JPS63148108A - Ellipsometer - Google Patents

Ellipsometer

Info

Publication number
JPS63148108A
JPS63148108A JP29413486A JP29413486A JPS63148108A JP S63148108 A JPS63148108 A JP S63148108A JP 29413486 A JP29413486 A JP 29413486A JP 29413486 A JP29413486 A JP 29413486A JP S63148108 A JPS63148108 A JP S63148108A
Authority
JP
Japan
Prior art keywords
sample surface
light
component
incident
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29413486A
Other languages
Japanese (ja)
Other versions
JPH0781837B2 (en
Inventor
Miyuki Shigehisa
重久 三行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Japan Spectroscopic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Spectroscopic Co Ltd filed Critical Japan Spectroscopic Co Ltd
Priority to JP61294134A priority Critical patent/JPH0781837B2/en
Publication of JPS63148108A publication Critical patent/JPS63148108A/en
Publication of JPH0781837B2 publication Critical patent/JPH0781837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/211Ellipsometry

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To take a measurement in a short time with a high S/N and high accuracy by making linear polarized light incident on a sample and finding the amplitude reflec tion coefficient ratio and phase difference of elliptic polarized light, and finding the refractive index of the sample surface and the thickness of a thin film according to the found ratio and difference. CONSTITUTION:Light from a white light source 10 is made incident on a mono chromater 11 to select homogeneous light with wavelength lambda, which is made incident on a linear polarizing element 12 to become linear polarized light in a specific polariza tion direction and then made incident on the sample 1 at an angle psi0 of incidence. Is reflected light is elliptic polarized light and made incident on a phase modulating element 13. The sample reflected light which is polarized and modulated by the element 13 is made incident on a photodetector 15 through an analyzer 14. The output signal of the detector 15 is separated by a signal component separating circuit 16 into a DC component, a omega, and 2omega component, which are processed by an arithmetic unit 17 to find the reflection coefficient rp/rs and phase variation gamma, from which the reflec tion factor of the sample surface and the thickness of the thin film are found. Thus, measurements are taken in a short time with the high S/N and high accuracy.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は光の偏光という特性を利用して、物体(試料
面)上の薄膜の厚さや試料面上の膜の物性に関する屈折
率を測定するエリプソメータに関するものである。
Detailed Description of the Invention Field of Industrial Application This invention is an ellipsometer that uses the polarization property of light to measure the thickness of a thin film on an object (sample surface) and the refractive index related to the physical properties of the film on the specimen surface. It is related to.

従来の技術 第1図に示すように、表面に薄膜2を有する試料1の表
面に、直線偏光を斜め上方から入射角ψ0で入射させれ
ば、試料表面上の薄膜厚さや屈折率によって反射光の偏
光状態が変化し、通常は楕円偏光となって反射される。
Conventional technology As shown in Fig. 1, if linearly polarized light is incident obliquely from above on the surface of a sample 1 having a thin film 2 on the surface at an incident angle ψ0, the reflected light will vary depending on the thickness and refractive index of the thin film on the sample surface. The polarization state of the light changes, and it is usually reflected as elliptically polarized light.

そこでこの反射光の偏光変化量を測定し、解析計算を行
なうことによって、試料表面の薄膜の厚さや屈折率を求
めることができ、これをエリプソメ1−りと称し、また
その装置を一般にエリプソメータと称している。
By measuring the amount of change in polarization of this reflected light and performing analytical calculations, it is possible to determine the thickness and refractive index of the thin film on the sample surface.This is called an ellipsometer, and the device is generally called an ellipsometer. It is called.

このようなエリプソメータにおいて薄膜の厚さや屈折率
を求めるために必要な反射光の偏光変化量の重要なパラ
メータとしては、反射によって水平p座標面上における
p成分波とそれに垂直なS座標面上のS成分波との間に
生じた位相ずれγと、p成分波とS成分波との反射率の
相違に起因して生じた画成分波の振幅の相違による偏光
の主軸方位の変化置市とがある。
In such an ellipsometer, the important parameter of the amount of polarization change of reflected light necessary to determine the thickness and refractive index of a thin film is that the p component wave on the horizontal p coordinate plane and the perpendicular S coordinate plane due to reflection are Changes in the principal axis direction of polarized light due to the phase shift γ that occurs between the S component wave and the difference in amplitude of the image component wave that occurs due to the difference in reflectance between the P component wave and the S component wave. There is.

ところで従来のエリプソメータとしては、大別して測光
型のものと消光型のものとの2種のタイプのものがある
。測光型は、偏光プリズムを連続回転させてζその角度
と検出された光強度との関係から位相ずれγと主軸方位
の変化置市を計算によって求めるものである。一方消光
型は、試料で変化した偏光を光学素子の回転によって元
の状態に戻し、その補償角から位相ずれγと主軸方位の
変化114/を求めるものである。そしてこれらの2方
式は、いずれも光の強度の変化量、すなわち光検出器の
直流分の出力を測定することによって必要な清報を得て
いる。
By the way, conventional ellipsometers can be roughly divided into two types: photometric type and extinction type. In the photometric type, a polarizing prism is continuously rotated and the phase shift γ and change in principal axis direction are calculated from the relationship between the angle ζ and the detected light intensity. On the other hand, in the extinction type, the polarized light that has changed in the sample is returned to its original state by rotating an optical element, and the phase shift γ and the change in principal axis direction 114/ are determined from the compensation angle. Both of these two methods obtain the necessary information by measuring the amount of change in light intensity, that is, the DC output of the photodetector.

発明が解決すべき問題点 従来のエリプソメータのうち、測光型のものは、偏光変
化量のパラメータである位相ずれγおよび主軸方位の変
化置市を計算で求めているため、強度比の大きい直線偏
光に近いところでは、測定精度が悪くなる問題がある。
Problems to be Solved by the Invention Among conventional ellipsometers, photometric type ellipsometers calculate the phase shift γ, which is a parameter for the amount of change in polarization, and the change in the principal axis direction. There is a problem that measurement accuracy deteriorates in areas close to .

一方消光型では、偏光角度を直接的に角度として測定す
るため1、偏光プリズムの性悪極限までの高い測定精度
が得られる利点もあるが、測定時に偏光プリズムの回転
移動を伴なうため測定時間が長い欠点がある。
On the other hand, the extinction type directly measures the polarization angle as an angle, so it has the advantage of achieving high measurement accuracy to the extreme of a polarizing prism. There is a long drawback.

そして測光型、消光型の両者に共通の欠点として、光強
度を直流成分として検出しているため、背影光などの影
響を直接受け、信号対雑音比(S/N)が悪い問題がお
る。
A common drawback of both the photometric type and extinction type is that because the light intensity is detected as a DC component, they are directly affected by background light and have a poor signal-to-noise ratio (S/N).

したがってこの発明は、背影光の影響などを受けること
なく高いS/Nをもって高精度かつ短時間で物体上の薄
膜や屈折率を測定することができるエリプソメータを提
供することを目的とするものである。
Therefore, an object of the present invention is to provide an ellipsometer that can measure thin films and refractive indexes on objects with high precision and in a short time with high S/N without being affected by background light. .

