JPH02118406A - Liquid crystal cell gap measuring device - Google Patents

Liquid crystal cell gap measuring device

Info

Publication number
JPH02118406A
JPH02118406A JP27268988A JP27268988A JPH02118406A JP H02118406 A JPH02118406 A JP H02118406A JP 27268988 A JP27268988 A JP 27268988A JP 27268988 A JP27268988 A JP 27268988A JP H02118406 A JPH02118406 A JP H02118406A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
crystal cell
monochromatic
polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27268988A
Other languages
Japanese (ja)
Inventor
Hirosuke Saito
斎藤 啓輔
Hiroyuki Yamaguchi
博之 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP27268988A priority Critical patent/JPH02118406A/en
Publication of JPH02118406A publication Critical patent/JPH02118406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To eliminate the need of optical subtraction in consideration of the refractive index, etc., of a film which influences the optical interference of a conductive film, etc., and to simplify a calculating operation by calculating the length of the gap of a liquid crystal cell from the phase difference of double refraction of the liquid crystal cell. CONSTITUTION:Monochromatic-meter 4 selects desired monochromatic light K1 out of light beams from a light source 1 and transmits it. A polarizer 6 selects inspecting light K2 whose vibration component is in a constant single direction out of the monochromatic light K1 from the monochromatic-meter 4 and makes it pass. An analyzer 8 which is a 2nd polarizer selects detecting light K3 whose vibration component is in a single direction out of the inspecting light K2 which is transmitted through the liquid crystal cell 7 being an object to be measured and makes it pass. A detector 9 measures the intensity of the detecting light K3. Then, an arithmetic part 10 obtains the phase difference of the double refraction of the liquid crystal cell 7 from the intensity of light measured by the detector 9 and calculates the length of the gap of the liquid crystal cell 7 from the obtained phase difference of the double refraction and the known double refraction index of the liquid crystal cell 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、液晶セルのギャップ、すなわち液晶セルの厚
みを測定する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for measuring the gap of a liquid crystal cell, that is, the thickness of a liquid crystal cell.

〔従来の技術〕[Conventional technology]

液晶表示素子は、各種の電子機器の表示部分として多量
に利用されているが、この液晶表示素子の表示能力が明
確で安全であることが要求されるのは当然のことである
Although liquid crystal display elements are widely used as display parts of various electronic devices, it is a matter of course that the display ability of this liquid crystal display element is required to be clear and safe.

この液晶表示素子の表示能力を低下させる大きな原因の
一つとして、液晶セルギャップ、すなわち液晶セルの厚
みの不均一がある。液晶セルの厚みの不均一は、液晶表
示素子の表示ムラ、色ムラの発生原因となり、液晶表示
素子の品質を低下させることになる。
One of the major causes of deterioration of the display performance of the liquid crystal display element is the liquid crystal cell gap, that is, the non-uniformity of the thickness of the liquid crystal cell. Non-uniformity in the thickness of the liquid crystal cell causes display unevenness and color unevenness in the liquid crystal display element, and deteriorates the quality of the liquid crystal display element.

それゆえ、得られた液晶表示素子の表示能力をチエツク
する手段の一つとして、液晶セルギャッブを測定する必
要があった。
Therefore, it was necessary to measure the liquid crystal cell gap as one means of checking the display ability of the obtained liquid crystal display element.

従来の液晶セルギャップの測定は、液晶セルギャップ表
面と裏面とにおける光の反射光路の差から、光干渉法に
よりギャップ長dを算出測定していた。
In the conventional measurement of the liquid crystal cell gap, the gap length d was calculated and measured by optical interference method from the difference in the reflected optical path of light between the front surface and the back surface of the liquid crystal cell gap.

この従来のギャップ長dの算出式は、セルギャップの屈
折率をB9、測定された分光スペクトル中で干渉による
極大または極小を示す波長の値をλ1、波長λ7におけ
る干渉の次数(整数または半整数)をm、干渉の次数m
の整数または半整数からのずれをΔmとすると、 2n、d=(m+Δm)λ。
This conventional formula for calculating the gap length d is as follows: B9 is the refractive index of the cell gap, λ1 is the value of the wavelength showing the maximum or minimum due to interference in the measured spectroscopic spectrum, and the order of interference at wavelength λ7 (integer or half-integer) ) is m, the order of interference m
If the deviation from an integer or half-integer is Δm, then 2n, d=(m+Δm)λ.

