JPH02102436A - Birefringence measuring method - Google Patents

Birefringence measuring method

Info

Publication number
JPH02102436A
JPH02102436A JP25448388A JP25448388A JPH02102436A JP H02102436 A JPH02102436 A JP H02102436A JP 25448388 A JP25448388 A JP 25448388A JP 25448388 A JP25448388 A JP 25448388A JP H02102436 A JPH02102436 A JP H02102436A
Authority
JP
Japan
Prior art keywords
sample
analyzer
polarizer
light
retardation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25448388A
Other languages
Japanese (ja)
Other versions
JP2791479B2 (en
Inventor
Kiyokazu Sakai
清和 酒井
Shigeyoshi Osaki
大崎 茂芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanzaki Paper Manufacturing Co Ltd
Original Assignee
Kanzaki Paper Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanzaki Paper Manufacturing Co Ltd filed Critical Kanzaki Paper Manufacturing Co Ltd
Priority to JP63254483A priority Critical patent/JP2791479B2/en
Priority to US07/417,177 priority patent/US4973163A/en
Publication of JPH02102436A publication Critical patent/JPH02102436A/en
Application granted granted Critical
Publication of JP2791479B2 publication Critical patent/JP2791479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To stably measure birefringence characteristics with high accuracy by searching for a couple of the closest values among values of retardation calculated by using results obtained by measuring the relation between the angle of rotation when the coupled body of a sample, a polarizer, and an analyzer is rotated and the intensity of light transmitted through the three bodies as to two different-wavelength light beams. CONSTITUTION:The sample is interposed between the polarizer 3 and analyzer 5 whose polarizing directions cross each other at a constant angle. Then the relation between the angle of rotation when the coupled body of the sample 4, polarizer 3, and analyzer 5 is rotated relatively and the intensity of the light transmitted through the polarizer 3, sample 4, and analyzer 5 is measured as to two light beams. A couple of the closest values are found among many retardation values calculated by using the measurement result as to one wavelength light beam and many retardation values calculated by using the measurement result of the other wavelength light beams. Consequently, one value can be determined unequivocally among the many calculated retardation values.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は各種材料のW屈折特性を測定する装置に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus for measuring W refraction characteristics of various materials.

(従来の技術) 光学的な装置では材料の複屈折i生が問題になる場合が
多(、またプラスデックシート等は延伸によって複屈折
性を帯びるので、複屈折の程度によって延伸度合を検出
し管理すことができる。このように色々な場合に材料の
複屈折特性を測定する必要が生じるが、アツベの屈折計
を用いるような方法は試料の形状に制限があり、測定操
作も面倒で、直読的に測定結果を表示するのが難しい。
(Prior art) In optical devices, the birefringence of materials is often a problem (Also, since PlusDeck sheets, etc. become birefringent when stretched, the degree of stretching is detected by the degree of birefringence. In this way, it is necessary to measure the birefringence properties of materials in various cases, but methods such as those using Atsube's refractometer have limitations on the shape of the sample, and the measurement operations are cumbersome. It is difficult to display measurement results in a direct manner.

試料を偏光子とこれと直交させた検光子との間にはさみ
、白色光を入射させて透過光が呈する干渉色を見て干渉
色図表から試料のレターデーション(常光異常光の試料
内での光路長差)を求めると云った方法もあるが、実験
的な方法で精度も低く自動化も困難である。そこでより
精度良く、かつ自動的に複屈折特性を測定する方法が特
開昭60−13245号とか特開昭52 65489号
等によって提案されている。これらの方法は単一波長の
直線偏光を試料に入射させ、試料を透過した回転偏光の
状態から試料のレターデーションを求めるものである。
A sample is sandwiched between a polarizer and an analyzer perpendicular to the polarizer, and white light is incident on the sample, and the interference color exhibited by the transmitted light is observed. The retardation of the sample (ordinary and extraordinary light within the sample) is determined from the interference color chart. There is a method of determining the optical path length difference), but it is an experimental method, has low accuracy, and is difficult to automate. Therefore, methods for automatically measuring birefringence characteristics with higher accuracy have been proposed in Japanese Patent Laid-Open Nos. 60-13245 and 1982-65489. In these methods, linearly polarized light of a single wavelength is made incident on a sample, and the retardation of the sample is determined from the state of the rotationally polarized light transmitted through the sample.