問題点を解決するための手段 この発明のエリプソメータでは、基本的には試料に直線
偏光を入射して、反射される楕円偏光における振幅反射
係数比rp/rs(ミρ=tanv)および位相差(リ
ターデーション)γを求め、その振幅反射係数比rp/
rsと位相差γから、試料の複屈折率や薄膜の厚さを求
めるものである。
Means for Solving the Problems In the ellipsometer of the present invention, basically linearly polarized light is incident on the sample, and the amplitude reflection coefficient ratio rp/rs (mi ρ = tanv) and phase difference ( (retardation) γ and its amplitude reflection coefficient ratio rp/
The birefringence of the sample and the thickness of the thin film are determined from rs and the phase difference γ.

そしてこの発明のエリプソメータで+1、符に光路中に
位相変調素子を挿入して、試料への入射光もしくは反射
光を変調させ、光検出器の信号からその変調周波数に同
期して変調周波数の成分、変調周波数の2倍の周波数成
分、および直流成分を取出し、これらの各成分の大きざ
から反射係数比および位相差を求めて、最終的に試料の
複屈折率の値および/または薄膜の厚さを計算によって
求めるようにした。
In the ellipsometer of this invention, a phase modulation element is inserted into the optical path at +1 mark to modulate the incident light or reflected light to the sample, and the modulation frequency component is synchronized with the modulation frequency from the signal of the photodetector. , a frequency component twice the modulation frequency, and a DC component, and calculate the reflection coefficient ratio and phase difference from the size of each component, and finally calculate the birefringence value of the sample and/or the thickness of the thin film. I decided to find the value by calculation.

具体的には、第1発明は、直線偏光を試料面に入射せし
めてその反射光の偏光状態から試料面に関する値を測定
するエリプソメータにおいて、試料面への入射光の光路
中に、試料面への入射直線偏光の偏光方位を一定に保つ
ように直線偏光素子を配置し、試料面からの反射光の光
路中に、振幅δ0、変調角周波数ωなる位相変調素子を
その遅近軸が入射面に対して45°となるよう配置する
とともに、その位相変調素子の出射側に、透過軸が入射
面に対して平行もしくは垂直となるように検光子を配置
し、さらにその検光子の出射側に光を光電変換するため
の光検出器を配置し、その光検出器の出力信号のω成分
、2ω成分および直流成分をそれぞれ独立して取出すた
めの信号成分分離回路を設け、前記各成分から演算によ
って試料面の反射係数比rp/rsおよび反射光の位相
変化γを求め、それに基いて試料面の屈折率および/ま
たは試料面の薄膜の厚さを求めるようにしたことを特徴
とするものでおる。
Specifically, the first invention provides an ellipsometer that makes linearly polarized light incident on a sample surface and measures a value related to the sample surface from the polarization state of the reflected light. A linear polarizing element is arranged so as to keep the polarization direction of the incident linearly polarized light constant, and a phase modulating element with an amplitude δ0 and a modulation angular frequency ω is placed in the optical path of the reflected light from the sample surface so that its slow axis is the incident plane. At the same time, an analyzer is arranged on the output side of the phase modulation element so that the transmission axis is parallel or perpendicular to the incident plane, and further on the output side of the analyzer. A photodetector for photoelectric conversion of light is arranged, a signal component separation circuit is provided to independently extract the ω component, 2ω component, and DC component of the output signal of the photodetector, and calculations are performed from each of the components. The method is characterized in that the reflection coefficient ratio rp/rs of the sample surface and the phase change γ of the reflected light are determined by the method, and the refractive index of the sample surface and/or the thickness of the thin film on the sample surface are determined based on the results. is.

また第2発明のエリプソメータは、位相変調素子と試料
の配列を第1発明の場合と逆にしたものでおる。すなわ
ち第2発明のエリプソメータは、直線偏光を試料面に入
射せしめてその反射光の偏光状態から試料面に関する値
を測定するエリプソメータにおいて、試料面への入射光
の光路中に、・直線偏光の偏光方位を一定に保つための
直線偏光素子を配置するとともに、その直線偏光素子と
試料面との間に振幅δ0、変調角周波数ωなる位相変調
素子をその遅延軸が入射面に対して45°となるように
配置し、試料面からの反射光の光路中に、透過軸が入射
面に対して平行もしくは垂直となるように検光子を配置
し、さらにその検光子の出射側に光を光電変換するため
の光検出器を配置し、その光検出器の出力信号のω成分
、2ω成分および直流成分をそれぞれ独立して取出すた
めの信号成分分離回路を設け、前記各成分から演算によ
って試料面の反射係数比rp/rsおよび反射光の位相
変化γを求め、それに基いて試料面の屈折率および/ま
たは試料面の薄膜の厚さを求めるようにしたことを特徴
とするものである。
Further, in the ellipsometer of the second invention, the arrangement of the phase modulation element and the sample is reversed from that of the first invention. That is, the ellipsometer of the second invention is an ellipsometer that makes linearly polarized light incident on a sample surface and measures a value related to the sample surface from the polarization state of the reflected light. A linear polarizing element is arranged to keep the orientation constant, and a phase modulating element with an amplitude δ0 and a modulation angular frequency ω is placed between the linear polarizing element and the sample surface, and its delay axis is set at 45° with respect to the incident plane. An analyzer is placed in the optical path of the reflected light from the sample surface so that the transmission axis is parallel or perpendicular to the incident surface, and the light is photoelectrically converted on the output side of the analyzer. A signal component separation circuit is installed to independently extract the ω component, 2ω component, and DC component of the output signal of the photodetector. This method is characterized in that the reflection coefficient ratio rp/rs and the phase change γ of reflected light are determined, and based on these, the refractive index of the sample surface and/or the thickness of the thin film on the sample surface are determined.

作  用 この発明のエリプソメータの作用を説明する前に、先ず
エリプソメータの測定原理について説明し、それに続い
てこの発明のエリプソメータの理論的解析をその作用と
ともに説明する。
Function Before explaining the function of the ellipsometer of the present invention, the measurement principle of the ellipsometer will be explained first, and then the theoretical analysis of the ellipsometer of the present invention will be explained together with its function.

A:エリプソメータの測定原理 エリプソメータは、物体の表面で光が反射する際の偏光
状態の変化を観測して、物体自身の光学定数(屈折率)
または物体の表面に付着した薄膜の厚さと光学定数(屈
折率)を知る方法でおる。そこで先ず物体自身、すなわ
ち薄膜がない場合の下地の光学定数の測定原理を、続い
て薄膜がある場合の薄膜の厚さと光学定数の測定原理に
ついて分けて説明する。
A: Ellipsometer measurement principle An ellipsometer measures the optical constant (refractive index) of the object itself by observing changes in the polarization state when light is reflected on the surface of the object.
Alternatively, there is a method of determining the thickness and optical constant (refractive index) of a thin film attached to the surface of an object. First, we will explain the principle of measuring the optical constants of the object itself, that is, the underlying material when there is no thin film, and then the principle of measuring the thickness and optical constants of the thin film when there is a thin film.