となる。becomes.

この上式において、ずれΔmは、ガラス基板の屈折率と
液晶セルを構成する各層の膜厚および屈折率から計算さ
れる。
In this above equation, the deviation Δm is calculated from the refractive index of the glass substrate and the film thickness and refractive index of each layer constituting the liquid crystal cell.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記したように従来の液晶セルギャップ長の測定手法は
、導伝膜、配向膜等の光干渉に影響する膜の屈折率、膜
厚値等を考慮して、光学的な引算が必要となり、液晶セ
ルギャップ長の算出操作が面倒で複雑となる問題がある
As mentioned above, the conventional method for measuring the liquid crystal cell gap length requires optical subtraction in consideration of the refractive index, film thickness, etc. of films that affect optical interference, such as conductive films and alignment films. However, there is a problem in that the operation for calculating the liquid crystal cell gap length is troublesome and complicated.

本発明は、上記した従来技術における問題点を解消すべ
く創案されたもので、液晶セルギャップ長の算出に導伝
膜、配向膜等の影響を無くし、もって液晶セルギャップ
長の算出操作が節単に達成できるようにすることを目的
とする。
The present invention was devised to solve the above-mentioned problems in the conventional technology, and eliminates the influence of conductive films, alignment films, etc. in calculating the liquid crystal cell gap length, thereby simplifying the operation of calculating the liquid crystal cell gap length. The purpose is simply to make it achievable.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成する本発明手段は、 適当な光源を有すること、 この光源からの光線の中から所望の単色光を選択透過さ
せる単色計を有すること、 この単色計を透過した単色光の中から一定の単一方向の
振動成分である検査光を選択通過させる偏光子を有する
こと、 被測定物である液晶セルを透過した検査光の中から単一
方向の振動成分である検知光を選択通過させる第2の偏
光子である検光子を有すること、この検光子で得られた
検知光の光の強さを測定する検知器を有すること、 検知器で測定された検知光の光の強さから液晶セルの複
屈折位相差を求め、この複屈折位相差と既知である液晶
セルの複屈折率とから液晶セルのギャップ長を算出する
演算部を有すること、にある。
The means of the present invention to achieve the above objects include: having a suitable light source; having a monochromator that selectively transmits desired monochromatic light from among the light rays from the light source; and selecting from the monochromatic light transmitted through the monochromatic meter. It has a polarizer that selectively passes the inspection light, which is a constant unidirectional vibration component, and selectively passes the detection light, which is a unidirectional vibration component, from the test light that has passed through the liquid crystal cell that is the object to be measured. having an analyzer that is a second polarizer, having a detector that measures the light intensity of the detected light obtained by the analyzer, and having a detector that measures the light intensity of the detected light obtained by the detector; The present invention further includes a calculation unit that calculates the birefringence phase difference of the liquid crystal cell from the above and calculates the gap length of the liquid crystal cell from this birefringence phase difference and the known birefringence index of the liquid crystal cell.

なお、偏光子の偏光軸方向と検光子の偏光軸方向との相
対角度は90’であり、両者の偏光軸方向は液晶セルの
液晶分子の配向方向に対して45°傾斜している。
Note that the relative angle between the polarization axis direction of the polarizer and the polarization axis direction of the analyzer is 90', and both polarization axis directions are inclined at 45 degrees with respect to the alignment direction of liquid crystal molecules of the liquid crystal cell.

〔作用〕[Effect]

偏光子の偏光軸方向と検光子の偏光軸方向との相対角度
が90°であり、この両者の偏光軸方向が液晶セルの液
晶分子の配向方向に対して45°傾斜しており、液晶セ
ルを透過する光が単色光であるので、液晶セルは直交ニ
コル状況下に置かれることになる。
The relative angle between the polarization axis direction of the polarizer and the polarization axis direction of the analyzer is 90°, and the polarization axis directions of both are inclined at 45° with respect to the orientation direction of the liquid crystal molecules in the liquid crystal cell. Since the light that passes through is monochromatic, the liquid crystal cell will be placed under a crossed Nicol situation.

