JPH0325347A - Double refraction measuring method - Google Patents

Double refraction measuring method

Info

Publication number
JPH0325347A
JPH0325347A JP16049989A JP16049989A JPH0325347A JP H0325347 A JPH0325347 A JP H0325347A JP 16049989 A JP16049989 A JP 16049989A JP 16049989 A JP16049989 A JP 16049989A JP H0325347 A JPH0325347 A JP H0325347A
Authority
JP
Japan
Prior art keywords
sample
retardation
angle
alpha
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16049989A
Other languages
Japanese (ja)
Inventor
Shigehiro Takahata
高畑 重弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP16049989A priority Critical patent/JPH0325347A/en
Publication of JPH0325347A publication Critical patent/JPH0325347A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily and speedily measure the retardation of a sample with high accuracy by detecting the phase difference angle of sample transmitted polarized light beams and calculating the phase angle degree of the retardation and the retardation from a specific expression. CONSTITUTION:The two orthogonal polarized light beams incident on the sample Sa are switched between the vertical angle of incidence and a non-vertical angle and when they are made incident vertically and not vertically, the phase angles of the two sample transmitted polarized light beams are detected; and the phase angle degree (m) of the retardation and the retardation D are calculated from m=(alpha'costheta-alpha)/2pi(1-costheta) and D=lambda(2pim+alpha)/2pi where alpha and alpha' are the respective phase difference angles and theta is the angle of refraction of the light incident on the sample surface at the time of the non-perpendicular incidence. In this case, the angles alpha and alpha' are measured by an analyzer A and the angle theta is found from the inclination and refractive index of the light incident on the sample, so (m) and D are accurately calculated.

Description

【発明の詳細な説明】 (産業上の利川分野) 本発明はプラスチック類とか合戒繊維類の分子の配向度
とか試料の厚さ等を知るための複屈折測定装置に関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial field in Icheon) The present invention relates to a birefringence measuring device for determining the orientation degree of molecules of plastics or fibers, the thickness of a sample, etc.

(従来の技術) 試料の複屈折特性は偏光面を直交させた二つの偏光を同
相で試料に入射させたときの出射光の二つの偏光の位相
差即ちレターデーションによって表わすことができる。
(Prior Art) The birefringence characteristics of a sample can be expressed by the phase difference, or retardation, between the two polarized lights of the output light when two polarized lights whose polarization planes are perpendicular are incident on the sample in the same phase.

同じ厚さの試料のレターデーションを比較することによ
って複屈折の程度を比較することができる。
The degree of birefringence can be compared by comparing the retardation of samples of the same thickness.

従来試料のレターデーションを測定するには二つの方法
が用いられていた。その一つは偏光子と検光子との間に
試料を押入し、白色光を入射させて透過光の干渉色を予
め計算されている干渉色表と比較してレターデーション
を求めるものである。試料の厚さをd1試料の常光線に
対する屈折率をNn,異常光線に対する屈折率をNaと
すると波長λの光に対するレターデーションDはd(N
a−Nn)であり、試料を透過した二つの偏偏光子と検
光子とを平行にしてある場合を考えると、θが丁度2π
m(mは整数)になるような波長λ0の光が最もよく透
過することになるから透過光は波長λによって決まる色
を呈する。色の鮮かさは透過光の波長範囲がせまい程良
い。位相角次数mが大きくなる(つまり試料が厚くなる
〉と、可視光の波長範囲で、θが2πの整数倍になる波
長が複数存在するようになり、透過光の鮮かさが低下し
て比色によるレターデーションの測定が困難となり、通
常この方法では厚さ2000nm位までが限度と言われ
ている。また色を比較するのであるから、もともとレタ
ーデーシロンの測定精度が低い。
Conventionally, two methods have been used to measure the retardation of a sample. One method involves inserting a sample between a polarizer and an analyzer, making white light incident thereon, and comparing the interference color of the transmitted light with a pre-calculated interference color table to determine retardation. If the thickness of the sample is d1, the refractive index of the sample for ordinary rays is Nn, and the refractive index for extraordinary rays is Na, then the retardation D for light with wavelength λ is d(N
a-Nn), and if we consider the case where the two polarizers and the analyzer that have passed through the sample are parallel, θ is exactly 2π
Since light with a wavelength λ0 such that m (m is an integer) is best transmitted, the transmitted light exhibits a color determined by the wavelength λ. The vividness of the colors is good as the wavelength range of the transmitted light is narrow. As the phase angle order m becomes larger (that is, the sample becomes thicker), there are multiple wavelengths in the visible light wavelength range where θ is an integer multiple of 2π, and the brightness of the transmitted light decreases, making it difficult to compare. It becomes difficult to measure retardation based on color, and it is said that the limit for this method is usually a thickness of about 2000 nm.Furthermore, since colors are compared, the measurement accuracy of retardation is originally low.