複屈折を起す試料では試料の光軸に垂直な方向に進行す
る偏光に対して最大屈折率を呈する偏光の偏波方向とそ
れと直交する最小屈折率を呈する偏光の偏波方向とがあ
り、上記最大屈折率および最小屈折率を主屈折率と呼び
これをnl、n2で表わし、試料の厚さをTとするとレ
ターデーションRtはT(r、1−n2)で与えられる
。所で上述方法によって直接求まるのはRt (nl−
n2)ではなく、Rtを波長で割ったときの端数、つま
り試料透過光における常光と異常光との位相差で、これ
は0から2πの間で変化しているだけでRtを一義的に
決めることができない。上記特開昭60−13245号
は試料の光の吸収係数を用い、透過光の減衰からTを求
めてRtを決定している。特開昭52−65489号は
試料が薄くてレターデーションが半波長程度以下の場合
に適用されるものである。
In a sample that causes birefringence, there is a polarization direction of polarized light that exhibits a maximum refractive index for polarized light that travels in a direction perpendicular to the optical axis of the sample, and a polarization direction of polarized light that exhibits a minimum refractive index that is orthogonal to that direction. The maximum refractive index and the minimum refractive index are called the principal refractive index, and are expressed by nl and n2, and when the thickness of the sample is T, the retardation Rt is given by T(r, 1-n2). However, what can be directly determined by the above method is Rt (nl-
n2), but rather the fraction when Rt is divided by the wavelength, that is, the phase difference between the ordinary light and the extraordinary light in the light transmitted through the sample, and this only changes between 0 and 2π, which uniquely determines Rt. I can't. In the above-mentioned Japanese Patent Laid-Open No. 60-13245, Rt is determined by determining T from the attenuation of transmitted light using the light absorption coefficient of the sample. JP-A-52-65489 is applied when the sample is thin and the retardation is about half a wavelength or less.

(発明が解決しようとする課題) 本発明は試料の厚さに関係なく簡単な操作で試料のレタ
ーデーションが正確に測定できる装置を提供しようとす
るものである。
(Problems to be Solved by the Invention) An object of the present invention is to provide an apparatus that can accurately measure the retardation of a sample with simple operations regardless of the thickness of the sample.

(課題を解決するための手段) 偏光方向を一定の角度で交わらせた偏光子と検光子との
間に試料を挿入し、試料と偏光子検光子結合体とを相対
的に回転させたときの回転角と偏光子、試料、検光子の
3者透過光強度との関係を二つの波長の光について測定
し、一つの波長の光についての上記測定結果を用いて算
出される多数のレターデーションの値と他の一つの波長
の光についての上記測定結果を用いて算出される多数の
レターデーションの値とから互いに最も近接した一組の
値を索出するようにした。
(Means for solving the problem) When a sample is inserted between a polarizer and an analyzer whose polarization directions intersect at a certain angle, and the sample and the polarizer/analyzer combination are rotated relative to each other. The relationship between the rotation angle and the transmitted light intensity of the polarizer, sample, and analyzer is measured for two wavelengths of light, and a large number of retardations are calculated using the above measurement results for one wavelength of light. A set of values that are closest to each other is found from a number of retardation values calculated using the above measurement results for light of one other wavelength.

く作用) 一つの波長の光によってレターデーションを算出するの
は従来の方法と同じである。この場合レターデーション
の値は計算上とびとびに無数の値が求まる。測定に用い
る波長が異ると二つの主屈折率が何れの波長においても
変らない場合でも試料内に含まれる波数が異るからJ1
算上求まる無数のレターデーションの値も異ったものと
なるが、レターデーションの値は波長に関せず一定の筈
であるから、第1の波長におけるレターデーションの値
の群と第2の波長におけるレターデーションの値の群と
から互いに最ら近接した値を索出することにより、多数
算出されるレターデーションの値から一義的に一つの値
を決定することができる。
) Calculating retardation using light of one wavelength is the same as the conventional method. In this case, an infinite number of retardation values are calculated at intervals. If the wavelength used for measurement is different, even if the two principal refractive indices do not change at any wavelength, the wave numbers contained in the sample will differ.
The countless retardation values that can be calculated will also be different, but since the retardation value should be constant regardless of the wavelength, the group of retardation values at the first wavelength and the group of retardation values at the second wavelength are By finding the values closest to each other from a group of retardation values at wavelengths, it is possible to uniquely determine one value from a large number of calculated retardation values.