このため、光学的異方体(複屈折体)である液晶セルを
通過した単色光の強さ、すなわち検知器で測定される検
知光の強さBzは、 B” −A” sin”2θ・sin”πR/λ。  
(1)但し、Azは液晶セルに入射する偏光波の強度で
あり、θは液晶セルの振動方向の1つと偏光子の振動方
向との間の角度であり、λ。は測定に使用した単色光の
波長であり、そしてRはリターデーションΔndである
。また、リターデーションR=Δndにおけるdは液晶
セルの厚さ、すなわち液晶セルギャップ長である。
Therefore, the intensity of the monochromatic light that has passed through the liquid crystal cell, which is an optically anisotropic body (birefringent body), that is, the intensity of the detected light Bz measured by the detector, is: B" - A"sin"2θ・sin”πR/λ.
(1) However, Az is the intensity of the polarized light wave incident on the liquid crystal cell, θ is the angle between one of the vibration directions of the liquid crystal cell and the vibration direction of the polarizer, and λ. is the wavelength of the monochromatic light used in the measurement, and R is the retardation Δnd. Further, d in retardation R=Δnd is the thickness of the liquid crystal cell, that is, the liquid crystal cell gap length.

で求められる。is required.

これとは別に、セルギャップ長dを測定される液晶セル
の複屈折率Δnは、 Δn工nX−ny            (2)とし
て与えられて個々の液晶セル固有の値として既知である
Separately, the birefringence Δn of a liquid crystal cell whose cell gap length d is measured is given as Δn×nX−ny (2) and is known as a value specific to each liquid crystal cell.

この検知光の強さB2を示す(1)式・と液晶セルの複
屈折率Δnを示す(2)式とから、リターデーションR
=Δndの関係を利用して、セルギャップ長dを算出す
る。
From equation (1), which indicates the intensity B2 of this detected light, and equation (2), which indicates the birefringence Δn of the liquid crystal cell, the retardation R
= Δnd, the cell gap length d is calculated.

[実施例] 以下、本発明装置の一実施例を図面を参照しながら説明
する。
[Example] Hereinafter, an example of the apparatus of the present invention will be described with reference to the drawings.

第1図は、本発明装置における光学系の光路構成の基本
を示すもので、光源1と、この光源1からの光を集光す
る集光レンズ2と、集光レンズ2により集光された光を
単色計4に導く第1の反射鏡3と、入射された光源1か
らの光の中から一定の波長λ。の単色光に、だけを選択
して通過させる単色計4と、この単色計4からの単色光
に、を偏光子6に導く第2の反射鏡5と、入射された単
色光に、の中から液晶セルフの液晶分子の配向方向に対
して45°の方向の光分を吸収する、すなわち偏光軸の
方向が液晶分子の配向方向に対して45°である偏光子
6と、この偏光子6で成形されて液晶セルフを通過した
検査光に2の中から液晶セルフの液晶分子の配向方向に
対して偏光子6の偏光方向とは反対側の45″の方向の
光分を吸収する、すなわち偏光軸の方向が偏光子6の偏
光軸に対して90゜変位している第2の偏光子としての
検光子8と、この検光子8を通過して得られた検知光に
、の光の強さB2を測定する検知器9と、この検知器9
で得られた測定結果から、前記(1)式と(2)式とを
利用してセルギャップ長dを算出する演算部10とから
構成されている。
FIG. 1 shows the basics of the optical path configuration of the optical system in the device of the present invention. A first reflecting mirror 3 guides light to a monochromator 4, and a constant wavelength λ is selected from among the incident light from the light source 1. A monochromatic meter 4 that selectively passes only the monochromatic light from the monochromatic meter 4, a second reflecting mirror 5 that guides the monochromatic light from the monochromatic meter 4 to a polarizer 6, and A polarizer 6 that absorbs light in a direction of 45° with respect to the orientation direction of liquid crystal molecules of the liquid crystal self, that is, the direction of the polarization axis is 45° with respect to the orientation direction of liquid crystal molecules, and this polarizer 6 In the inspection light that has passed through the liquid crystal self, it absorbs the light component from 2 in the direction of 45'' on the opposite side to the polarization direction of the polarizer 6 with respect to the alignment direction of the liquid crystal molecules of the liquid crystal self, i.e. An analyzer 8 as a second polarizer whose direction of polarization axis is displaced by 90 degrees with respect to the polarization axis of the polarizer 6, and the detected light obtained by passing through this analyzer 8, A detector 9 that measures the strength B2 and this detector 9
The calculation unit 10 calculates the cell gap length d from the measurement results obtained using the equations (1) and (2).