もう一つの方法は水晶結晶のくさび状薄板を試料と重ね
て偏光子と検光子との間に挿入し、水晶板をスライドさ
せて試料と水晶板とのレターデーションを互いに打消す
ようにして、そのときの水晶板のスライド長から試料の
レターデーシ日ンを求めるものである。水晶板に対して
は厚さとレターデーシ日ンの値との関係は既知であり、
水晶板がくさび形であるので、スライド方向の各点のレ
ターデーシ目ンが予め知られていることになる。
Another method is to insert a wedge-shaped thin plate of quartz crystal over the sample and between the polarizer and analyzer, and slide the quartz plate so that the retardation between the sample and the quartz plate cancels each other out. The retardation date of the sample is determined from the slide length of the quartz plate at that time. For quartz plates, the relationship between thickness and retardation value is known;
Since the crystal plate is wedge-shaped, the letter decimal point at each point in the sliding direction is known in advance.

試料と水晶板のレターデーションは水晶板の抑入方向に
よって相加的にも相殺的にもすることができる。水晶板
を試料のレターデーションを打消す方向に挿入し、透過
光の色が消えるときの水晶板の光束透過位置のレターデ
ーションは試料のそれと等しいから、水晶板の位置によ
って試料のレターデーシ日ンが求まる。この方法は精度
は良好であるが、レターデーションの測定できる乾囲は
水晶板のレターデーションの幅の範囲内であり、それを
超える場合は上述した比色法を併用することになり、精
度が低下する。
The retardation between the sample and the quartz plate can be made additive or offset depending on the direction of insertion of the quartz plate. When the crystal plate is inserted in a direction that cancels the retardation of the sample, and the color of the transmitted light disappears, the retardation of the light flux transmission position of the crystal plate is equal to that of the sample, so the retardation of the sample depends on the position of the crystal plate. Seek. Although this method has good accuracy, the dry range at which retardation can be measured is within the range of the retardation width of the quartz plate, and if it exceeds this range, the colorimetric method described above must be used in conjunction with it, resulting in poor accuracy. descend.

〈発明が解決しようとする課題〉 本発明はレターデーションが大きな値になる場合であっ
ても、精度良くレターデーションの測定ができる方法を
提供しようとするものである。
<Problems to be Solved by the Invention> An object of the present invention is to provide a method that can accurately measure retardation even when the retardation has a large value.

(!I題を解決するための手段〉 試料に入射させる直交二偏光の入射角を変え、入射光が
試料面に垂直入射するときと、或る角度傾いて入射する
ときの各々において、試料透過二偏先の位相差角を測定
し、夫々の位相差角をα.α′とし、光を試料に斜入射
させたときの試料面に対する入射光の屈折角をθとする
とき、レターによって算出し、位相差角αからレターデ
ーショd,少し厚くしたときの厚さをd′とすると、夫
々の場合のレターデーションは D=d (Na−Nn) D’=d’ (Na−Nn) D,D’に2π/λを掛けると位相差角になるが、位相
差角は2πrn+α,および2πm十αでα,α゜が厘
接測定されるものである。上式をによって求める。
(!Means for solving problem I) The angle of incidence of orthogonally bipolarized light incident on the sample is changed, and the sample transmission is changed both when the incident light is perpendicular to the sample surface and when it is incident at a certain angle. Calculate by letter when measuring the phase difference angle of two biases, let each phase difference angle be α, α′, and let the refraction angle of the incident light with respect to the sample surface when the light is obliquely incident on the sample be θ. If the retardation is d from the phase difference angle α, and the thickness when slightly thickened is d', then the retardation in each case is D=d (Na-Nn) D'=d' (Na-Nn) D, Multiplying D' by 2π/λ gives the phase difference angle, and the phase difference angle is 2πrn+α and 2πm+α, where α and α° are measured tangently.The above equation is determined.

(作用) 位相差角α,α゛は測定装置で偏光子或は検光子を回転
させることにより高精度で測定できる。
(Operation) The phase difference angles α and α゛ can be measured with high precision by rotating a polarizer or an analyzer using a measuring device.