(実施例) 第1図に本発明の一実施例を示す。1は光源、2はフィ
ルタ板で、互いに異なる単一波長の光を透過させる二種
類の単色フィルタ2a、2bが交換可能に取付けられて
おり、光源lから2つの波長λ1.λ2の光を交互に取
出せるようにしである。3は偏光子、5は検光子で、夫
々の偏光方向が一定の角度この実施例では平行の関係を
保って一体的に回転できるようにしてあり、モータ7に
よって回転せしめられる。4は偏光子3と検光子5との
間に挿入された試料である。6は光検出器で検光子5を
透過した光を受光する。10はコンピュータでインター
フェース9を介して光検出器6の出力信号およびモータ
軸に取付けられた回転角検出器8の出力信号を取込んで
データ処理を行い、またモータ7を制御する。コンピュ
ータ10によるデータ処理の結果はCRTIIに表示さ
れ、またプリンタ12によって記録される。13はキー
ボードでコンピュータ10に種々な指令およびデータ処
理に必要なパラメータを入力するのに用いられる。
(Example) FIG. 1 shows an example of the present invention. 1 is a light source, 2 is a filter plate, and two types of monochromatic filters 2a and 2b, which transmit light of different single wavelengths, are attached interchangeably. This allows light of λ2 to be taken out alternately. Reference numeral 3 represents a polarizer, and reference numeral 5 represents an analyzer, both of which can be rotated integrally with their respective polarization directions maintained at a constant angle, parallel to each other in this embodiment, and are rotated by a motor 7. 4 is a sample inserted between the polarizer 3 and the analyzer 5. A photodetector 6 receives the light transmitted through the analyzer 5. A computer 10 receives the output signal of the photodetector 6 and the output signal of the rotation angle detector 8 attached to the motor shaft via an interface 9, processes the data, and controls the motor 7. The results of data processing by computer 10 are displayed on CRT II and recorded by printer 12. A keyboard 13 is used to enter various commands and parameters necessary for data processing into the computer 10.

上述した装置において一つのフィルタ2aを選び図の位
置に試料を置いて光検出器6の出力を偏光子2と検光子
5の一体物の回転角θの関数として極座標で表示すると
第2図のようなグラフが得られる。今の場合試料には直
線偏光が入射しているが、試料が複屈折性を有する場合
、試料透過光は一般に楕円偏光になっており、その長軸
2短軸の比および長軸方向は試料の厚さによって変化す
る。第3図は試料の屈折率楕円を示し、Y軸、Y軸は上
述装置で装置光軸Zに垂直な平面上に想定した座標軸で
偏光子、検光子の回転角θはY軸を基線にして測られる
。第3図でn 1 r02は二つの主屈折率でAA’お
よびBB’が各主屈折率の方向で、PP’が偏光子およ
び検光子の方向である。偏光子、検光子の方向PP゛が
AA’或はBB゛と一致したときは複屈折は起らず入射
光はそのま\試料、検光子を透過するから第2図に示す
ようにAA’およびBB’の方向で光検出出力は極大を
示す。PP’がAA’とBB’の丁度中間即ちAA’お
よびBB’に対して夫々45°の方向QQ’であるとき
、試料への入射直線偏光のAA°方向およびBB’方向
の成分の振幅は互いに等しく入射光振幅Aのl/Rであ
る。このAA’方向成分およびBB’方向成分の試料透
過時の位相が一致するときは出射光は入射光と振幅の等
しいQQ’方向の直線偏光であり、光検出出力は偏光子
検光子がAA’あるいはBB°方向であるときと同じに
なり、第2図のグラフは円となる。PP゛がQQ”方向
であるとき、試料透過光の二つの主屈折率方向の成分の
位相差が90°であると振幅がAiFiの円偏光となり
、光検出強度は最大時の1/2になり、位相差が180
°のときは前述位相差0のときと直交する方向の直線偏
光となって検光子により阻止され、光検出信号はOとな
る。つまり第2図のグラフで極大値を示す方向と45°
の角をなす方向の光検出信号値と光検出信号の最大値と
の比率により、二つの主屈折率方向の透過光の位相差を
知ることができる。所で測定対象は原理的には二つの主
屈折率nl、n2で未知数が二つであるから、位相差の
データが一つだけでは二つの主屈折率を決定することが
できない。そこで第2のフィルタ2bを選んで前述と同
じ測定を行うと、偏光子、検光子がQQ’方向のときの
試料透過光の二つの主屈折率方向成分の位相差として上
述フィルタ2aを選んだときと異る値が得られる。フィ
ルタ2a、2bによって得られる二つの波長λ1.λ2
に対して二つの主屈折率が同じとみなせるように二つの
波長を選ぶと次のようにして二つの主屈折率n1.n2
を求めることができる。
If one filter 2a is selected in the above-mentioned apparatus, a sample is placed at the position shown in the figure, and the output of the photodetector 6 is displayed in polar coordinates as a function of the rotation angle θ of the integrated polarizer 2 and analyzer 5, the result is as shown in Fig. 2. You will get a graph like this. In this case, linearly polarized light is incident on the sample, but if the sample has birefringence, the light transmitted through the sample is generally elliptically polarized light, and the ratio of the major axis to the minor axis and the direction of the major axis are varies depending on the thickness. Figure 3 shows the refractive index ellipse of the sample. is measured. In FIG. 3, n 1 r02 is the two principal refractive indices, AA' and BB' are the directions of each principal refractive index, and PP' is the direction of the polarizer and analyzer. When the direction PP' of the polarizer or analyzer matches AA' or BB', birefringence does not occur and the incident light passes through the sample and analyzer as is, so AA' as shown in Figure 2. The photodetection output shows a maximum in the direction of and BB'. When PP' is exactly midway between AA' and BB', that is, in the direction QQ' at 45° with respect to AA' and BB', the amplitudes of the components in the AA° direction and BB' direction of the linearly polarized light incident on the sample are They are both equal to l/R of the incident light amplitude A. When the phases of the AA' direction component and the BB' direction component match when passing through the sample, the emitted light is linearly polarized light in the QQ' direction with the same amplitude as the incident light, and the photodetection output is determined by the polarizer analyzer. Alternatively, it is the same as when it is in the BB° direction, and the graph in FIG. 2 becomes a circle. When PP'' is in the QQ'' direction, if the phase difference between the components in the two principal refractive index directions of the light transmitted through the sample is 90°, the amplitude becomes circularly polarized light of AiFi, and the detected light intensity is 1/2 of the maximum. and the phase difference is 180
When the phase difference is 0, the light becomes linearly polarized in a direction orthogonal to that when the phase difference is 0, and is blocked by the analyzer, and the photodetection signal becomes O. In other words, it is 45 degrees from the direction showing the maximum value in the graph of Figure 2.
The phase difference between the transmitted light in the two principal refractive index directions can be determined by the ratio of the photodetection signal value in the direction forming the angle of , and the maximum value of the photodetection signal. By the way, since the object to be measured has two principal refractive indices nl and n2 in principle and two unknowns, it is not possible to determine the two principal refractive indices with only one phase difference data. Therefore, when the second filter 2b was selected and the same measurement as described above was performed, the above-mentioned filter 2a was selected as the phase difference between the two main refractive index direction components of the sample transmitted light when the polarizer and analyzer were in the QQ' direction. Different values are obtained depending on the time. Two wavelengths λ1. obtained by filters 2a and 2b. λ2
If two wavelengths are selected so that the two principal refractive indices can be regarded as the same, then the two principal refractive indices n1. n2
can be found.