A−1:下地の光 7′数の?j!!I″″先ず試料の
光学定数を百=n−ikとする。
A-1: Base light 7' number? j! ! I''First, let the optical constant of the sample be 100=n-ik.

ここで盲は複素数屈折率、nは屈折率、kは吸収係数、
1は虚数単位である。
where blindness is the complex refractive index, n is the refractive index, k is the absorption coefficient,
1 is an imaginary unit.

真空中から入射角ψ0で入射する単色平行光束の入射面
に平行な撮動成分(p成分)の振幅反射率(フレネル係
数)をて21入射面に垂直な撮動成分(S成分)の振幅
反射率(フレネル係数)を′?′″Sとし、これらをそ
れぞれ7′″p = rp eXp(−iφp )  
   (1)’?”s = r s eXt)(−iφ
s )      (2)とする。これらは試料の光学
定数’fi=n−ikと入射角ψ0との関数となってい
る。
The amplitude of the imaging component (P component) parallel to the plane of incidence of a monochromatic parallel light beam incident from vacuum at an angle of incidence ψ0 (Fresnel coefficient) is calculated by the amplitude of the imaging component (S component) perpendicular to the plane of incidence. Reflectance (Fresnel coefficient)′? ′″S, and these are respectively 7′″p = rp eXp(-iφp)
(1)'? ”s = r s eXt) (-iφ
s ) (2). These are functions of the optical constant 'fi=n-ik of the sample and the incident angle ψ0.

吸収係数に=oの透明体試料では一般にφP、φSはO
またはπ、従って?p、T−sは実数でおるので、入射
した直線偏光は楕円偏光とならずに、直線偏光として反
射される。
In a transparent sample with an absorption coefficient of =o, φP and φS are generally O.
Or π, therefore? Since p and Ts are real numbers, the incident linearly polarized light does not become elliptically polarized light but is reflected as linearly polarized light.

しかし、金属などの吸収体試料(kf=o)では、反射
に起因する位相差(リターデーション〉γ、すなわち γ=φP−φ5(3) は、入射角ψ0の値によって、Oからπまで連続的に変
化するから、一般に’?”p/?″Sは複素数(?p 
SでSの各々も複素数)である。
However, in absorber samples such as metals (kf = o), the phase difference (retardation) γ due to reflection, that is, γ = φP - φ5 (3), is continuous from O to π depending on the value of the incident angle ψ0. Generally speaking, '?"p/?"S is a complex number (?p
S and each S is also a complex number).

= tanveXp !γ =ρexp tγ        (4)と書き、−V
ミρ(=rp、”rs>を(膜幅反射率比または振幅反
射係数比(実数)と呼んでいる。
= tanveXp! γ = ρexp tγ (4), −V
ρ(=rp, "rs>" is called (film width reflectance ratio or amplitude reflection coefficient ratio (real number).

このように吸収体試料では7′″p/?sが復素数であ
るから、入射した直線偏光は楕円偏光として反射される
In this manner, since 7'''p/?s is a complex number in the absorber sample, the incident linearly polarized light is reflected as elliptically polarized light.

その楕円偏光のパラメーターを二つ(たとえば、楕円の
長軸の方位角αと楕円率X)を測定すれば、それから振
幅反射率比ρ;−里と位相差(リターデーション)γを
求めることができる。この二つの量tanv、γ・と屈
折率nおよび吸収係数にとの間には、次の様な関係式が
知られている。
If we measure two parameters of the elliptically polarized light (for example, the azimuth angle α of the long axis of the ellipse and the ellipticity X), we can then calculate the amplitude reflectance ratio ρ; can. The following relational expression is known between these two quantities tanv and γ· and the refractive index n and absorption coefficient.

n2−に2 したがって、ψの値とγの値を知れば、試料の屈折率n
と吸収係数kを求めることができるのである。
n2−2 Therefore, if we know the values of ψ and γ, we can calculate the refractive index of the sample n
Therefore, the absorption coefficient k can be obtained.

A−2:薄膜の さと 蛍定数の決 第2図に示すように、屈折重石2=n2−1に2 (既
知とする)の下地面上に屈折率h1=n1−ik1、厚
さdの等方均質な薄膜2があり、これに入射角ψ0で直
線偏光が入射するものとする。
A-2: Determination of the fluorescence constant of a thin film As shown in Figure 2, a refractor with a refractive index h1 = n1-ik1 and a thickness d is placed on the base surface (assumed to be known) at 2 = n2-1. Assume that there is an isotropically homogeneous thin film 2, into which linearly polarized light is incident at an incident angle ψ0.

反射光Rは薄膜表面で反射した光R1や、薄膜と下地の
境界面で反射してくる光R2、以下薄膜中を往復しなが
ら出てくるR3以降の光の合成とすなる。すなわち、 R=R1+R2+R3+・・・    (7)膜内での
繰返し反射干渉を考慮に入れた面全体としての振幅反射
率は、p成分、S成分に対して、それぞれ −’?”ts+’?”2sexp(−iδ)R3=  
         =R3e ’φS1+F″ts?″
2SeXE)(−iδ)(9)で与えられる。
The reflected light R is a combination of the light R1 reflected on the surface of the thin film, the light R2 reflected on the interface between the thin film and the base, and the subsequent light R3 that comes out while reciprocating within the thin film. That is, R=R1+R2+R3+... (7) The amplitude reflectance of the entire surface, taking into account repeated reflection interference within the film, is -'? for the p component and the S component, respectively. "ts+'?"2sexp(-iδ)R3=
=R3e 'φS1+F''ts?''
2SeXE)(-iδ) (9).

ここで、 (j=1.2> n j−I 5illψj−1= ?’i j Sin
ψj(12)δ=4πn[jcosψ1/λ     
  (13)であり、てJPN?″JSは、j=1のと
きは、第1面(真空−膜)、j=2のときは第2面(膜
−下地)におけるp、S成分の振幅反射率(フレネル係
数)である。またδは、膜幅1往復によって生ずる位相
差でおり、λは真空中の波長である。
Here, (j=1.2> n j−I 5illψj−1= ?'i j Sin
ψj(12)δ=4πn[jcosψ1/λ
(13) And is it JPN? ``JS is the amplitude reflectance (Fresnel coefficient) of the p and S components on the first surface (vacuum-film) when j=1 and on the second surface (film-base) when j=2. Further, δ is a phase difference caused by one round trip of the film width, and λ is a wavelength in vacuum.

ここで、Rp/FEsはテJPなどのフレネル係数やδ
が実数でも複素数になるから、反射光は楕円偏光になる
Here, Rp/FEs is Fresnel coefficient such as TeJP or δ
Since is a complex number even if it is a real number, the reflected light becomes elliptically polarized light.

複素数反射係数比Rp/Rsは、(4)式と同様に =tanVeXD(i 7 >          (
14)とあられされる。
The complex reflection coefficient ratio Rp/Rs is calculated as =tanVeXD(i 7 > (
14) Hail.