屈折角θは試料への入射光の傾きと屈折率から求めらよ
れる。従って上記m.Dは計算により精度良く求まる。
The refraction angle θ is determined from the inclination of the light incident on the sample and the refractive index. Therefore, the above m. D can be determined with high accuracy through calculation.

上述方法の原理はレターデーションの位相角次数が不明
な試料で、厚さをわずか変えたときの位相差角の変化か
ら次数mを決めるもので、厚さの変化が小さければ、前
後で次数mは変らず、位相差角だけが変化する。今もと
の厚さをmが求まれば前記(3)式からDが求められ、
これは前記(2)式と同じである。
The principle of the above method is to determine the order m from the change in the retardation angle when the thickness is slightly changed for a sample whose phase angle order of retardation is unknown.If the change in thickness is small, the order m is determined before and after. does not change, only the phase difference angle changes. If the original thickness m is found, D can be found from the equation (3) above,
This is the same as equation (2) above.

(実施例〉 図面は本発明方法を実施する装置の一例を示す。図でS
oは単色光光束を出す光源でレーザが用いられる。レー
ザ光束は!M,MRにより反射されて偏光測定系Mの光
軸上に導かれる。鏡MRは図の紙面に垂直な方向を軸と
し鏡面中心Oを中心として揺動できるようになっている
。偏光測定系において、Pは偏光子、Cは1/′4波長
板、Lはレンズ、Saが試料で、L′はレンズ、Aは検
光子、Dは光検出器である。レンズLは鏡MR表面中心
0の像を試料Sa上1こ形成するようにしてある。レン
ズL゛は試料Sa上の上記像を光検出器Dの受光面上に
再結像するようにしてある。その結果鏡MRを同鏡から
の反射光束が偏光測定系の光軸とφなる角をなすように
回動させると、試料へのレーザ光束の入射角はiとなる
。レンズLから試料Saまでの距離より鏡MRの中心O
からレンズLまでの距離の方が大きいので、iに対して
φは小さく、レンズL゛においても、光路が試料Saを
中心にLと対称的に形成されるようにしてあるので、鏡
MRを揺動させても、偏光子.検光子に対する光路の傾
きの影響は無視でき、鏡MRを揺動させるのに伴って偏
光子,検光子の光軸を揺勤させる必要はない。
(Example) The drawing shows an example of an apparatus for carrying out the method of the present invention.
o is a light source that emits a monochromatic light beam, and a laser is used. The laser beam! It is reflected by M and MR and guided onto the optical axis of the polarization measurement system M. The mirror MR is configured to be able to swing around the mirror surface center O with the axis perpendicular to the plane of the drawing. In the polarization measurement system, P is a polarizer, C is a 1/4 wavelength plate, L is a lens, Sa is a sample, L' is a lens, A is an analyzer, and D is a photodetector. The lens L is designed to form an image of the center 0 of the surface of the mirror MR on the sample Sa. The lens L' is designed to re-image the image on the sample Sa onto the light receiving surface of the photodetector D. As a result, when the mirror MR is rotated so that the reflected light beam from the mirror makes an angle φ with the optical axis of the polarization measurement system, the incident angle of the laser light beam on the sample becomes i. The center O of the mirror MR is determined from the distance from the lens L to the sample Sa.
Since the distance from to lens L is larger, φ is smaller than i, and in lens L, the optical path is formed symmetrically with L with sample Sa as the center, so mirror MR is Even if you oscillate it, the polarizer will remain intact. The influence of the inclination of the optical path on the analyzer can be ignored, and there is no need to swing the optical axes of the polarizer and analyzer in conjunction with swinging the mirror MR.

以上の装置で測定操作は次のように行われる。The measurement operation with the above device is performed as follows.

偏光子Pの偏光方向と1/4波長板Cの光軸を一致させ
、検光子Aの方向を偏光子Pと直交させ、試料Saをセ
ットする。偏光子Pの偏光方向と1/4波長板Cの光軸
が一致しているので、試料への入射光は偏光子Pの方向
に偏光したM線偏光である。こ\で試料を装置の光軸を
軸として回転させ、光検出器Dの出力がOになる位置を
探し、その位置に設定する。このようにして試料の光軸
を入射偏光の方向と平行或は直交させる。以上の準備操
作を終って測定操作に入る。
The polarization direction of the polarizer P is made to match the optical axis of the quarter-wave plate C, the direction of the analyzer A is made orthogonal to the polarizer P, and the sample Sa is set. Since the polarization direction of the polarizer P and the optical axis of the quarter-wave plate C match, the light incident on the sample is M-line polarized light polarized in the direction of the polarizer P. Now rotate the sample around the optical axis of the device, find a position where the output of photodetector D becomes O, and set it at that position. In this way, the optical axis of the sample is made parallel or perpendicular to the direction of the incident polarized light. After completing the above preparation operations, measurement operations begin.