この第1図図示の実施例において、一定のりターデージ
式ンRを有する液晶セルフを、直交ニコル下で白色光に
より観察すると、(1)式において、 R/λ、=m   (m=o、1,2.  ・ ・ ・
)・・・ (3) の時、光の強さBtは最小となるので、測定された分光
スペクトルにおける極小波長λ。における干渉次数mを
決定して液晶セルフのりタープ−ジョンRを算出する。
In the embodiment shown in FIG. 1, when a liquid crystal self having a constant thickness R is observed with white light under crossed Nicols, in equation (1), R/λ,=m (m=o, 1 ,2. ・ ・ ・
)... (3) Since the light intensity Bt is minimum, the minimum wavelength λ in the measured spectrum. The interference order m is determined and the liquid crystal self-adhesion tarpaulsion R is calculated.

すなわち、第1図図示実施例においては、単色計4によ
り単色光に1の波長λ。とじて、分光スペクトル中の最
短波長側の極小値を選択し、この極小波長λ。における
干渉次数mを演算部10で決定してリターデーションR
を演算し、R=Δndなる関係と(2)式とからセルギ
ャップ長dを算出するのである。
That is, in the embodiment shown in FIG. 1, the monochromatic meter 4 provides monochromatic light with a wavelength λ of 1. Then, the minimum value on the shortest wavelength side in the spectrum is selected, and this minimum wavelength λ is determined. The calculation unit 10 determines the interference order m in the retardation R.
The cell gap length d is calculated from the relationship R=Δnd and equation (2).

例えば、試料液晶セルフのりタープ−ジョンRが530
 nmである時、波長λ。を400nm 〜800r+
mまで変化させて、横軸に波長λ。を、縦軸に検知光B
2をとってグラフ表示すると、第2図(a)の実線(イ
)となる。このグラフを利用して、演算部10により極
小波長λ。=530nmを検出し、この干渉次数m=1
.0を決定することにより、前記した(3)式よりリタ
ーデーションR=530nmが測定される。この結果、
測定されたりタープ−ジョンRと既知入力である液晶セ
ルフの複屈折率Δnとから、(2)式によりセルギャッ
プ長dが算出される。
For example, the sample liquid crystal self-adhesive tarpaulin R is 530
When it is nm, the wavelength λ. 400nm ~800r+
The horizontal axis shows the wavelength λ. , the vertical axis is the detected light B
When 2 is taken and displayed in a graph, it becomes the solid line (a) in FIG. 2(a). Using this graph, the calculation unit 10 calculates the minimum wavelength λ. =530nm is detected, and this interference order m=1
.. By determining 0, retardation R=530 nm is measured from the above equation (3). As a result,
The cell gap length d is calculated from equation (2) from the measured turpitude R and the birefringence Δn of the liquid crystal self, which is a known input.

第2図(b)は、同様の手法により、極小波長λ。= 
500nmと干渉次数m=2.0により、リターデーシ
ョンR=1000nmを得、この結果からセルギャップ
長dを求める例を示している。
FIG. 2(b) shows the minimum wavelength λ obtained using a similar method. =
500 nm and interference order m=2.0, retardation R=1000 nm is obtained, and the cell gap length d is determined from this result.

第3図は、本発明装置の具体例の構成を示すもので、第
1図に示した基本的構成部分の他に、単色計4からの光
を平行光線に集光する集光レンズ11と、液晶セルフの
測定位置を決定すると共に姿勢を観察決定するための三
眼鏡筒12と、この三眼鏡筒12の焦点レンズ13と、
液晶セルフに焦点を合わせると共に拡散した光を平行に
集光する上対物レンズ14および下対物レンズ15と、
液晶セルフの位置合わせ操作に使用する観察用光源16
と、この観察用光源16からの光から検知器9を保護す
るシャンク17とを有している。
FIG. 3 shows the configuration of a specific example of the device of the present invention, in which, in addition to the basic components shown in FIG. , a trinocular tube 12 for determining the measurement position of the liquid crystal selfie and observing and determining the posture; a focal lens 13 of the trinocular tube 12;
an upper objective lens 14 and a lower objective lens 15 that focus on the liquid crystal self and condense the diffused light in parallel;
Observation light source 16 used for liquid crystal self-alignment operation
and a shank 17 that protects the detector 9 from light from the observation light source 16.

この第3図に示した測定装置の操作手順は、まず液晶セ
ルフを除いた状態で、光源1および単色計4を作動させ
、波長λ。=400〜800nmにおける液晶セルフに
入射される偏光波すなわち検査光に、の強度Atを演算
部10に記憶させる。ただし、この際、偏光子6と検光
子8との偏光軸は平行とする。すなわち、検査光KZ=
検知光に3とする。
The operating procedure for the measuring device shown in FIG. 3 is to first operate the light source 1 and the monochromatic meter 4 with the liquid crystal display removed, and measure the wavelength λ. The intensity At of the polarized light wave incident on the liquid crystal self, that is, the inspection light in the wavelength range of =400 to 800 nm is stored in the calculation unit 10. However, in this case, the polarization axes of the polarizer 6 and the analyzer 8 are parallel to each other. That is, inspection light KZ=
Set the detection light to 3.

次に、液晶セルフを指定位置に設置し、まずシャッタ1
7を閉じて観察用光源16からの光線が検知器9に照射
されないようにすると共に、第2の反射鏡5を回動変位
させて観測用光源16の光線が三眼鏡筒12に照射され
るようにしてから、観察用光源16を点灯する。この観
察用光源16の光により、指定位置に設置された液晶セ
ルフを三眼鏡筒12で観察しながら上下対物レンズ14
.15を操作して焦点合わせを行うと共に、セルギャッ
プdを測定シようとする液晶セルフの箇所を、液晶セル
フを水平に変位調整しながら設定する。
Next, set up the LCD selfie at the specified position, and first press shutter 1.
7 is closed to prevent the light beam from the observation light source 16 from being irradiated onto the detector 9, and the second reflecting mirror 5 is rotationally displaced so that the light beam from the observation light source 16 is irradiated onto the trinocular tube 12. After doing so, the observation light source 16 is turned on. Using the light from this observation light source 16, the upper and lower objective lenses 14
.. 15 to adjust the focus, and at the same time set the location of the liquid crystal self where the cell gap d is to be measured while adjusting the horizontal displacement of the liquid crystal self.

液晶セルフの設置が完了したならば、観察用光源16を
消灯すると共にシャッタ17を開放し、さらに第2の反
射鏡5を測定位置に回動復帰させて測定状態に復帰させ
る。測定状態への復帰が完了したならば、検光子8を9
0″回転させて、その偏光軸を偏光子6の偏光軸に対し
て90°変位させることにより、第3図に示した光学系
を(1)式における検知光に、の強さB2を測定する状
態とし、ここで再び単色計4を作動させて、波長λ。=
400〜800nmにおける検知光に3の強さB2を演
算部10に記憶する。
When the installation of the liquid crystal display is completed, the observation light source 16 is turned off, the shutter 17 is opened, and the second reflecting mirror 5 is rotated back to the measurement position to return to the measurement state. Once the return to the measurement state is complete, move the analyzer 8 to 9.
By rotating the optical system by 0" and displacing its polarization axis by 90 degrees with respect to the polarization axis of the polarizer 6, the intensity B2 of the optical system shown in FIG. At this point, the monochromator 4 is operated again to obtain the wavelength λ.=
The intensity B2 of 3 for the detection light in the range of 400 to 800 nm is stored in the calculation unit 10.

波長λ。=400〜800nmにおける検知光の強さB
2を記憶した演算部10は、この波長λ。=400〜8
00n−におけるaj/A!を計算し、極小波長λ。
Wavelength λ. =Intensity B of detection light in 400 to 800 nm
The arithmetic unit 10 that has stored the wavelength λ is the wavelength λ. =400~8
aj/A at 00n-! Calculate the minimum wavelength λ.

と、この極小波長λ。における干渉次数mを決定する。And this minimum wavelength λ. Determine the interference order m at .

二の極小波長λ。と干渉次数mとが決定されたならば、
(3)式によりリターデーションRが求まるので、予め
演算部10に記憶されている液晶セルフの複屈折率Δn
と(2)式とから液晶セルギャップ長dを得る 〔発明の効果〕 本発明による液晶セルギャップ測定装置は、上記した構
成となっているので、以下に示す効果を発揮する。
The second minimum wavelength λ. If and the interference order m are determined,
Since the retardation R is determined by the formula (3), the birefringence Δn of the liquid crystal self stored in advance in the calculation unit 10
Obtaining the liquid crystal cell gap length d from equation (2) [Effects of the Invention] Since the liquid crystal cell gap measuring device according to the present invention has the above-described configuration, it exhibits the following effects.