試料の厚さをTとすると屈折率nlに対して試料内の波
長λ1の光の波数N1は N1=nlXT/λ1 同様にして屈折率n2に対する波数N2はN2=n2T
/λ1 同相で入射した二つの主屈折率方向の同波長の光の試料
出射時の位相差Δ1は △1=2π(Nl−fV2)=’i丁(mt−/nz)
偏光子、検光子の方向が第3図のQQ’方向であるとき
入射光の試料の二つの主屈折率方向成分は同相同振幅で
あるから、出射光において位相差がΔ1であるときの出
射光のQQ’方向の振幅は次のようにして求められる。
If the thickness of the sample is T, the wave number N1 of light with wavelength λ1 in the sample for the refractive index nl is N1=nlXT/λ1 Similarly, the wave number N2 for the refractive index n2 is N2=n2T
/λ1 The phase difference Δ1 of two lights of the same wavelength in the direction of the principal refractive index that are incident in the same phase when the sample exits is △1=2π(Nl-fV2)='i (mt-/nz)
When the direction of the polarizer and analyzer is the QQ' direction in Figure 3, the two principal refractive index direction components of the sample of the incident light have the same phase and the same amplitude, so the output when the phase difference in the output light is Δ1. The amplitude of the emitted light in the QQ' direction is determined as follows.

まず、試料の光吸収率が偏光の方向によって異ならない
場合を考える。試料への入射光はQQ’方向のiii線
偏光でその振幅をAとすると主屈折率n1方向成分の撮
部はAiFiでこれのQQ’方向成分の振幅はA/2で
あり、この成分を(A/2)c、、ωLで表わすと、主
屈折率02方向成分のQQ゛方向成分は上記よりΔ1の
位相の遅れがあるので (A/2 ) cos (ωt−Δl)と表せる。計算
の便宜上前者を(A/2 ) cos(ωt+Δ1/2
)と書(と後者は(A/2)cOS(ωを一Δ1/2)
と8ける。従って試料出射となり、これを整理すると ム1 Acos−cos ωt  −−−(O)となり、試料
出射光のQQ’方向成分の振幅AQは 従って光検出出力は 光検出出力の最大値は偏光子、検光子のAA’方向或は
BB’方向の時に検出されAであるから、最大最小の比
A q / A = R1はR1= C1rQ”’ =
 cc−7” T (/El−”)12) −−−(/
 )2   λI 同様にして波長λ2の光で測定した場合は添数字を2と
して 上記(1)(2)式でR1,R2は実測値であり、λ1
゜λ2および試料の厚さTが既知であるから、(1)■
式からn 1 * n 2が算出される。実際上は単に
し  の比が求まり、これの平方根としてαが得られタ
ーデージ日ンT(nl−n2)を測定したい場  る。
First, consider the case where the light absorption rate of the sample does not differ depending on the direction of polarization. The light incident on the sample is iii-line polarized light in the QQ' direction, and its amplitude is A. The imaging unit for the component in the principal refractive index n1 direction is AiFi, and the amplitude of the component in the QQ' direction is A/2, and this component is When expressed as (A/2)c, .omega.L, the QQ' direction component of the principal refractive index 02 direction component has a phase delay of .DELTA.1 from the above, so it can be expressed as (A/2) cos (.omega.t-.DELTA.l). For convenience of calculation, the former is (A/2) cos(ωt+Δ1/2
) and write (and the latter is (A/2) cOS (ω - Δ1/2)
8. Therefore, the sample is emitted, and rearranging this becomes M1 Acos-cos ωt ---(O), and the amplitude AQ of the QQ' direction component of the sample emitted light is therefore the photodetection output.The maximum value of the photodetection output is the polarizer, Since it is detected when the analyzer is in the AA' direction or the BB' direction, the maximum and minimum ratio A q / A = R1 is R1 = C1rQ"' =
cc-7” T (/El-”)12) ---(/
)2 λI Similarly, when measuring with light of wavelength λ2, the subscript number is set to 2, and R1 and R2 are actual measured values in equations (1) and (2) above, and λ1
Since ゜λ2 and the sample thickness T are known, (1) ■
n 1 * n 2 is calculated from the formula. In practice, we simply find the ratio of , and then obtain α as the square root of this, and then we want to measure the tardage date T(nl-n2).

