JPH0210252A - Board checking apparatus - Google Patents

Board checking apparatus

Info

Publication number
JPH0210252A
JPH0210252A JP63161671A JP16167188A JPH0210252A JP H0210252 A JPH0210252 A JP H0210252A JP 63161671 A JP63161671 A JP 63161671A JP 16167188 A JP16167188 A JP 16167188A JP H0210252 A JPH0210252 A JP H0210252A
Authority
JP
Japan
Prior art keywords
height
mask
data
circuit
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63161671A
Other languages
Japanese (ja)
Inventor
Kazutoshi Iketani
池谷 和俊
Kunio Yoshida
邦夫 吉田
Takehisa Tanaka
田中 武久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63161671A priority Critical patent/JPH0210252A/en
Publication of JPH0210252A publication Critical patent/JPH0210252A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/93Detection standards; Calibrating baseline adjustment, drift correction

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

PURPOSE:To judge the quality of the mounting state of parts simply by providing a means for measuring the heights of parts mounted on a board, and providing a circuit for computing the mean square errors for every reference height of the part and the mask of measured height data. CONSTITUTION:A three-dimensional coordinate measuring part 3 is composed of a distance sensor part 4 and a height computing circuit 5 using the data of the sensor part 4. The height of a part 2 which is mounted on a printed board 1 and the height of the surface are measured. The obtained height is corrected to the height from the board 1. The result is introduced into a square-error computing circuit 7. The square error of the value of part 2 in a reference-height-data storage memory A 6 and the height data which are measured in the measuring part 3 is computed. The values are accumulated and added for every mask in an accumulating and adding circuit 11 in reference with the master data of a master-data storage memory B 10. The mean value of the squaring computation in the mask is compute din an average computing circuit 12. IN a comparing and judging circuit 14, the mean square error is compared with the reference threshold value for every mask for judging the pass or fail in a reference-threshold-value storage memory C 13. The quality is judged based on whether the mean square error is larger or smaller than said value.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はプリント基板上に実装された部品の位置ずれや
浮き等の不良を検査する基板検査装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a board inspection device for inspecting defects such as misalignment and lifting of components mounted on a printed circuit board.

従来の技術 従来、プリント基板上に実装された部品の位置ずれ、欠
品や浮き等の良/不良の検査は人間による目視検査に頼
っていた。ところが製品の小型化や軽量化が進むにつれ
、プリント基板上の部品の小型化や高密度実装化もより
一層進んできている。
BACKGROUND OF THE INVENTION Conventionally, human visual inspection has been relied upon to inspect components mounted on printed circuit boards for defects such as misalignment, missing parts, and floating parts. However, as products become smaller and lighter, components on printed circuit boards are also becoming smaller and more densely packaged.

このような状況の中で、人間が高い検査精度を保ちつつ
非常に細かな部品の実装状態を、しかも長時間検査し続
けることは困難に近い作業であった。
Under these circumstances, it was almost difficult for humans to continue inspecting the mounting conditions of extremely detailed components for long periods of time while maintaining high inspection accuracy.

そこで最近、検査の自動化が強く望まれている中で2次
元的な部品の画像から部品の位置ずれ等を検査する装置
が提案されてきている。
Recently, there has been a strong desire to automate inspections, and devices have been proposed that inspect the positional deviation of parts from two-dimensional images of the parts.

その従来の一般的な検査装置を第4図に示す。A conventional general inspection device is shown in FIG.

第4図において、31はプリント基板、32はプリント
基板31上に実装された部品、33はそれらを撮像する
ビデオカメラ、34はビデオカメラ33からの映像信号
をA/D変換して画像メモリに格納する画像取込回路、
35は取込んだ画像から部品のエツジを検出するエツジ
検出回路、36はエツジ情報から部品のコーナーを検出
するコーナ検出回路、37は各部品のコーナの基準座標
値が格納されている゛基準データ格納メモリJ、38は
検出されたコーナの座標と基準座標値とから部品のずれ
量を計算するずれ量計算回路、39は部品の許容ずれ量
が格納されている許容ずれ量格納メモIJ H140は
算出されたずれ量と許容ずれ量を比較して部品の実装状
態の良否を判定する比較・判定回路である。
In FIG. 4, 31 is a printed circuit board, 32 is a component mounted on the printed circuit board 31, 33 is a video camera that images these components, and 34 is a video signal from the video camera 33 that is A/D converted and stored in an image memory. image capture circuit to store;
Reference numeral 35 denotes an edge detection circuit that detects the edge of a component from the captured image, 36 a corner detection circuit that detects the corner of the component from edge information, and 37 reference data that stores the reference coordinate values of the corners of each component. The storage memory J, 38, is a deviation amount calculation circuit that calculates the amount of deviation of the component from the detected corner coordinates and the reference coordinate value, and 39 is the allowable deviation amount storage memo IJ H140 in which the allowable deviation amount of the component is stored. This is a comparison/judgment circuit that compares the calculated deviation amount and the allowable deviation amount to judge whether the mounting state of the component is good or bad.

以下その動作を説明する。プリント基板31上に実装さ
れた部品32をビデオカメラ33で撮像し、その映像信
号を画像取込回路34でA/D変換し画像メモリに取込
む。その画像を用いてエツジ検出回路35で部品32の
エツジを検出し、そのエツジ情報からコーナ検出回路3
6で部品32のコーナの座標値を検出する。この検出さ
れた各コーナの座標値とメモ+)J37に格納されてい
る部品の基準座標値とを比較して、ずれ量計算回路38
で両者のずれ量を計算する。そして、その算出された部
品の基準値からのずれ量と、メモ1JH39に格納され
ているずれの許容値とを、比較・判定回路40で比較し
、部品のずれや欠品等の実装状態の良否を判定している
The operation will be explained below. A component 32 mounted on a printed circuit board 31 is imaged by a video camera 33, and the video signal is A/D converted by an image capture circuit 34 and captured into an image memory. Using the image, the edge detection circuit 35 detects the edges of the component 32, and from the edge information, the corner detection circuit 3
6, the coordinate values of the corners of the component 32 are detected. The detected coordinate values of each corner are compared with the standard coordinate values of the component stored in the memo +) J37, and the deviation calculation circuit 38
Calculate the amount of deviation between the two. Then, the comparison/judgment circuit 40 compares the calculated deviation amount of the component from the standard value and the deviation tolerance stored in the memo 1JH39, and detects the mounting condition such as deviation of the component or missing parts. Judging whether it is good or bad.

発明が解決しようとする課題 しかし、従来例で示したような検査方法では、ビデオカ
メラで部品を撮像して2次元的な情報を用いているため
、例えば部品が半田付は不良等の原因で全体的に浮き上
がって実装されていたり、ICの足が部分的に浮き上が
っている様な不良は本発明は上記課題を解決するため、
基板上に実装された部品の高さを測定する高さ測定手段
と、部品の基準の高さが格納してある第1のメモリとそ
の基準の高さと測定データの二乗誤差を計算する二乗誤
差計算回路と、マスクデータを格納する第2のメモリと
、マスクごとに二乗誤差を累積加算する累積加算回路と
、マスクごとに二乗誤差の平均値を計算する平均計算回
路と、良否判定用の基準しきい値を格納する第3のメモ
リと、マスクごとに二乗誤差の平均値と基準しきい値を
比較し、部品の実装状態の良否を判定する比較判定回路
で構成されているものである。
Problems to be Solved by the Invention However, in the inspection method shown in the conventional example, since two-dimensional information is used by imaging the component with a video camera, for example, if the component is soldered, it may be the cause of a defect. In order to solve the above-mentioned problems, the present invention solves the above-mentioned problems, such as when the IC is mounted with the entire part lifted up or where the feet of the IC are partially lifted up.
A height measuring means for measuring the height of a component mounted on a board, a first memory storing a reference height of the component, and a square error for calculating a square error between the reference height and measurement data. a calculation circuit, a second memory that stores mask data, an accumulative addition circuit that cumulatively adds squared errors for each mask, an average calculation circuit that calculates the average value of squared errors for each mask, and standards for determining pass/fail. It is composed of a third memory that stores a threshold value, and a comparison/judgment circuit that compares the average value of the square error for each mask with a reference threshold value and determines whether the mounting state of the components is good or bad.

作用 本発明は上記の構成により、基板上に実装された部品の
高さ情報をもとに、基準値からのずれ度合いをマスクご
とに二乗誤差の平均値で定量化し、二次元的な(平面的
な)ずれの検査に加え、三次元的な部品の浮き等の不良
も簡便に検査できるものである。
Effects With the above configuration, the present invention quantifies the degree of deviation from a reference value for each mask using the average value of the squared error based on the height information of the components mounted on the board, and In addition to inspecting for misalignment (e.g.), defects such as three-dimensional parts lifting can also be easily inspected.

実施例 第1図は本発明の基板検査装置の一実施例を示すブロッ
ク図である。第1図において、1はプリント基板、2は
プリント基板1上に実装されている部品、3はプリント
基板1及び部品2の高さを測定する三次元座標計測部、
4は距離センサ部、5は高さ計算回路、6は部品2の基
準の高さデータが格納されているメモリA、7は二乗誤
差計算回路、8は減算回路、9は二乗計算回路、10は
プリント基板1と同じ大きさに相当するメモリBで、メ
モリB内には部品ごとにマスクが設定してある。
Embodiment FIG. 1 is a block diagram showing an embodiment of the substrate inspection apparatus of the present invention. In FIG. 1, 1 is a printed circuit board, 2 is a component mounted on the printed circuit board 1, 3 is a three-dimensional coordinate measuring unit that measures the height of the printed circuit board 1 and the component 2;
4 is a distance sensor section, 5 is a height calculation circuit, 6 is a memory A in which reference height data of component 2 is stored, 7 is a square error calculation circuit, 8 is a subtraction circuit, 9 is a square calculation circuit, 10 is a memory B corresponding to the same size as the printed circuit board 1, and a mask is set for each component in the memory B.

11は累積加算回路、12は平均計算回路、13はメモ
リCで、マスクごとの基準のしきい値が格納されている
。14は比較・判定回路である。
11 is a cumulative addition circuit, 12 is an average calculation circuit, and 13 is a memory C in which reference threshold values for each mask are stored. 14 is a comparison/judgment circuit.

以下その動作を説明する。The operation will be explained below.

プリント基板1上に実装されている部品2の高さ及びプ
リント基板1表面の高さを三次元座標計測部3で計測す
る。この三次元座標計測部3は、距離センサ部4とその
距離センサ部4からの情報を用いて高さを計算する高さ
計算回路5とから構成されており、本実施例の場合、三
次元座標の計測原理としては、レーザ及び受光素子を使
った三角測量法の原理を用いている。得られた高さ情報
はプリント基板1かもの高さに補正され、二乗誤差計算
回路7に出力される。
The height of the component 2 mounted on the printed circuit board 1 and the height of the surface of the printed circuit board 1 are measured by a three-dimensional coordinate measuring section 3. The three-dimensional coordinate measurement section 3 is composed of a distance sensor section 4 and a height calculation circuit 5 that calculates the height using information from the distance sensor section 4. The principle of coordinate measurement uses the principle of triangulation using a laser and a light receiving element. The obtained height information is corrected to the height of the printed circuit board 1 and output to the square error calculation circuit 7.

二乗誤差計算回路7では、基準となる部品2の高さデー
タが格納されているメモリ6からの値と、三次元座標計
測部3で計測された高さデータとの二乗誤差を計算する
。即ち、両データの差を減算回路8で求め、その差の二
乗を二乗計算回路9で高速に計算している。そして計算
された二乗誤差は、メモリ10に格納されたマスクデー
タを参照して、累積加算回路11でマスクごとに累積加
算され、平均計算回路12でその累積加算値を累積加算
数で割算し、マスク内の二乗誤差の平均値を計算する。
The square error calculation circuit 7 calculates the square error between the value from the memory 6 in which the height data of the reference component 2 is stored and the height data measured by the three-dimensional coordinate measuring section 3. That is, the difference between both data is determined by the subtraction circuit 8, and the square of the difference is calculated at high speed by the square calculation circuit 9. Then, the calculated squared error is cumulatively added for each mask in the cumulative addition circuit 11 with reference to the mask data stored in the memory 10, and the cumulative addition value is divided by the number of cumulative additions in the average calculation circuit 12. , calculate the mean value of the squared error in the mask.

最後に比較・判定回路14では、平均計算回路12の出
力であるマスクごとの平均二乗誤差と、メモリ13に格
納されている良否判定用のマスクごとの基準しきい値と
を比較して、平均二乗誤差が基準しきい値より大きいか
小さいかで不良/良を判定している。
Finally, the comparison/determination circuit 14 compares the mean squared error for each mask, which is the output of the average calculation circuit 12, with the reference threshold value for each mask for pass/fail determination stored in the memory 13, and calculates the average Bad/good is determined based on whether the squared error is larger or smaller than a reference threshold value.

以上の動作の中で、メモリ10内のマスクデータ及びメ
モリ13内の基準しきい値について更に詳しく説明する
。メモリ10内のマスクデータは、プリント基板1上の
高さデータとデータ数は同一で、プリント基板1上での
位置(アドレス)において1対1に対応しておシ、マス
クデータの中身は、マスクごとの各領域をマスクごとの
固有番号で埋めたものとしてある。従って累積加算回路
11では、マスクの固有番号別に累積加算するバッファ
Aを設け、そのバッファAにそれぞれのマスク領域内で
の基準高さと測定高さとの二乗誤差を累積加算している
。そして平均計算回路12で、バッファA内の二乗誤差
の累積加算値を累積加算数で割って、マスク内の平均二
乗誤差を計算して、バッファBに格納している。
In the above operation, the mask data in the memory 10 and the reference threshold value in the memory 13 will be explained in more detail. The mask data in the memory 10 has the same number of data as the height data on the printed circuit board 1, and has a one-to-one correspondence in position (address) on the printed circuit board 1.The contents of the mask data are as follows. Each area of each mask is filled with a unique number for each mask. Therefore, the cumulative addition circuit 11 is provided with a buffer A that performs cumulative addition for each mask unique number, and cumulatively adds the square error between the reference height and the measured height within each mask area to the buffer A. Then, the average calculation circuit 12 divides the cumulative addition value of the squared errors in the buffer A by the number of cumulative additions, calculates the average squared error in the mask, and stores it in the buffer B.

Buffer A (? スフ番号〕−E(基準高さ〔
アドレス〕−測定高さ〔アドレス〕)′    ・・・
・・・■・・・・・・■ 即ち、第1式で示したような計算を二乗誤差計算回路7
及び累積加算回路11で行なっておシ、第2式で示した
計算を平均計算回路12で行なっている。
Buffer A (? Suffu number) - E (Reference height [
address] - measurement height [address])'...
・・・■・・・・・・■ In other words, the square error calculation circuit 7 performs the calculation as shown in the first equation.
The calculation shown in the second equation is performed by the average calculation circuit 12.

第2図に具体的なマスクデータと部品の位置ずれの関係
を示す。第2図fa)は良品、(b)は不良品の場合を
示している。位置ずれ無しの時の正常な直方体形状の部
品の配置位置を示しているのが破線枠21で、その枠内
に部品のずれ許容値を考慮して、斜線部で示しだ4つの
マスクP15.  Q16.  R17゜S18が設定
してある。実線枠19及び20は実際に配置された部品
の2次元的な位置を示している′。本実施例では、マス
クP15.  Q16.  R17,S18の固有値(
マスク番号)はそれぞれ、10. 11.12. 13
トシ、従ってマスクデータとしては、例えばマスクP1
5の領域内(斜線枠内)のアドレスには全て” 10 
”という値が格納されている。
FIG. 2 shows the relationship between specific mask data and component positional deviation. FIG. 2 fa) shows a non-defective product, and FIG. 2b shows a defective product. The dashed line frame 21 indicates the normal placement position of the rectangular parallelepiped-shaped component when there is no positional shift, and within that frame, four masks P15. Q16. R17°S18 is set. Solid line frames 19 and 20 indicate the two-dimensional positions of the actually placed parts'. In this embodiment, the mask P15. Q16. Eigenvalues of R17 and S18 (
Mask number) is 10. 11.12. 13
Therefore, as mask data, for example, mask P1
All addresses within the area of 5 (within the diagonal line) are "10"
” is stored.

このようなマスクデータに基づいて、部品の基準データ
と測定データのマスク内の平均二乗誤差を計算して部品
の実装状態の良否を判定する。例えば第2図(a)の場
合、実線枠19のずれは少しで、ずれ許容値以内に収ま
っているため各マスクは実線枠19内で入っており、各
マスク内での平均二乗り内で誤差の二乗を累積した数で
ある。それに対し、第2図fb)の場合は、実線枠20
のずれが大きいため、マスクR17は完全に実線枠20
の外に出てしまっている。従ってマスクR17内での平
均二乗誤る。
Based on such mask data, the mean squared error within the mask between the reference data and measurement data of the component is calculated to determine whether the mounting state of the component is good or bad. For example, in the case of Fig. 2(a), the deviation of the solid line frame 19 is small and is within the deviation tolerance, so each mask is contained within the solid line frame 19, and within the mean square within each mask. This is the cumulative number of squared errors. On the other hand, in the case of Fig. 2 fb), the solid line frame 20
Because the deviation is large, the mask R17 is completely aligned with the solid line frame 20.
It has gone outside. Therefore, there is a mean square error within mask R17.

これをわかりやすくグラフ化したものが第3図である。Figure 3 shows this in an easy-to-understand graph.

第3図において、斜線の棒グラフで示したものが、マス
ク内の平均二乗誤差である。第2図fa)の良品の場合
に相当するのがD22で、第2図(b)の位置ずれが発
生した場合がF23で示したようになる。また、大きな
位置ずれはないが、全体的に浮いて配置されていたり、
傾いて配置されている場合がE24に相当する。従って
、良否判定用のマスクごとの基準しきい値(この第2図
の場合、マスクR17の基準しきい値)をG25の値に
設定しておけば、許容値以上の二次元的な位置ずれはも
とより、三次元的な部品の浮きや傾き等の不良も同一の
構成で判定できる。
In FIG. 3, the shaded bar graph represents the mean squared error within the mask. D22 corresponds to the case of a non-defective product in FIG. 2fa), and F23 corresponds to the case where a positional shift occurs in FIG. 2(b). Also, although there is no major positional shift, the overall placement is floating,
E24 corresponds to the case where it is arranged at an angle. Therefore, by setting the standard threshold value for each mask for pass/fail judgment (in the case of this figure 2, the standard threshold value for mask R17) to the value of G25, two-dimensional positional deviation exceeding the allowable value can be avoided. In addition, defects such as lifting and tilting of three-dimensional parts can also be determined using the same configuration.

まだ、マスクサイズ(形状)の変更や、マスク内の測定
データ中に部品形状の影響等によシ三次元座標が測定で
きない部分が存在した場合は、マスク内の判定に用いる
データ数が変わってしまうが、本実施例の構成では基準
データと測定データの二乗誤差をマスクごとに有効デー
タ数で平均化しているだめ、良否判定用の基準しきい値
をデータ数の増減に伴って変更する必要はなく、常に同
一の基準で部品の実装状態の良否を判定することができ
る。
If the mask size (shape) has changed or there are parts of the measurement data inside the mask where the 3D coordinates cannot be measured due to the influence of the part shape, etc., the number of data used for judgment inside the mask will change. However, in the configuration of this embodiment, the square error between the reference data and the measured data is averaged by the number of valid data for each mask, so it is necessary to change the reference threshold value for pass/fail judgment as the number of data increases or decreases. Therefore, the quality of the component mounting state can always be determined using the same criteria.

以上の様に本実施例においては、二次元的な位置情報の
比較によっては検査できなかった三次元的な部品の浮き
や傾き、部分的なICの足の浮き等も検査できるように
なり、適切なマスクデータに基づいて基準値と測定デー
タとの二乗誤差の平均を計算することにより、非常に簡
便に部品の実装状態の良否を判定することができる。
As described above, in this embodiment, it is now possible to inspect three-dimensional lifting or tilting of parts, partial lifting of IC legs, etc., which could not be inspected by comparing two-dimensional position information. By calculating the average of the squared errors between the reference value and the measured data based on appropriate mask data, it is possible to determine the quality of the mounting state of the component very easily.

発明の効果 以上述べてきたように本発明によれば、基板上に実装さ
れた部品の高さを測定する高さ測定手段と、部品の基準
の高さと測定高さデータのマスクごとの平均二乗誤差を
計算する回路と、マスクごとに平均二乗誤差と基準しき
い値を比較して部品の実装状態の良否を判定する比較・
判定回路とから構成される比較的簡易な回路構成で、人
間の目視検査に頼ることなく、また二次元的な位置情報
では検査できなかった三次元的な浮きゃ傾きに関する不
良についても検査できるようになり、検査の自動化や作
業効率の向上という多大な効果を得ることができる。
Effects of the Invention As described above, according to the present invention, there is provided a height measuring means for measuring the height of a component mounted on a board, and a mean square of the reference height of the component and the measured height data for each mask. A circuit that calculates the error and a comparison circuit that compares the mean squared error and standard threshold for each mask to determine whether the mounting state of the components is good or bad.
With a relatively simple circuit configuration consisting of a judgment circuit and a judgment circuit, it is possible to inspect for defects related to three-dimensional float inclination, which could not be inspected using two-dimensional position information, without relying on human visual inspection. This can bring great benefits such as automating inspections and improving work efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における基板検査装置のブロ
ック結線図、第2図(al、 (blはマスクと位置ず
れの関係図、第3図はマスク内の平均二乗誤差の良/不
良時の棒グラフ対比図、第4図は従来の基板検査装置の
ブロック結線図である。 1・・・プリント基板、2・・・部品、3・・・三次元
座標計測部、6・・・基準高さ格納メモリ、7・・・二
乗誤差計算回路、10・・・マスクデータ格納メモリ、
11・・・累積加算回路、12・・・平均計算回路、1
3・・・基準しきい値格納メモリ、14・・・比較・判
定回路。 図 第 2 図 (L:A) / 采 図 第 図
Fig. 1 is a block diagram of a board inspection apparatus according to an embodiment of the present invention, Fig. 2 (al, (bl) is a relationship diagram between the mask and positional deviation, and Fig. 3 is a diagram showing the relationship between the mask and the positional deviation of the mean square error in the mask. Fig. 4 is a block diagram of a conventional board inspection device. 1... Printed circuit board, 2... Components, 3... Three-dimensional coordinate measuring section, 6... Standard Height storage memory, 7... Square error calculation circuit, 10... Mask data storage memory,
11... Cumulative addition circuit, 12... Average calculation circuit, 1
3... Reference threshold value storage memory, 14... Comparison/judgment circuit. Figure 2 (L:A) / Button diagram

Claims (1)

【特許請求の範囲】[Claims] 基板及び前記基板上に実装された部品の高さを測定する
高さ測定手段と、前記部品の基準の高さが格納してある
第1のメモリと、前記高さ測定手段からの高さデータと
前記第1のメモリからの基準高さデータとの二乗誤差を
計算する二乗誤差計算回路と、基板上に設定されたマス
クデータを格納する第2のメモリと、前記二乗誤差計算
回路で計算された二乗誤差を前記第2のメモリからのマ
スクごとに累積加算する累積加算回路と、前記マスクご
とに二乗誤差の平均値を計算する平均計算回路と、良否
判定用の基準しきい値を格納する第3のメモリと、前記
マスクごとに、前記平均計算回路で計算された平均二乗
誤差値と前記第3のメモリからの基準しきい値を比較し
、前記部品の実装状態の良否を判定する比較判定回路と
を具備する基板検査装置。
a height measuring means for measuring the height of a board and a component mounted on the board; a first memory storing a reference height of the component; and height data from the height measuring means. a square error calculation circuit that calculates the square error between the reference height data and the reference height data from the first memory; a second memory that stores the mask data set on the substrate; an accumulative addition circuit that cumulatively adds the squared errors for each mask from the second memory; an average calculation circuit that calculates the average value of the squared errors for each mask; and a reference threshold for pass/fail judgment. a third memory, for each mask, a comparison that compares the mean squared error value calculated by the average calculation circuit with a reference threshold value from the third memory, and determines whether the mounting state of the component is good or bad; A board inspection device comprising a determination circuit.
JP63161671A 1988-06-29 1988-06-29 Board checking apparatus Pending JPH0210252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63161671A JPH0210252A (en) 1988-06-29 1988-06-29 Board checking apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63161671A JPH0210252A (en) 1988-06-29 1988-06-29 Board checking apparatus

Publications (1)

Publication Number Publication Date
JPH0210252A true JPH0210252A (en) 1990-01-16

Family

ID=15739628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63161671A Pending JPH0210252A (en) 1988-06-29 1988-06-29 Board checking apparatus

Country Status (1)

Country Link
JP (1) JPH0210252A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107588747A (en) * 2016-07-07 2018-01-16 韩华泰科株式会社 Measure height correction rule generating means and method, height measuring device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107588747A (en) * 2016-07-07 2018-01-16 韩华泰科株式会社 Measure height correction rule generating means and method, height measuring device and method
CN107588747B (en) * 2016-07-07 2020-10-16 韩华精密机械株式会社 Measurement height correction rule generation device and method, height measurement device and method

Similar Documents

Publication Publication Date Title
JP4894628B2 (en) Appearance inspection method and appearance inspection apparatus
JPH049605A (en) Sheet length measuring system
JPH0210252A (en) Board checking apparatus
JP2003510568A (en) LCD inspection method and LCD inspection apparatus by pattern comparison
JPH09203624A (en) Calibration unit for outline of semiconductor package
JPH0210210A (en) Base board inspecting apparatus
JP2743663B2 (en) Mounting board appearance inspection device
JPH043953A (en) Inspecting apparatus of surface mounting component
JPH0399209A (en) Inspection apparatus for mounting board
JPH0749930B2 (en) Mounted board inspection device
JPH0372203A (en) Checking method of outer appearance of soldering part
JPH02212705A (en) Packaged circuit board inspecting device
JP2525261B2 (en) Mounted board visual inspection device
JPS62233746A (en) Checker for chip mounted board
JP2003130619A (en) Method and apparatus for detecting defective lead terminal of electronic parts
JPH10227622A (en) Inspection method of lead and lead inspecting instrument
JPH02253110A (en) Shape checking device for linear object
JPH0765967B2 (en) Mounted board visual inspection device
JPS63132106A (en) Detector for parts
JPH03188306A (en) Apparatus for visual inspection of mounting board
JP2003240539A (en) Method and apparatus for testing surface shape
JPS61114109A (en) Weight receiving method
JP2803427B2 (en) Surface mount IC lead displacement inspection equipment
JPS63128207A (en) Inspecting device for packaging parts
JPS63135849A (en) Substrate inspection system