液晶セルギャップ長を、液晶セルの複屈折位相差から算
出するので、導伝膜、配向膜等の光干渉に影響する膜の
屈折率、膜厚等を考慮した光学的な引算を不必要とし、
これにより算出操作が極めて簡単で単純となる。
Since the liquid crystal cell gap length is calculated from the birefringence phase difference of the liquid crystal cell, there is no need for optical subtraction that takes into account the refractive index, film thickness, etc. of films that affect optical interference, such as conductive films and alignment films. year,
This makes the calculation operation extremely easy and simple.

測定操作時に設定する数値は、既知の値ばかりであるの
で、その設定操作が容易であると共に正確な設定操作を
得ることができる。
Since the numerical values set during the measurement operation are all known values, the setting operation is easy and accurate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明装置の最も基本的な光学系光路構成を
示す図である。 第2図は、成る特定のりタープ−ジョンを有する複屈折
体を第1図の光学系に設置することによって得られる分
光透過スペクトル(実線)特性を示すもので、第2図(
a)はりターデージジンが530nmの場合を、第2図
(b)はりタープ−ジョンが11000nの場合を示し
ている。 第3図は、実際に液晶セルギャップを測定することがで
きるように構成した本発明装置の具体構成例を示す構成
部分配列図である。 符号の説明 1;光源、2;集光レンズ、3;第1の反射鏡、4;単
色計、5;第2の反射鏡、6;偏光子、7;液晶セル、
8;検光子、9;検知器、10;演算部、KI;単色光
、K2;検査光、K、;検知光。 出願人 株式会社 オ − り 製 作 所10−鷹賽
診 (a) (b) 人0 (nm) 17−−シノー【−ノア Kr−(LAL K2−一株豪礼 に3−−−第4セよVλシ
FIG. 1 is a diagram showing the most basic optical system optical path configuration of the apparatus of the present invention. Figure 2 shows the spectral transmission spectrum (solid line) characteristics obtained by installing a birefringent material with a specific retarpsion in the optical system of Figure 1.
a) shows the case where the beam tardage is 530 nm; FIG. 2(b) shows the case where the beam tarp John is 11000 nm. FIG. 3 is a partial layout diagram showing a specific example of the configuration of the device of the present invention configured to actually measure the liquid crystal cell gap. Explanation of symbols 1; light source; 2; condensing lens; 3; first reflecting mirror; 4; monochromator; 5; second reflecting mirror; 6; polarizer; 7; liquid crystal cell;
8: Analyzer, 9: Detector, 10: Arithmetic unit, KI: Monochromatic light, K2: Inspection light, K: Detection light. Applicant O-ri Manufacturing Co., Ltd. 10-Takasaiken (a) (b) Person 0 (nm) 17--Sino [-Noah Kr-(LAL K2-1 stock gorei ni 3--4th Seyo Vλshi

Claims (1)

【特許請求の範囲】[Claims] (1)光源(1)と、 該光源(1)からの光線の中から所望の単色光(K1)
を選択透過させる単色計(4)と、 該単色計(4)からの単色光(K1)の中から一定の単
一方向の振動成分である検査光(K2)を選択通過させ
る偏光子(6)と、 被測定物である液晶セル(7)を透過した前記検査光(
K2)の中から単一方向の振動成分である検知光(K3
)を選択通過させる第2の偏光子である検光子(8)と
、 前記検知光(K3)の光の強さ(B^2)を測定する検
知器(9)と、 該検知器(9)で測定された光の強さ(B^2)から前
記液晶セル(7)の複屈折位相差(Δnd)を求め、該
複屈折位相差(Δnd)と既知である前記液晶セル(7
)の複屈折率(Δn=n_x−n_y)とから液晶セル
(7)のギャップ長(d)を算出する演算部(10)と
、 から成る液晶セルギャップ測定装置。
(1) A light source (1) and desired monochromatic light (K1) from among the light rays from the light source (1).
a monochromatic meter (4) that selectively transmits the light, and a polarizer (6) that selectively transmits the inspection light (K2), which is a constant unidirectional vibration component, from the monochromatic light (K1) from the monochromatic meter (4). ), and the inspection light (
The detection light (K3) is a unidirectional vibration component from the light (K2)
), a detector (9) that measures the light intensity (B^2) of the detected light (K3); ) The birefringence retardation (Δnd) of the liquid crystal cell (7) is determined from the light intensity (B^2) measured at
A liquid crystal cell gap measuring device comprising: a calculation unit (10) that calculates the gap length (d) of the liquid crystal cell (7) from the birefringence (Δn=n_x−n_y) of the liquid crystal cell (7);
JP27268988A 1988-10-28 1988-10-28 Liquid crystal cell gap measuring device Pending JPH02118406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27268988A JPH02118406A (en) 1988-10-28 1988-10-28 Liquid crystal cell gap measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27268988A JPH02118406A (en) 1988-10-28 1988-10-28 Liquid crystal cell gap measuring device

Publications (1)

Publication Number Publication Date
JPH02118406A true JPH02118406A (en) 1990-05-02

Family

ID=17517424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27268988A Pending JPH02118406A (en) 1988-10-28 1988-10-28 Liquid crystal cell gap measuring device

Country Status (1)

Country Link
JP (1) JPH02118406A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239365A (en) * 1991-04-03 1993-08-24 Otsuka Electronics Co., Ltd. Method of measuring thickness of liquid crystal cells
JPH11344312A (en) * 1998-06-01 1999-12-14 Jasco Corp Liquid crystal cell gap measuring method and its equipment
US6628389B1 (en) 1999-09-20 2003-09-30 Otsuka Electronics Co., Ltd. Method and apparatus for measuring cell gap of VA liquid crystal panel
JP2006017939A (en) * 2004-06-30 2006-01-19 Nippon Oil Corp Optical parameter calculating method of twist-oriented liquid crystal film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236506A (en) * 1985-08-12 1987-02-17 Matsushita Electric Ind Co Ltd Measuring method for film thickness of liquid crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236506A (en) * 1985-08-12 1987-02-17 Matsushita Electric Ind Co Ltd Measuring method for film thickness of liquid crystal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239365A (en) * 1991-04-03 1993-08-24 Otsuka Electronics Co., Ltd. Method of measuring thickness of liquid crystal cells
JPH11344312A (en) * 1998-06-01 1999-12-14 Jasco Corp Liquid crystal cell gap measuring method and its equipment
US6628389B1 (en) 1999-09-20 2003-09-30 Otsuka Electronics Co., Ltd. Method and apparatus for measuring cell gap of VA liquid crystal panel
JP2006017939A (en) * 2004-06-30 2006-01-19 Nippon Oil Corp Optical parameter calculating method of twist-oriented liquid crystal film
JP4486425B2 (en) * 2004-06-30 2010-06-23 新日本石油株式会社 Method for calculating optical parameters of twisted alignment liquid crystal film

Similar Documents

Publication Publication Date Title
De Martino et al. General methods for optimized design and calibration of Mueller polarimeters
JP5198980B2 (en) Optical anisotropy parameter measuring method and measuring apparatus
US9989454B2 (en) Method and apparatus for measuring parameters of optical anisotropy
JPH04307312A (en) Measuring method of thickness of gap of liquid crystal cell
KR100195397B1 (en) Method and apparatus for measuring thickness of birefringence layer
JPH10332533A (en) Birefringence evaluation system
TWI615604B (en) Calibration method for wide-band achromatic composite wave plate
US6633358B1 (en) Methods and apparatus for measurement of LC cell parameters
US6348966B1 (en) Measuring method of liquid crystal pretilt angle and measuring equipment of liquid crystal pretilt angle
KR20010107968A (en) Method and apparatus for measuring cell gap of VA liquid crystal panel
KR100258172B1 (en) Birefringent member cell gap measurement method and instrument
US6757062B2 (en) Method and device for measuring thickness of liquid crystal layer
JP2000509830A (en) Rotation compensator-type spectroscopic ellipsometer system with regression calibration with photoarray detector
JPH02118406A (en) Liquid crystal cell gap measuring device
JP5041508B2 (en) Optical characteristic measuring apparatus and method
JP4034184B2 (en) Liquid crystal cell gap measurement method
US7233395B2 (en) Performing retardation measurements
JP3936712B2 (en) Parameter detection method and detection apparatus for detection object
US7075648B2 (en) Performing retardation measurements
KR100870132B1 (en) Spectroscopic ellipsometer using acoustic-optic tunable filter and ellipsometry using thereof
Tsukiji et al. Measurement system for very small photoelastic constant of polymer films
RU2102700C1 (en) Two-beam interferometer for measuring of refractive index of isotropic and anisotropic materials
JPH06265318A (en) Method and device for measuring cell gap of birefringence body
JP2009122152A (en) Method of analyzing polarization
JP2012032346A (en) Evaluation method for optical element and evaluation device for optical element