次に前記(イ)式は合が多いの場合(1)式から 帽9〆団=光T(バl〜報)・・・(3)上記(3)式
を満足するT (n 1−n2)の値は無数に存在する
。同様にして0式から (ロ)式は 上式は (4)式を満足するT (n 1−n2)の値も無数に
存在する。(3) (4)両式が同時に成立つのである
から、上記各無数のレターデーションの値の適当な範囲
内で互いに最も良(一致(原理的には完全に一致するが
、測定誤差があるから実際上完全一致は得られない)す
る−組の値を選んで平均すればよい。
Next, if the above formula (A) has many combinations, from the formula (1), the cap9〆dan = light T (bar ~ report)... (3) T (n 1-) that satisfies the above formula (3) There are an infinite number of values for n2). Similarly, there are countless values of T (n 1 - n2) that satisfy equations 0 to (b), and equation (4). (3) (4) Both equations hold true at the same time, so within an appropriate range of the countless retardation values mentioned above, the best match (in principle, they match perfectly, but there is a measurement error) (Actually, it is not possible to obtain a perfect match from

以上は簡単のため試料の光吸収率が偏光方向によって異
ならない場合である。主屈折率n 1 * n2の方向
の偏光に対する吸収率が異る場合、振幅吸収率al、a
2の比をa 1 / a 2−αとする。
For simplicity, the above example assumes that the light absorption rate of the sample does not differ depending on the polarization direction. When the absorption coefficients for polarized light in the direction of the principal refractive index n 1 * n2 are different, the amplitude absorption coefficients al, a
Let the ratio of 2 be a1/a2-α.

この場合偏光子、検光子の方向がAA’およびBB゛で
あるときの光検出出力の比によって吸収率上式は更に整
理すると 従って前記(1)、(2)式は (5) (6)式でR1,R2,α1.α2は実測値か
ら求まる値であるからT(nl−n2)は前述同様の方
法で決定できる。こ\でR1,R2は主屈折率rllの
方向即ち第3図でl\A°方向の光検出出力とQQ’方
向の光検出出力との比を用いる。これはこの方向を上記
計算の基準にとったからfである。
In this case, the absorption coefficient equation can be further rearranged by the ratio of the photodetection outputs when the polarizer and analyzer directions are AA' and BB'. Therefore, the above equations (1) and (2) can be transformed into (5) and (6). In the formula, R1, R2, α1. Since α2 is a value found from actual measurements, T(nl-n2) can be determined in the same manner as described above. Here, R1 and R2 are the direction of the principal refractive index rll, that is, the ratio of the photodetection output in the l\A° direction and the photodetection output in the QQ' direction in FIG. 3. This is f because this direction was taken as the reference for the above calculation.

本発明方法とコンベセータを用いたレターデーション相
減現象を利用する方法とを比較してみた。6つの試料を
対象に、偏光類v!i麻とベレックコンペンセーターを
用い、レターデーションの相減現象を利用した干渉色の
観察から試料のレターデーションを求めた結果とλ1=
590.Onm、λ2=657.3nmの波長の光を用
いて本発明の方法より測定し、レターデーション<30
00nmの範囲で両方のレターデーションの差が最小と
なるRtの組を求めた結果を表1に示す。
A comparison was made between the method of the present invention and a method using a retardation phase reduction phenomenon using a convesator. Polarized light v! for six samples. The results of determining the retardation of the sample from observation of interference colors using the phase reduction phenomenon of retardation using hemp and Berek compensator and λ1 =
590. Onm, measured by the method of the present invention using light with a wavelength of λ2 = 657.3 nm, retardation < 30
Table 1 shows the results of finding a set of Rts that minimizes the difference between the two retardations in the range of 00 nm.

6つの試料として、PET(ポリエチレンテレフタレー
ト; 58/μm)、FEP (弗素化ポリマー; 1
48/μm)、PS (ポリスチレン;48/μm) 
、 P P (ポリプロピレン;28/、um)、PS
(ポリスチレン;111/μm)、PP(ポリプロピレ
ン:28/μm)。
The six samples were PET (polyethylene terephthalate; 58/μm), FEP (fluorinated polymer; 1
48/μm), PS (polystyrene; 48/μm)
, P P (polypropylene; 28/, um), PS
(Polystyrene: 111/μm), PP (Polypropylene: 28/μm).