ここで、右辺の値tan v、γはエリプソメータで測
定される量であり、一方左辺の係数比は、(6)〜(1
1)式から理解できるように、Fit  (nt 、k
t )、n2 (n2 、に2>、d。
Here, the values tan v, γ on the right side are the quantities measured with an ellipsometer, while the coefficient ratios on the left side are (6) to (1
1) As can be understood from the equation, Fit (nt , k
t), n2 (n2, to 2>, d.

λ、ψ0の関数となっている。すなわちγ、V =F (nl 、n2.kt 、に2.d、λ、ψ0)
(15)式の右辺のパラメータの内、n2、R2、λ、
ψ0を既知として、測定値γ、軍を用いれば、未知数と
してnl、d@解くことができる。
It is a function of λ and ψ0. That is, γ, V = F (nl, n2.kt, 2.d, λ, ψ0)
Among the parameters on the right side of equation (15), n2, R2, λ,
If ψ0 is known and the measured value γ and force are used, nl and d@ can be solved as unknowns.

例えば、k1=O(透明膜)でおれば、未知数はnl、
dだけでありて、計算機により簡単に値を求めることが
できる。kl>Q (吸収膜)の場合も、γ、ψを測定
することにより、nl、kl、dを知ることができる。
For example, if k1=O (transparent film), the unknowns are nl,
d, and its value can be easily determined using a computer. Even in the case of kl>Q (absorbing film), nl, kl, and d can be determined by measuring γ and ψ.

測定量のγ、里より、求める量n1 、kl 、dの計
算による算出方法は公知でおる。
A method of calculating the required quantities n1, kl, and d from the measured quantities γ and ri is well known.

以上のように、試料面上の薄膜の厚さd、および光学定
数である屈折率n1、吸収係数に1はエリプソメータに
より測定された振幅反射係数比tanv(=ρ)および
位相差軍から求めることができるのでおる。
As described above, the thickness d of the thin film on the sample surface, the optical constant refractive index n1, and the absorption coefficient 1 can be obtained from the amplitude reflection coefficient ratio tanv (=ρ) and the phase difference force measured by an ellipsometer. I can do it.

[B;本 日の理論的解析 この発明のエリプソメータの光学配列(第3図、第4図
参照)における出力の解析を、ミュラー行列の解析方法
を用いて次のような手順で行なう。
[B; Today's Theoretical Analysis The output of the optical array of the ellipsometer of this invention (see FIGS. 3 and 4) will be analyzed using the Mueller matrix analysis method in the following steps.

先ず光検出器の出力信号について、位相変調素子の変調
周波数と同じ周波数の成分、2倍の周波数の成分、およ
び直流成分がどのようになっているかを導く。次いでこ
れらの3成分によッテ反射係数比1) (= rp /
 rs =tanV>および位相差γがどのような形で
表わされるかを導く。そしてこの解析をもとに、反射係
数比ρ、位相差γと複屈折率との関係を導く。最後に、
以上の解析結果をもとに薄膜の厚さを導く。
First, with respect to the output signal of the photodetector, the components of the same frequency as the modulation frequency of the phase modulation element, the component of twice the frequency, and the DC component are derived. Next, these three components give the reflection coefficient ratio 1) (= rp /
We will derive how rs = tanV> and the phase difference γ are expressed. Based on this analysis, the relationship between the reflection coefficient ratio ρ, the phase difference γ, and the birefringence index is derived. lastly,
The thickness of the thin film is derived based on the above analysis results.

次にこれらの解析手順を項に分けて記載する。Next, these analysis procedures are divided into sections and described.

B−1:各信号 分と反射係 比 位相差の関係先ず各
光学素子をミュラー行列で表現する。
B-1: Relationship between each signal component and reflection coefficient ratio phase difference First, each optical element is expressed by a Mueller matrix.

偏波面を45°回転した検光子のミュラー行列A45は
、 で表わされる。
The Mueller matrix A45 of the analyzer with the plane of polarization rotated by 45 degrees is expressed as follows.

また45°の偏波面に対する試料の反射表面のミュラー
行列は、反射係数比rp/r3を与えれば、S (45
,rp 、 rs 、 7)として、S (45,rp
、rs、T) で表わされる。但し、Tは位相変化の差(位相差=リタ
ーデーション)、rp、rsは、それぞれp成分、S成
分の反射係数でおる。
Also, the Mueller matrix of the reflective surface of the sample for the 45° polarization plane can be calculated by giving the reflection coefficient ratio rp/r3, S (45
, rp , rs , 7) as S (45, rp
, rs, T). However, T is the difference in phase change (phase difference=retardation), and rp and rs are the reflection coefficients of the p component and the S component, respectively.

位相変調器のミュラー行列M45.δ(ω)は、但しδ
は、光学的位相変調器の変調の角周波数(角速度)をω
、振幅をδOとして δ=δo sinωt          (19)で
表わされる。
Mueller matrix of phase modulator M45. δ(ω) is δ
is the angular frequency (angular velocity) of modulation of the optical phase modulator
, the amplitude is expressed as δ=δo sinωt (19).

ざらにOoの直線偏光のミュラー行列■0は、で表わさ
れる。
The Mueller matrix ■0 of linearly polarized light, roughly Oo, is expressed as .

この場合の光検出器の出力I (d)は、以上の(16
)〜(20)式のミュラー行列の積で表わされる。
The output I (d) of the photodetector in this case is (16
) to (20), expressed as a product of Mueller matrices.

I (d) =A+s・S (45,rp 、 r3.
γ)・M45δ(ω)・■。
I (d) = A+s・S (45, rp, r3.
γ)・M45δ(ω)・■.

そこで(16)〜(20)式および(21)式からI 
(d)を求めると次式となる。
Therefore, from equations (16) to (20) and (21), I
When (d) is obtained, the following equation is obtained.

I (d) ここでベッセル関数を用いてS1nδ、COSδを展開
すれば、 Slnδ=s+n  (δ□  s+nωt)=2J1
  (δo  )Sinωt+2J3  (δo  )
s:n3ωt・        (23)罵δ−COS
 (δO5illωt )=Jo(δo)+2J2(δ
o)cos2ωt+2J4(δo)cos4 ωt 十
−・・で与えられる。
I (d) Here, if S1nδ and COSδ are expanded using the Bessel function, Slnδ=s+n (δ□ s+nωt)=2J1
(δo) Sinωt+2J3 (δo)
s: n3ωt・ (23) Excuse δ-COS
(δO5illωt)=Jo(δo)+2J2(δ
o) cos2ωt+2J4(δo) cos4ωt 10-... is given.

光強度I (d)に比例した光検出器の出力の電気信号
をV (d)とすると、V (d)は直流成分VDC−
ω成分V(ω)、2ω成分V(2ω)、および3ω成分
V(3ω)以上の高調波成分によって次のように表わせ
る。
If the electrical signal of the output of the photodetector proportional to the light intensity I (d) is V (d), then V (d) is the DC component VDC-
It can be expressed as follows by harmonic components of ω component V(ω), 2ω component V(2ω), and 3ω component V(3ω).

V(d) =V、c十V (ω)+V(2ω)+(高調
波頂)(23)式、(24)式において、Jo  (δ
0)の項は直流成分に、Jr  (δ0)の項はω成分
に、J2  (δ0)の項は2ω成分に相当する。した
がって、(22)式および(23)式、(24)式から
、(25)式の各成分vDcSv(ω)、°v(2ω)
を求めれば、 V(DC)=rp2+r32+ (rp2−rs2) 
・Jo (δo)   (2B)■(ω) =4 rp
 rs−s+nγ・Jl(δO)      (27)
V(2ω) =2 (rp2−rs2) ・J2 (δ
o )      (28)となる。
V (d) = V, c + V (ω) + V (2 ω) + (harmonic peak) In equations (23) and (24), Jo (δ
The term 0) corresponds to the DC component, the term Jr (δ0) corresponds to the ω component, and the term J2 (δ0) corresponds to the 2ω component. Therefore, from equations (22), (23), and (24), each component vDcSv(ω), °v(2ω) of equation (25)
If we calculate, V(DC)=rp2+r32+ (rp2-rs2)
・Jo (δo) (2B)■(ω) =4 rp
rs-s+nγ・Jl(δO) (27)
V(2ω) = 2 (rp2-rs2) ・J2 (δ
o) (28).

次いで(26)式、(27)式、(28)式を用いて反
射係数比rp/rs、および位相差(リターデーション
)γについてのs+nγの値を求める。
Next, the reflection coefficient ratio rp/rs and the value of s+nγ for the phase difference (retardation) γ are determined using equations (26), (27), and (28).

(28)式より (26)式、(28)式より (29)式、(30)式を加算、減算してr p2、r
 s2を導き、両者の比をとることにより、 したがって、 が導かれる。すなわち反射係数比rs/rpは、光検出
器の出力の直流成分V(DC)および変調角周波数“の
2倍0周波数成9V(2ω)の関数となっているから、
これらの成分からrs/rpが求められる。
Add and subtract equations (26) from equation (28), equations (29) and (30) from equation (28), and obtain r p2, r
By deriving s2 and taking the ratio of the two, therefore, is derived. In other words, the reflection coefficient ratio rs/rp is a function of the direct current component V (DC) of the output of the photodetector and the 0 frequency component 9V (2ω) twice the modulation angular frequency.
rs/rp is determined from these components.

次に、Sinγを求める。Next, find Sinγ.

(27)式より (29)式と(33)式より (34)式より が導かれる。すなわちSi17は、光検出器の出力の変
調周波数ωの成分■(ω)とその2倍の周波数2ωの成
分V(2ω)、およびρ(’=rp/rs)の関数とな
っており、したがってこれらからSinγの値が求めら
れる。
Equation (29) is derived from Equation (27), and Equation (34) is derived from Equation (33). In other words, Si17 is a function of the modulation frequency ω component ■(ω) of the output of the photodetector, the twice its frequency 2ω component V(2ω), and ρ('=rp/rs). From these, the value of Sinγ is determined.

以上のようにして、r’s/rpは(32)式より、S
1nγは(35)式より求めることができるのである。
As described above, r's/rp can be calculated from equation (32) by S
1nγ can be determined from equation (35).

次に、複屈折率’fi=n−ikとの関係を求める。Next, the relationship between birefringence 'fi=n-ik is determined.

とすると、(32)式は (35)式は と書き換えられる。Then, equation (32) becomes Equation (35) is It can be rewritten as

ところで試料表面に入射角ψ0(45°)で入射する光
は、入射面に平行な電場の振動成分(p成分)と入射面
に垂直な電場の振動成分(S成分)で振幅反射率が異な
り、各1辰幅反射率は、それぞれ表面によって境される
二つの媒質の屈折率および入射角できまるフレネル係数
によって与えられる。いまpおよびS成分に対する(膜
幅反射率を’?”p、’Fsとする。これらは既に記載
したように、一般に複素数で次のように書くことができ
る。
By the way, for light incident on the sample surface at an incident angle of ψ0 (45°), the amplitude reflectance is different between the oscillating component of the electric field parallel to the plane of incidence (p component) and the oscillating component of the electric field perpendicular to the plane of incidence (S component). , each one-arrow reflectance is given by the Fresnel coefficient determined by the refractive index and angle of incidence of the two media bounded by the surfaces, respectively. Now let p and Fs be the film width reflectance for the p and S components.As mentioned above, these can generally be written as complex numbers as follows.

?p = rp e−’φ0(1) で3 = r3 e−1φ3(2) 透明体では屈折率は実数でおるので、φS、φPはOま
たはπで、rp、r3は実数、またrp/rsも実数と
なる。
? p = rp e-'φ0(1) and 3 = r3 e-1φ3(2) In a transparent body, the refractive index is a real number, so φS and φP are O or π, rp and r3 are real numbers, and rp/rs is also a real number.

しかし、金属などの吸収体では屈折率は複素数百=n−
ikで表わされるので7”p、’F’sは複素数となり
、 =ρexp(iγ)         (40)(40
)式は測定される量であり、p、S成分で振幅比が異な
りかつ相対的に位相差γが生ずるため直線偏光は楕円偏
光として反射される。
However, in absorbers such as metals, the refractive index is a complex number of hundreds = n-
Since it is expressed as ik, 7”p, 'F's becomes a complex number, =ρexp(iγ) (40)(40
) is the quantity to be measured, and the p and S components have different amplitude ratios and a relative phase difference γ, so linearly polarized light is reflected as elliptically polarized light.

試料への入射角をψ0、屈折角をψ1とすると ここで盲COSψ1を求めると n cosψ1= [(ncosψ1)2]イ=[百2
(1,−5uiφ1)]坏 = [n2−’?’i2s+dΦ1]イ=[n2sat
!ψO] ’     (42)ここで、次の(43)
式 %式%(43) で与えられる屈折の法則を用いれば、 ′?′″P よって、 てE (45)式より理論式が求まった。
Assuming that the angle of incidence on the sample is ψ0 and the angle of refraction is ψ1, the blind COSψ1 is calculated as n cosψ1= [(ncosψ1)2]i=[102
(1,-5uiφ1)]坏=[n2-'? 'i2s+dΦ1]i=[n2sat
! ψO] ' (42) Here, the following (43)
Using the law of refraction given by the formula % formula % (43), ′? ′″P Therefore, the theoretical formula was found from E formula (45).

そこで、反射率係数比″?′″p/”i”s、位相変化
の差(リターデーション)Tと屈折率との関係を求める
。そのため計算の便宜のため、次の(46)式で定義さ
れるPとQを置く。
Therefore, the relationship between the reflectance coefficient ratio "?'"p/"i"s, the phase change difference (retardation) T, and the refractive index is determined. Therefore, for convenience of calculation, P and Q defined by the following equation (46) are set.

このようにP、Qを置けば、P、Qと屈折率の関係を解
析的に解くことが可能となる。そこでPとQと屈折率の
関係を求めるため、まず(45)式、(42)式より(
46)式の左辺を求める。
By setting P and Q in this way, it becomes possible to analytically solve the relationship between P and Q and the refractive index. Therefore, in order to find the relationship between P, Q, and the refractive index, first, from equations (45) and (42), (
46) Find the left side of the equation.

=ρe1γ     ・・・(測定される量>   (
47)1−ρerγ  Sinψ0−ψo      
(48)または ただし また (51)式によりP cos Qに相当する実数部とP
 sin Qに相当する虚数部をそれぞれ導き、割り算
をすると 2ρsin r tllnQ = −(52) 1−ρ2 よって(49)式は、 s+tlψotan(1)o       (53)と
表わさせる。
=ρe1γ...(Measured quantity> (
47) 1-ρerγ Sinψ0-ψo
(48) or (51), the real part corresponding to P cos Q and P
When the imaginary parts corresponding to sin Q are respectively derived and divided, 2ρ sin r tllnQ = −(52) 1−ρ2 Therefore, equation (49) is expressed as s+tlψotan(1)o (53).

すなわち、 入射角ψo=45°のとき p2cos2Q=2 (n2−に2) −1(56)P
2s+n2Q=−4n K         (57)
したがって、 となり、複素屈折率5(=n−ik)についての屈折率
n1吸収率にとP、Qとの関係が(58)式、(59)
式により求められた。
That is, when the incident angle ψo=45°, p2cos2Q=2 (2 for n2-) -1(56)P
2s+n2Q=-4n K (57)
Therefore, the relationship between the refractive index n1 absorption coefficient and P and Q for the complex refractive index 5 (=n-ik) is expressed by equation (58) and (59)
It was determined by the formula.

但し、P2、tanQは、(50)式、(52)式より
既に述べたように、(32)式より光検出器の出力信号
のDC成分v(DC)、ω成分v(ω)、2ω成分V(
2ω)の大きざが判れば、r3/rpが求められる。−
万、(35)式よりω成分V(ω)、2ω成分V (2
ω) 、rs/rpが判れば、S1nγが求められる。
However, as already mentioned from equations (50) and (52), P2 and tanQ are the DC component v (DC), ω component v (ω), and 2ω of the output signal of the photodetector from equation (32). Component V (
2ω), r3/rp can be found. −
From equation (35), the ω component V (ω), the 2ω component V (2
If ω) and rs/rp are known, S1nγ can be found.

ざらにr3/rp。Zarani r3/rp.

s+nγが求められれば、(60)式、(61)式より
P2、tanQが求められる。PとQが求められれば、
(58)式、(59)式から屈折率が求められる。
Once s+nγ is determined, P2 and tanQ are determined from equations (60) and (61). If P and Q are found,
The refractive index is determined from equations (58) and (59).

ここで、(59)式より (62)式を(58)式に代入して 16n4−8(1+P2cos2Q)n2−P4s+t
i2Q=O(63)したがって(62)式から吸収率k
が、(64)式から屈折率nが求められ、複素屈折重石
も、百=n−ikから求められる。結局、光検出器の出
力信号のDC成分V(DC)、ω成分V(ω)、および
2ω成分V(2ω)から、振幅反射率比rp/r3の値
および位相差(リターデーション)γについてのt、t
mrの値を介して、複素屈折率が求められることが明ら
かでおる。
Here, by substituting equation (62) into equation (58) from equation (59), we get 16n4-8(1+P2cos2Q)n2-P4s+t
i2Q=O(63) Therefore, from equation (62), absorption rate k
However, the refractive index n can be found from equation (64), and the complex refractometer can also be found from 100=n-ik. After all, from the DC component V (DC), ω component V (ω), and 2ω component V (2ω) of the output signal of the photodetector, the value of the amplitude reflectance ratio rp/r3 and the phase difference (retardation) γ are determined. t, t
It is clear that the complex refractive index can be determined via the value of mr.

他の表現方法として r 3 / r p =tanv(65)と表わした場
合は、 (66)、(67)を用いても、n、kが求められる。
When expressed as r 3 / r p =tanv (65) as another method of expression, n and k can also be obtained using (66) and (67).

B−3=屈折率n1 、薄膜の さdの算出試料面上の
薄膜についての求める量、すなわち屈折率n1、吸収係
数に1、薄膜の厚さdとエリプソメータにより測定され
る位相差γと1辰幅反射率比tanvとの関係は、既に
述べたように=tanvexp (iγ) =ρ exp i γ            (68
)で与えられている。すなわち、γ、里は次式で定まる
関数である。
B-3 = Calculation of refractive index n1, thickness d of the thin film The amount to be determined for the thin film on the sample surface, that is, the refractive index n1, the absorption coefficient 1, the thickness d of the thin film, the phase difference γ measured by an ellipsometer, and 1 As already mentioned, the relationship with the radial width reflectance ratio tanv is = tanveexp (iγ) = ρ exp i γ (68
) is given. That is, γ and ri are functions determined by the following equation.

軍=f (nl 、に1 、d、n2.に2.ψ0.λ
)7=f (nl 、に1 、d、r12.に2.ψ0
.λ)従って、nl 、kl 、d、n2、k2、ψ0
、λを与えてやれば里、γを計算できる。(68)式を
計算して図表化したものが既に公知となってあり、この
種の詳しい図表を作っておけば内挿法によって測定値よ
りただちに、屈折率n1、薄膜厚ざdを知ることができ
る。なおγ、里の測定値より、計算機を用いてnl、d
を求めることも可能でおる。
Army = f (nl, 1, d, n2. 2.ψ0.λ
)7=f (nl, 1, d, r12.2.ψ0
.. λ) Therefore, nl , kl , d, n2, k2, ψ0
, λ can be given, then ri and γ can be calculated. (68) has already been calculated and charted, and if you create this kind of detailed chart, you can immediately know the refractive index n1 and the thin film thickness d from the measured values by interpolation. I can do it. Furthermore, from the measured values of γ and ri, nl and d can be calculated using a computer.
It is also possible to find.

実施例 第3図にこの発明のエリプソメータの一実施例(第1発
明の例)を示す。
Embodiment FIG. 3 shows an embodiment of the ellipsometer of the present invention (an example of the first invention).

第3図において、白色光源10からの光はモノクロメー
タ11に入射されて波長λの単色光が選択され、その波
長λの単色光は偏光方位を一定に探っための直線偏光素
子(偏光子−ポーラライザ)12に入射され、所定の偏
光方位の直線偏光となって試料1に対し入射角ψ0 (
通常は45°)で入射される。試料1の反射光は、前述
のように通常は楕円偏光となり、位相変調素子(光学的
偏光変調素子)13、例えばファラデーセルのようなフ
ォトエラスティック変調器13に入射される。この位相
変調素子13は、振幅δ01角周波数ωで入射楕円偏光
を左廻りの偏光、右廻りの偏光に交番的に変化させるも
のであり、その遅延軸が入射面に対して45°となるよ
うに配置されている。さらに位相変調素子13の出射側
には、透過軸が入射面に対して平行または直角となるよ
うに検光子(アナライザ)14が配置されており、その
検光子14の出射側には、光を光電変換するためのフォ
トマルチプライヤ等の光検出器15が配置されている。
In FIG. 3, light from a white light source 10 is incident on a monochromator 11 to select monochromatic light with a wavelength λ. polarizer) 12, it becomes linearly polarized light with a predetermined polarization direction, and the incident angle ψ0 (
Usually, the angle of incidence is 45°). As described above, the reflected light from the sample 1 usually becomes elliptically polarized light, and enters a phase modulation element (optical polarization modulation element) 13, for example, a photoelastic modulator 13 such as a Faraday cell. This phase modulation element 13 alternately changes the incident elliptically polarized light into counterclockwise polarized light and clockwise polarized light with an amplitude δ01 and an angular frequency ω, and the delay axis is set at 45° with respect to the plane of incidence. It is located in Furthermore, an analyzer 14 is arranged on the output side of the phase modulation element 13 so that the transmission axis is parallel or perpendicular to the incident plane. A photodetector 15 such as a photomultiplier for photoelectric conversion is arranged.

したがって位相変調素子13で偏光変調された試料反射
光は、検光子14を介して光検出器15に入射され、そ
の入射光に応じた信号が光検出器15から出力される。
Therefore, the sample reflected light polarization-modulated by the phase modulation element 13 is incident on the photodetector 15 via the analyzer 14, and a signal corresponding to the incident light is output from the photodetector 15.

前記光検出器15の出力信号は、信号成分分離回路16
によって直流成分V(DC)、ω成分■(ω)、2ω成
分V(2ω)にそれぞれ分離して取出される。この信号
成分分離回路16は、フィルタや同期整流回路等を用い
て構成される。信号成分分離回路16から得られた各成
分■(rJC)、V(ω>、V(2ω)の信号は、コン
ピュータあるいは専用の演算装置などの演算装置17に
入力される。この演算装置17においては、V(DC)
、V(ω)、■(2ω)や波長λ等の値から、既に)小
べたような手法により反射係数比rp /r3(=ρ)
や位相変化の差(位相差=リターデーション)γが演算
によって求められ、ざらにそれらに基いて、屈折率nや
薄膜の厚みdが求められる。
The output signal of the photodetector 15 is sent to a signal component separation circuit 16.
is separated into a direct current component V (DC), an ω component (ω), and a 2ω component V (2ω). This signal component separation circuit 16 is constructed using a filter, a synchronous rectifier circuit, and the like. The signals of each component (rJC), V(ω>, V(2ω)) obtained from the signal component separation circuit 16 are input to an arithmetic device 17 such as a computer or a dedicated arithmetic device. is V(DC)
, V(ω), ■(2ω), wavelength λ, etc., the reflection coefficient ratio rp /r3 (=ρ) is calculated using the method described above.
and the difference in phase change (phase difference=retardation) γ are determined by calculation, and roughly based on these, the refractive index n and the thickness d of the thin film are determined.

第4図にはこの発明のエリプソメータの他の実施例(第
2発明の例)を示す。
FIG. 4 shows another embodiment (an example of the second invention) of the ellipsometer of this invention.

第4図のエリプソメータにおいては、位相変調素子13
は試料1に対する入射光路に配設されている。すなわち
直線偏光素子12と試料1との間に振幅δ0、変調角周
波数ωなる位相変調素子13がその遅延軸が入射面に対
し45°となるように配置されている。このほかの構成
は第3図の例と同様である。
In the ellipsometer shown in FIG.
is arranged in the incident optical path to the sample 1. That is, a phase modulating element 13 having an amplitude δ0 and a modulation angular frequency ω is arranged between the linear polarizing element 12 and the sample 1 so that its delay axis is at 45° with respect to the plane of incidence. The other configurations are similar to the example shown in FIG.

なお以上の各側において、光源部分のモノクロメータ1
1として選択波長を可変とした回折光子等の素子を用い
、波長走査を行ないつつ測定を行なえば、偏光状態の波
長分散をも知ることができる。
In addition, on each side above, the monochromator 1 of the light source part
1. If a device such as a diffraction photon with a variable selection wavelength is used and measurement is performed while scanning the wavelength, the wavelength dispersion of the polarization state can also be determined.

発明の効果 この発明のエリプソメータは、試料反射光もしくは試料
入射光に対し角周波数ωでの位相変調を行なって検出光
強度信号の直流成分、ω成分、2ω成分を分離し、これ
らから演算によって試料の屈折率や厚みを求めるもので
あり、このように変調して信号成分の分離を行なうこと
は交流的な検出を意味するから、従来の直流的な検出の
場合と比較して背影光の影響などを格段に少なくしてS
/Nを良好にし、高精度で屈折率や厚みを求めることが
できる。
Effects of the Invention The ellipsometer of the present invention performs phase modulation on the sample reflected light or sample incident light at an angular frequency ω to separate the DC component, ω component, and 2ω component of the detected light intensity signal, and calculates the sample This method determines the refractive index and thickness of the signal, and separating the signal components by modulating in this way means alternating current detection, so the influence of background light is much less than in the case of conventional direct current detection. etc. by significantly reducing S.
/N can be made good and the refractive index and thickness can be determined with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的なエリプソメトリの概念を示す略解図、
第2図は試料面上の薄膜についてのエリプソメトリの概
念を示す略解図、第3図は第1発明のエリプソメータの
一例を示すブロック図、第4図は第2発明のエリプソメ
ータの一例を示すブロック図である。 1・・・試料、 2・・・薄膜、 12・・・直線偏光
素子、13・・・位相変調素子、 14・・・検光子、
 15・・・光検出器、 16・・・信号成分分離回路
Figure 1 is a schematic diagram showing the concept of general ellipsometry.
Fig. 2 is a schematic diagram showing the concept of ellipsometry for a thin film on a sample surface, Fig. 3 is a block diagram showing an example of the ellipsometer of the first invention, and Fig. 4 is a block diagram showing an example of the ellipsometer of the second invention. It is a diagram. DESCRIPTION OF SYMBOLS 1... Sample, 2... Thin film, 12... Linear polarization element, 13... Phase modulation element, 14... Analyzer,
15... Photodetector, 16... Signal component separation circuit.

Claims (2)

【特許請求の範囲】[Claims] (1)直線偏光を試料面に入射せしめてその反射光の偏
光状態から試料面に関する値を測定するエリプソメータ
において、 試料面への入射光の光路中に、試料面への入射直線偏光
の偏光方位を一定に保つように直線偏光素子を配置し、
試料面からの反射光の光路中に、振幅δ_0、変調角周
波数ωなる位相変調素子をその遅延軸が入射面に対して
45°となるよう配置するとともに、その位相変調素子
の出射側に、透過軸が入射面に対して平行もしくは垂直
となるように検光子を配置し、さらにその検光子の出射
側に光を光電変換するための光検出器を配置し、その光
検出器の出力信号のω成分、2ω成分および直流成分を
それぞれ独立して取出すための信号成分分離回路を設け
、前記各成分から演算によつて試料面の反射係数比r_
p/r_sおよび反射光の位相変化γを求め、それに基
いて試料面の屈折率および/または試料面の薄膜の厚さ
を求めるようにしたことを特徴とするエリプソメータ。
(1) In an ellipsometer that makes linearly polarized light incident on the sample surface and measures values related to the sample surface from the polarization state of the reflected light, the polarization direction of the linearly polarized light incident on the sample surface is determined during the optical path of the incident light on the sample surface. A linear polarizing element is arranged so as to keep constant.
A phase modulation element with an amplitude δ_0 and a modulation angular frequency ω is arranged in the optical path of the reflected light from the sample surface so that its delay axis is 45° with respect to the incident plane, and on the output side of the phase modulation element, An analyzer is arranged so that the transmission axis is parallel or perpendicular to the incident plane, and a photodetector for photoelectric conversion of light is arranged on the output side of the analyzer, and the output signal of the photodetector is A signal component separation circuit is provided to independently extract the ω component, 2ω component, and DC component, and the reflection coefficient ratio r_ of the sample surface is calculated from each of the components.
An ellipsometer characterized in that p/r_s and a phase change γ of reflected light are determined, and based on these, the refractive index of the sample surface and/or the thickness of a thin film on the sample surface are determined.
(2)直線偏光を試料面に入射せしめてその反射光の偏
光状態から試料面に関する値を測定するエリプソメータ
において、 試料面への入射光の光路中に、直線偏光の偏光方位を一
定に保つための直線偏光素子を配置するとともに、その
直線偏光素子と試料面との間に振幅δ_0、変調角周波
数ωなる位相変調素子をその遅延軸が入射面に対して4
5°となるように配置し、試料面からの反射光の光路中
に、透過軸が入射面に対して平行もしくは垂直となるよ
うに検光子を配置し、さらにその検光子の出射側に光を
光電変換するための光検出器を配置し、その光検出器の
出力信号のω成分、2ω成分および直流成分をそれぞれ
独立して取出すための信号成分分離回路を設け、前記各
成分から演算によつて試料面の反射係数比r_p/r_
sおよび反射光の位相変化γを求め、それに基いて試料
面の屈折率および/または試料面の薄膜の厚さを求める
ようにしたことを特徴とするエリプソメータ。
(2) In an ellipsometer that makes linearly polarized light incident on the sample surface and measures values related to the sample surface from the polarization state of the reflected light, to keep the polarization direction of the linearly polarized light constant during the optical path of the incident light on the sample surface. A linear polarizing element is placed between the linear polarizing element and the sample surface, and a phase modulating element with an amplitude δ_0 and a modulation angular frequency ω is placed between the linear polarizing element and the sample surface so that its delay axis is 4
5°, and in the optical path of the reflected light from the sample surface, place an analyzer so that the transmission axis is parallel or perpendicular to the incident surface, and then place the analyzer on the output side of the analyzer. A photodetector for photoelectric conversion of Therefore, the reflection coefficient ratio r_p/r_ of the sample surface
1. An ellipsometer characterized in that the refractive index of the sample surface and/or the thickness of a thin film on the sample surface are determined based on the determined s and the phase change γ of reflected light.
JP61294134A 1986-12-10 1986-12-10 Ellipsometer Expired - Fee Related JPH0781837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61294134A JPH0781837B2 (en) 1986-12-10 1986-12-10 Ellipsometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61294134A JPH0781837B2 (en) 1986-12-10 1986-12-10 Ellipsometer

Publications (2)

Publication Number Publication Date
JPS63148108A true JPS63148108A (en) 1988-06-21
JPH0781837B2 JPH0781837B2 (en) 1995-09-06

Family

ID=17803741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61294134A Expired - Fee Related JPH0781837B2 (en) 1986-12-10 1986-12-10 Ellipsometer

Country Status (1)

Country Link
JP (1) JPH0781837B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05507349A (en) * 1990-06-15 1993-10-21 ベル コミュニケーションズ リサーチ インコーポレーテッド Ellipticometric control method for material growth
JP2010060352A (en) * 2008-09-02 2010-03-18 Moritex Corp Method and device for measuring optical anisotropy parameter
CN103674892A (en) * 2013-11-21 2014-03-26 中国科学院上海技术物理研究所 Method for monitoring thin-film growth based on total internal reflection polarized phase-difference measurement

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267625A (en) * 1986-05-15 1987-11-20 Japan Spectroscopic Co Ellipsometer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267625A (en) * 1986-05-15 1987-11-20 Japan Spectroscopic Co Ellipsometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05507349A (en) * 1990-06-15 1993-10-21 ベル コミュニケーションズ リサーチ インコーポレーテッド Ellipticometric control method for material growth
JP2010060352A (en) * 2008-09-02 2010-03-18 Moritex Corp Method and device for measuring optical anisotropy parameter
CN103674892A (en) * 2013-11-21 2014-03-26 中国科学院上海技术物理研究所 Method for monitoring thin-film growth based on total internal reflection polarized phase-difference measurement

Also Published As

Publication number Publication date
JPH0781837B2 (en) 1995-09-06

Similar Documents

Publication Publication Date Title
US6219139B1 (en) Full field photoelastic stress analysis
US4647207A (en) Ellipsometric method and apparatus
Hauge et al. A rotating-compensator Fourier ellipsometer
US7889339B1 (en) Complementary waveplate rotating compensator ellipsometer
US4309110A (en) Method and apparatus for measuring the quantities which characterize the optical properties of substances
US4176951A (en) Rotating birefringent ellipsometer and its application to photoelasticimetry
US6128080A (en) Extended range interferometric refractometer
JPH054606B2 (en)
US6927853B2 (en) Method and arrangement for optical stress analysis of solids
TWI615604B (en) Calibration method for wide-band achromatic composite wave plate
JP3285365B2 (en) Rotation compensator-type spectroscopic ellipsometer system with regression calibration with photoarray detector
US3481671A (en) Apparatus and method for obtaining optical rotatory dispersion measurements
JPS63148108A (en) Ellipsometer
Azzam NIRSE: Normal-incidence rotating-sample ellipsometer
JPS59105508A (en) Measurement of whith interference film thickness
JPS6182177A (en) Light applied magnetic field sensor
JP2529562B2 (en) Ellipsometer
JPS63168541A (en) Ellipsometer
KR100870132B1 (en) Spectroscopic ellipsometer using acoustic-optic tunable filter and ellipsometry using thereof
JPH02102436A (en) Birefringence measuring method
JPS62293104A (en) Film thickness measuring instrument
JPS60249007A (en) Instrument for measuring film thickness
JPS63153450A (en) Ellipsometer
RU2157513C1 (en) Ellipsometric transmitter
Monin et al. A new and high precision achromatic ellipsometer: a two-channel and polarization rotator method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees