown in Tables 1 and 3, the test pieces having the three oxidation-resistant coatings formed on the surface by the method of the present invention show no rust or the like and show no change in appearance. Not observed. On the other hand, as shown in Tables 2 and 4, in the test pieces having no third acid-resistant coating formed thereon, even if the thickness of the metal plating layer was the same, significant corrosion was observed, and The effect of the three-layer oxidation resistant coating was apparent.

【0046】[0046]

【発明の効果】以上に説明したように、本発明によれ
ば、トリアジンチオール誘導体の電解で得られる耐酸化
性被膜、金属メッキ層からなる耐酸化性被膜、トリアジ
ンチオール誘導体の電解で得られる耐酸化性被膜を順次
積層被覆した、3層構造の耐酸化性被膜を具備した希土
類永久磁石が得られる。これらの被膜は、従来法による
被膜より薄い厚みで、優れた耐蝕性を示し、希土類永久
磁石の信頼性及び耐久性を大幅に向上することが可能と
なる。
As described above, according to the present invention, an oxidation-resistant coating obtained by electrolysis of a triazinethiol derivative, an oxidation-resistant coating made of a metal plating layer, and an acid-resistant coating obtained by electrolysis of a triazinethiol derivative. Thus, a rare earth permanent magnet having an oxidation-resistant coating having a three-layer structure obtained by sequentially laminating and coating the oxidizable coating is obtained. These coatings are thinner than conventional coatings, exhibit excellent corrosion resistance, and can significantly improve the reliability and durability of rare earth permanent magnets.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C25D 13/12 C25D 13/12 Z H01F 1/053 H01F 7/02 E 7/02 1/04 H Fターム(参考) 4K018 AA27 FA23 FA25 FA27 KA45 4K024 AA03 AA05 AA09 AA14 AA17 AB03 AB15 BA01 BB14 BC07 GA04 4K044 AA02 AB08 AB10 BA06 BA10 BA21 BB04 BC02 CA15 CA17 CA18 CA53 5E040 AA04 BC01 BC08 BD01 CA01 HB14 5E062 CD04 CG02 CG07 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C25D 13/12 C25D 13/12 Z H01F 1/053 H01F 7/02 E 7/02 1/04 HF term (Reference) 4K018 AA27 FA23 FA25 FA27 KA45 4K024 AA03 AA05 AA09 AA14 AA17 AB03 AB15 BA01 BB14 BC07 GA04 4K044 AA02 AB08 AB10 BA06 BA10 BA21 BB04 BC02 CA15 CA17 CA18 CA53 5E040 AA04 BC01 BC08 BD02 CA01 HB14CG

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 R−T−Bを主成分とするR214B系
合金[R:イットリウム(Y)を含む希土類元素のうち
少なくとも1種以上、T:遷移金属、B:ホウ素]から
なる焼結型希土類永久磁石の表面に、1,3,5−トリ
アジンの2、4、6の位置のいずれかを−R、残部を−
SM[RはSHまたはNR12で、R 1、R2は水素、ア
ルキル基、フェニル基のいずれか、Mは水素、アルカリ
金属、アルカリ土類金属のいずれか、Sはイオウ、Nは
窒素]で置換したトリアジンジチオール誘導体の少なく
とも1種の電解によって形成されてなる第1の耐酸化性
被膜と、第1の耐酸化性被膜の上に形成されてなるメッ
キ被膜からなる第2の耐酸化性被膜と、第2の耐酸化性
被膜の上に形成されてなる第1の耐酸化性被膜と同一の
構成を有する第3の耐酸化性被膜を有することを特徴と
する希土類永久磁石。
1. An R having RTB as a main component.TwoT14B type
Alloy [R: Of rare earth elements containing yttrium (Y)
At least one or more, T: transition metal, B: boron]
The surface of a sintered rare earth permanent magnet
-R at any of positions 2, 4, and 6 of azine, and-
SM [R is SH or NR1RTwoAnd R 1, RTwoIs hydrogen,
Any of a alkyl group or a phenyl group, M is hydrogen or an alkali
Either metal or alkaline earth metal, S is sulfur, N is
Nitrogen] substituted triazinedithiol derivatives
First oxidation resistance formed by one kind of electrolysis
A film formed on the first oxidation-resistant film.
A second oxidation-resistant coating comprising a coating film and a second oxidation-resistant coating
The same as the first oxidation resistant coating formed on the coating
Having a third oxidation-resistant coating having the configuration
Rare earth permanent magnet.
【請求項2】 R−T−Bを主成分とするR214B系
合金[R:イットリウム(Y)を含む希土類元素のうち
少なくとも1種以上、T:遷移金属、B:ホウ素]の焼
結型希土類永久磁石を、1,3,5−トリアジンの2、
4、6の位置のいずれかを−R、残部を−SM[RはS
HまたはNR12で、R1、R2は水素、アルキル基、フ
ェニル基のいずれか、Mは水素、アルカリ金属、アルカ
リ土類金属のいずれか、Sはイオウ、Nは窒素]で置換
したトリアジンジチオール誘導体の少なくとも1種の溶
液中で、電解処理することにより、前記焼結型希土類永
久磁石の表面に第1の耐酸化性被膜を形成し、第1の耐
酸化性被膜の上に、電解メッキあるいは無電解メッキの
少なくとも一方の方法で、メッキ被膜からなる第2の耐
酸化性被膜を形成し、第2の耐酸化性被膜の上に、第1
の耐酸化性被膜の場合と同一の手順で第3の耐酸化性被
膜を形成することを特徴とする、請求項1に記載の希土
類永久磁石の製造方法。
2. An R 2 T 14 B-based alloy mainly composed of RTB [R: at least one or more rare earth elements including yttrium (Y), T: transition metal, B: boron] Sintered rare earth permanent magnets were replaced with 1,3,5-triazine 2,
One of positions 4 and 6 is -R, and the remainder is -SM [R is S
H or NR 1 R 2 , where R 1 and R 2 are hydrogen, any of an alkyl group and a phenyl group, M is hydrogen, any of an alkali metal or an alkaline earth metal, S is sulfur, and N is nitrogen] Electrolytic treatment in at least one solution of the prepared triazinedithiol derivative to form a first oxidation-resistant film on the surface of the sintered rare-earth permanent magnet, and on the first oxidation-resistant film Forming a second oxidation-resistant film made of a plating film by at least one of electrolytic plating and electroless plating, and forming the first oxidation-resistant film on the second oxidation-resistant film.
The method for producing a rare-earth permanent magnet according to claim 1, wherein the third oxidation-resistant film is formed in the same procedure as in the case of the oxidation-resistant film described in (1).
【請求項3】 請求項2に記載の希土類永久磁石の製造
方法において、前記溶液の溶媒は、有機溶媒であること
を特徴とする希土類永久磁石の製造方法。
3. The method for producing a rare earth permanent magnet according to claim 2, wherein the solvent of the solution is an organic solvent.
【請求項4】 請求項2もしくは請求項3のいずれかに
記載の希土類永久磁石の製造方法において、前記溶液の
温度を0〜80℃とすることを特徴とする希土類永久磁
石の製造方法。
4. The method for producing a rare earth permanent magnet according to claim 2, wherein the temperature of the solution is 0 to 80 ° C.
【請求項5】 請求項2ないし請求項4のいずれかに記
載の希土類永久磁石の製造方法において、前記第1の耐
酸化性被膜及び第3の耐酸化性被膜を得る電解処理を、
電圧が20V以下(0を含まず)、電流密度が10mA
/dm2〜10A/dm2の範囲で行うことを特徴とする
希土類永久磁石の製造方法。
5. The method for producing a rare earth permanent magnet according to claim 2, wherein the electrolytic treatment for obtaining the first oxidation-resistant film and the third oxidation-resistant film is performed by:
Voltage 20V or less (excluding 0), current density 10mA
A method for producing a rare earth permanent magnet, wherein the method is performed in the range of / Am / dm 2 to 10 A / dm 2 .
【請求項6】 請求項2ないし請求項5のいずれかに記
載の希土類永久磁石の製造方法において、前記第1の耐
酸化性被膜及び第3の耐酸化性被膜を得る電解処理時間
を、0.1秒〜10分とすることを特徴とする希土類永
久磁石の製造方法。
6. The method for producing a rare earth permanent magnet according to claim 2, wherein the electrolytic treatment time for obtaining the first oxidation-resistant film and the third oxidation-resistant film is set to 0. . A method for producing a rare earth permanent magnet, wherein the time is from 1 second to 10 minutes.
JP2001160017A 2001-05-29 2001-05-29 Rare earth permanent magnet having superior oxidataion resistance, and method of manufacturing the same Pending JP2002353057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001160017A JP2002353057A (en) 2001-05-29 2001-05-29 Rare earth permanent magnet having superior oxidataion resistance, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001160017A JP2002353057A (en) 2001-05-29 2001-05-29 Rare earth permanent magnet having superior oxidataion resistance, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2002353057A true JP2002353057A (en) 2002-12-06

Family

ID=19003502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001160017A Pending JP2002353057A (en) 2001-05-29 2001-05-29 Rare earth permanent magnet having superior oxidataion resistance, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2002353057A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1643514A1 (en) * 2003-06-27 2006-04-05 TDK Corporation R-t-b based permanent magnet
JP2007131919A (en) * 2005-11-10 2007-05-31 Iwate Univ Method for producing electroforming die
CN106544715A (en) * 2016-11-24 2017-03-29 京磁材料科技股份有限公司 The method for improving Nd-Fe-B permanent magnet epoxy resin coating performance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1643514A1 (en) * 2003-06-27 2006-04-05 TDK Corporation R-t-b based permanent magnet
EP1643514A4 (en) * 2003-06-27 2009-11-11 Tdk Corp R-t-b based permanent magnet
EP2518742A1 (en) * 2003-06-27 2012-10-31 TDK Corporation R-T-B system permanent magnet
JP2007131919A (en) * 2005-11-10 2007-05-31 Iwate Univ Method for producing electroforming die
CN106544715A (en) * 2016-11-24 2017-03-29 京磁材料科技股份有限公司 The method for improving Nd-Fe-B permanent magnet epoxy resin coating performance
CN106544715B (en) * 2016-11-24 2018-10-12 京磁材料科技股份有限公司 The method for improving Nd-Fe-B permanent magnet epoxy resin coating performance

Similar Documents

Publication Publication Date Title
JPH0283905A (en) Corrosion-resistant permanent magnet and manufacture thereof
US7473343B2 (en) Method of manufacturing rare-earth magnet, and plating bath
JP4033241B2 (en) Method for producing rare earth based permanent magnet having copper plating film on its surface
WO2006016570A1 (en) Method for producing rare earth element based permanent magnet having copper plating film on surface thereof
JP2002327278A (en) Copper plating liquid and copper plating method
JP2002353057A (en) Rare earth permanent magnet having superior oxidataion resistance, and method of manufacturing the same
JP4045530B2 (en) Electrolytic copper plating method for RTB-based magnets
JP4538959B2 (en) Electric Ni plating method for rare earth permanent magnet
JP3337558B2 (en) Corrosion resistant magnetic alloy
JP2617118B2 (en) Rare earth permanent magnet with excellent corrosion resistance and method of manufacturing the same
JP2908637B2 (en) Surface treatment method for Fe-BR-based sintered magnet
JP2002158106A (en) Rare earth permanent magnet superior in oxidation resistance and its manufacturing method
JPH0529119A (en) High corrosion-resistant rare earth magnet
JPWO2012043717A1 (en) Method for forming electrolytic copper plating film on surface of rare earth permanent magnet
US5286366A (en) Surface treatment for iron-based permanent magnet including rare-earth element
JP2002208508A (en) Rare earth permanent magnet excellent in oxidation resistance and its manufacturing method
JP3142172B2 (en) R-TM-B permanent magnet with improved adhesion and method for producing the same
JP2002110409A (en) Highly corrosion-resistant rare earth permanent magnet and its manufacturing method
JP3377605B2 (en) Corrosion resistant magnetic alloy
JP2001210504A (en) R-t-b permanent magnet
JP2941446B2 (en) R-TM-B permanent magnet with improved corrosion resistance
JP2003249405A (en) Rare-earth permanent magnet and surface treatment method thereof
JPH07331486A (en) Corrosion resistant magnetic alloy
JPH09320826A (en) Highly anticorrosive rare earth magnet
JPH08330121A (en) Permanent magnet body