試料の光軸を偏光千Pの偏光方向に対し45゜の方向に
固定し、検光子Aを試料の光軸と直交させる。1/4波
長板Cの光軸を45゜回転させて固定する。こ\で仮に
レターデーションがOとすると、偏光子Pを45゜回し
て1/4波長板の光軸と平行にしたとき、試料にはその
先軸と平行の直線偏光が入射して、そのま\出射するか
ら、光検出器の出力は0である。レターデーションが位
相差角で1/4πであるとき、偏光子を174波長板C
と平行の方向から45゜回わすと、試料には円偏光が入
射し、試料透過光は試料光軸と平行な直線偏光となって
いるから、このとき光検出出力はOである。以下同様に
して、光検出出力がOになるときの偏光子の1/4波長
板Cの光軸方向からの回転角の2倍が、レターデーショ
ンの位相差角即ち前記(1)式のαとなる。次に!IM
Rを回転させて、上と同じ測定を行ってα゛を得る。後
は測定されたα,α′の値および鏡MRの回転角から前
記(l),■式に従って位相角次数m,レターデーシB
ンを算出する。
The optical axis of the sample is fixed at a direction of 45° with respect to the polarization direction of the polarized light P, and the analyzer A is made perpendicular to the optical axis of the sample. Rotate the optical axis of the quarter-wave plate C by 45 degrees and fix it. Here, if the retardation is O, when the polarizer P is turned 45 degrees to make it parallel to the optical axis of the quarter-wave plate, linearly polarized light parallel to the tip axis will be incident on the sample, and the Since the light is emitted, the output of the photodetector is 0. When the retardation is 1/4π in phase difference angle, the polarizer is replaced by a 174 wavelength plate C.
When the sample is turned by 45 degrees from the parallel direction, circularly polarized light enters the sample, and the sample transmitted light becomes linearly polarized light parallel to the sample optical axis, so the photodetection output is O at this time. Similarly, twice the rotation angle from the optical axis direction of the quarter-wave plate C of the polarizer when the photodetection output becomes O is the retardation phase difference angle, that is, α in the above equation (1). becomes. next! IM
Rotate R and perform the same measurement as above to obtain α゛. Then, from the measured values of α and α′ and the rotation angle of the mirror MR, the phase angle order m and the retardation B are determined according to formulas (l) and ■.
Calculate the

(発明の効果) 本発明によれば、干渉色による方法と異り、角度測定に
依存した方法であるので、高梢度であり、かつ従来の位
相角法では判別できなかった位相角次数を算定できる。
(Effects of the Invention) According to the present invention, unlike a method using interference colors, the method relies on angle measurement, so it has a high degree of aperture and can detect phase angle orders that could not be determined using the conventional phase angle method. It can be calculated.

かつ測定は二つの角α.α′の測定で操作は簡単であり
、演算も簡単で自動化容易であり、簡単迅速高精度に試
料のレターデーションを測定することができる。
And the measurement is two angles α. The measurement of α′ is easy to operate, easy to calculate, and easy to automate, making it possible to measure the retardation of a sample easily, quickly, and with high precision.

なお鏡MRの回転は正負両方向に行って、夫々における
m,D等の算出値の平均をとるようにずれば、試料の面
が装置光軸1こ対し多少傾いてセットされても、その影
響を打消すことができ、オンライン測定のように試料セ
ットを正確に行うことが困難な場合でも正しい測定値を
得ることができる。
Note that if the mirror MR is rotated in both positive and negative directions, and the calculated values of m, D, etc. for each are averaged, even if the surface of the sample is set at a slight angle with respect to the optical axis of the device, the influence of This allows accurate measurement values to be obtained even when it is difficult to set samples accurately, such as in online measurements.

【図面の簡単な説明】 図面は本発明の一実施例装置の平面図である。 So・・・光源、M・・・鏡、MR・・・揺動鏡、P・
・・偏光子、C ・1 / 4波長板、L , L ’
 ”i/ンズ、Sa・・・試料、A・・・検光子、D・
・・光検出器。
BRIEF DESCRIPTION OF THE DRAWINGS The drawing is a plan view of an apparatus according to an embodiment of the present invention. So... light source, M... mirror, MR... rocking mirror, P...
・Polarizer, C ・1/4 wavelength plate, L, L'
"i/ins, Sa...sample, A...analyzer, D.
...Photodetector.

Claims (1)

【特許請求の範囲】 試料に入射する直交二偏光の試料への入射角を垂直と非
垂直とに切換え、垂直入射時と非垂直入射時の各々にお
いて、試料透過二偏光の位相差角を検出し、夫々の位相
差角をα、α′、光の非垂直入射時の試料面に対する入
射光の屈折角をθとするとき、レターデーションの位相
角次数mおよびレターデーションを m=(α′cosθ−α)/2π(1−cosθ)D=
λ/2π(2πm+α) により算出することを特徴とする複屈折測定方法。
[Claims] The angle of incidence of orthogonal bipolarized light incident on the sample to the sample is switched between perpendicular and non-perpendicular, and the phase difference angle of the bipolarized light transmitted through the sample is detected at each time of perpendicular incidence and non-perpendicular incidence. When the respective phase difference angles are α and α′, and the refraction angle of the incident light with respect to the sample surface when the light is non-perpendicularly incident is θ, the phase angle order m of the retardation and the retardation are m=(α′ cosθ−α)/2π(1−cosθ)D=
A birefringence measurement method characterized by calculating by λ/2π(2πm+α).
JP16049989A 1989-06-22 1989-06-22 Double refraction measuring method Pending JPH0325347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16049989A JPH0325347A (en) 1989-06-22 1989-06-22 Double refraction measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16049989A JPH0325347A (en) 1989-06-22 1989-06-22 Double refraction measuring method

Publications (1)

Publication Number Publication Date
JPH0325347A true JPH0325347A (en) 1991-02-04

Family

ID=15716259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16049989A Pending JPH0325347A (en) 1989-06-22 1989-06-22 Double refraction measuring method

Country Status (1)

Country Link
JP (1) JPH0325347A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115793U (en) * 1991-03-22 1992-10-14 岡谷電機産業株式会社 Discharge type surge absorber
JP2005257508A (en) * 2004-03-12 2005-09-22 Nokodai Tlo Kk Double refraction characteristic measuring device and double refraction characteristic measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04115793U (en) * 1991-03-22 1992-10-14 岡谷電機産業株式会社 Discharge type surge absorber
JP2005257508A (en) * 2004-03-12 2005-09-22 Nokodai Tlo Kk Double refraction characteristic measuring device and double refraction characteristic measuring method

Similar Documents

Publication Publication Date Title
US5956145A (en) System and method for improving data acquisition capability in spectroscopic rotatable element, rotating element, modulation element, and other ellipsometer and polarimeter and the like systems
KR100742982B1 (en) Focused-beam ellipsometer
US7889339B1 (en) Complementary waveplate rotating compensator ellipsometer
JPS6134442A (en) Ellipsometry measuring method for inspecting physical characteristic of sample surface or surface film layer of sample and device thereof
Negara et al. Simplified Stokes polarimeter based on division-of-amplitude
TWI615604B (en) Calibration method for wide-band achromatic composite wave plate
WO2013138066A1 (en) Dual angles of incidence and azimuth angles optical metrology
EP0737856B1 (en) A method of investigating samples by changing polarisation
CN114324247A (en) Optical measurement method based on quantum weak measurement and dual-channel detection and application
KR101936792B1 (en) Optical Meter for Measuring of Film Structures based on Ellipsometry and Interferometer
RU2302623C2 (en) Ellipsometer
JPH0325347A (en) Double refraction measuring method
JPH08152307A (en) Method and apparatus for measuring optical constants
JPS60122333A (en) Polarization analyzer
US6317209B1 (en) Automated system for measurement of an optical property
JPH04127004A (en) Ellipsometer and its using method
JPH02102436A (en) Birefringence measuring method
JP3181655B2 (en) Optical system and sample support in ellipsometer
JPH05264440A (en) Polarization analyzing apparatus
RU2351917C1 (en) Ellipsometer
JPS60249007A (en) Instrument for measuring film thickness
JP2522480B2 (en) Refractive index measurement method
TWI688754B (en) Common optical path heterodyne micro-polar rotation measuring meter and method
JPH02118406A (en) Liquid crystal cell gap measuring device
JPH04297835A (en) Method for measuring polarization and polarization measuring device using it