表■の結果から、ベレックコンペセーターを用いた測定
値と本発明法による測定値が非常に似た値となり、本発
明法で測定波長の1/2以上のレターデーションの値も
求めることが可能であることが分る。測定精度について
は、ベレックコンペセーターを用いる場合、その特性上
、Rtが大きい程、誤差が大きくなり、また、測定者に
よる個人差があるという欠点もある。一方本発明法の場
合、一つの試料で20回連続測定した時のRtの標準偏
差が、0.1nm以下という高精度である。
From the results in Table ■, the measured values using the Berek Compesator and the measured values using the method of the present invention are very similar, and it is possible to obtain retardation values of 1/2 or more of the measurement wavelength using the method of the present invention. It turns out that it is possible. Regarding measurement accuracy, when using a Berek compensator, due to its characteristics, the larger the Rt, the larger the error, and there are also individual differences among the measurers. On the other hand, in the case of the method of the present invention, the standard deviation of Rt when one sample is continuously measured 20 times is highly accurate, being 0.1 nm or less.

(以下次頁) N。(See next page) N.

試料 ET EP S P S P 試料厚さ (μ醜) 表! レターデーション測定値(止) ベレック”コンペントター      本発明法を用い
る方法 λ−590.On−λ−GS7.3rv+50
.8 102.4 219.0 41?、6 623、7 791.7 48.4 101.2 215、/1 417.7 608、2 790.4 (発明の効果) 本発明方法によれば操作が簡単で、人間の色感覚を用い
る方法のような個人差が入らず安定して高精度の測定が
できる。
Sample ET EP S P S P Sample thickness (μugly) Table! Retardation measurement value (stop) Berek” compentator Method using the method of the present invention λ-590.On-λ-GS7.3rv+50
.. 8 102.4 219.0 41? , 6 623, 7 791.7 48.4 101.2 215, /1 417.7 608, 2 790.4 (Effects of the invention) The method of the present invention is easy to operate and uses human color sense. It is possible to perform stable and highly accurate measurements without including individual differences such as

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実行する装置の一例のブロック図
、第2図は一波長についての測定結果のグラフ表示、第
3図は本発明方法の説明に用いられる角度、方向等の説
明図である。 1・・・光源、2a、2b・・・フィルタ、3・・・偏
光子、4・・・試料、5・・・検光子、6・・・光検出
器、7・・・モータ、8・・・回転角検出器、9・・・
インターフェース、10・・・コンピュータ、11・・
・CRT、12・・・プリンタ、13・・・キーボード
。 代理人  弁理士 縣  浩 介
Fig. 1 is a block diagram of an example of a device for carrying out the method of the present invention, Fig. 2 is a graphical representation of measurement results for one wavelength, and Fig. 3 is an explanatory diagram of angles, directions, etc. used to explain the method of the present invention. It is. DESCRIPTION OF SYMBOLS 1... Light source, 2a, 2b... Filter, 3... Polarizer, 4... Sample, 5... Analyzer, 6... Photodetector, 7... Motor, 8... ...Rotation angle detector, 9...
Interface, 10... Computer, 11...
・CRT, 12...Printer, 13...Keyboard. Agent Patent Attorney Kosuke Agata

Claims (1)

【特許請求の範囲】[Claims] 偏光方向を一定の角度で交わらせた偏光子と検光子との
間に試料を挿入し、試料と偏光子検光子結合体とを相対
的に回転させたときの回転角と偏光子、試料、検光子の
3者透過光強度との関係を二つの波長の光について測定
し、一つの波長の光についての上記測定結果を用いて算
出される多数のレターデーションの値と他の一つの波長
の光についての上記測定結果を用いて算出される多数の
レターデーションの値とから互いに最も近接した一組の
値を索出することを特徴とする複屈折率測定方法。
A sample is inserted between a polarizer and an analyzer whose polarization directions intersect at a certain angle, and the rotation angle when the sample and the polarizer/analyzer combination are rotated relative to each other, the polarizer, the sample, The relationship between the three-way transmitted light intensity of the analyzer is measured for two wavelengths of light, and a number of retardation values calculated using the above measurement results for one wavelength of light and the other one wavelength are calculated. A birefringence measurement method characterized by finding a set of values closest to each other from a large number of retardation values calculated using the above measurement results for light.
JP63254483A 1988-10-08 1988-10-08 Retardation measurement method Expired - Fee Related JP2791479B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63254483A JP2791479B2 (en) 1988-10-08 1988-10-08 Retardation measurement method
US07/417,177 US4973163A (en) 1988-10-08 1989-10-04 Method for measuring birefringence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63254483A JP2791479B2 (en) 1988-10-08 1988-10-08 Retardation measurement method

Publications (2)

Publication Number Publication Date
JPH02102436A true JPH02102436A (en) 1990-04-16
JP2791479B2 JP2791479B2 (en) 1998-08-27

Family

ID=17265680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63254483A Expired - Fee Related JP2791479B2 (en) 1988-10-08 1988-10-08 Retardation measurement method

Country Status (1)

Country Link
JP (1) JP2791479B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11485673B2 (en) 2017-08-24 2022-11-01 Corning Incorporated Glasses with improved tempering capabilities
US11643355B2 (en) 2016-01-12 2023-05-09 Corning Incorporated Thin thermally and chemically strengthened glass-based articles
US11697617B2 (en) 2019-08-06 2023-07-11 Corning Incorporated Glass laminate with buried stress spikes to arrest cracks and methods of making the same
US11708296B2 (en) 2017-11-30 2023-07-25 Corning Incorporated Non-iox glasses with high coefficient of thermal expansion and preferential fracture behavior for thermal tempering
US11795102B2 (en) 2016-01-26 2023-10-24 Corning Incorporated Non-contact coated glass and related coating system and method
US11891324B2 (en) 2014-07-31 2024-02-06 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078372A (en) * 1973-09-17 1975-06-26
JPS62157549A (en) * 1985-12-30 1987-07-13 Kanzaki Paper Mfg Co Ltd Anisotropy measuring apparatus for sheet-like light transmitting sample

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078372A (en) * 1973-09-17 1975-06-26
JPS62157549A (en) * 1985-12-30 1987-07-13 Kanzaki Paper Mfg Co Ltd Anisotropy measuring apparatus for sheet-like light transmitting sample

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11891324B2 (en) 2014-07-31 2024-02-06 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
US11643355B2 (en) 2016-01-12 2023-05-09 Corning Incorporated Thin thermally and chemically strengthened glass-based articles
US11795102B2 (en) 2016-01-26 2023-10-24 Corning Incorporated Non-contact coated glass and related coating system and method
US11485673B2 (en) 2017-08-24 2022-11-01 Corning Incorporated Glasses with improved tempering capabilities
US11708296B2 (en) 2017-11-30 2023-07-25 Corning Incorporated Non-iox glasses with high coefficient of thermal expansion and preferential fracture behavior for thermal tempering
US11697617B2 (en) 2019-08-06 2023-07-11 Corning Incorporated Glass laminate with buried stress spikes to arrest cracks and methods of making the same

Also Published As

Publication number Publication date
JP2791479B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
US4973163A (en) Method for measuring birefringence
US5864403A (en) Method and apparatus for measurement of absolute biaxial birefringence in monolayer and multilayer films, sheets and shapes
JP2005292140A (en) Light measuring device and its method
KR100195397B1 (en) Method and apparatus for measuring thickness of birefringence layer
US6992777B2 (en) Birefringent Mach-Zehnder interferometer
TWI615604B (en) Calibration method for wide-band achromatic composite wave plate
EP0737856B1 (en) A method of investigating samples by changing polarisation
JPH02102436A (en) Birefringence measuring method
JP2000509830A (en) Rotation compensator-type spectroscopic ellipsometer system with regression calibration with photoarray detector
KR101936792B1 (en) Optical Meter for Measuring of Film Structures based on Ellipsometry and Interferometer
JPS60122333A (en) Polarization analyzer
JP2006189411A (en) Measuring instrument and measuring method for phase delay
JPH02116732A (en) Method and apparatus for optical measurement
EP1038165B1 (en) Regression calibrated spectroscopic rotating compensator ellipsometer system with photo array detector
JP3518313B2 (en) Method and apparatus for measuring retardation
JPH02118406A (en) Liquid crystal cell gap measuring device
JPH04297835A (en) Method for measuring polarization and polarization measuring device using it
JP3787344B2 (en) Parameter detection method and detection apparatus for liquid crystal element
JP2009122152A (en) Method of analyzing polarization
JPH02183142A (en) Spectropolarimeter
JP2791480B2 (en) How to measure retardation, etc.
JPS63148108A (en) Ellipsometer
JPH0489553A (en) Double refraction measuring apparatus
JPH04218751A (en) Apparatus for measuring double refraction
JPH0325347A (en) Double refraction measuring method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees