JPH04297835A - Method for measuring polarization and polarization measuring device using it - Google Patents

Method for measuring polarization and polarization measuring device using it

Info

Publication number
JPH04297835A
JPH04297835A JP6330791A JP6330791A JPH04297835A JP H04297835 A JPH04297835 A JP H04297835A JP 6330791 A JP6330791 A JP 6330791A JP 6330791 A JP6330791 A JP 6330791A JP H04297835 A JPH04297835 A JP H04297835A
Authority
JP
Japan
Prior art keywords
analyzer
polarization
sample
light
polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6330791A
Other languages
Japanese (ja)
Inventor
Eni Chin
延偉 陳
Naoki Inamoto
直樹 稲本
Tomohiro Douda
知広 銅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Electronics Co Ltd
Original Assignee
Otsuka Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Electronics Co Ltd filed Critical Otsuka Electronics Co Ltd
Priority to JP6330791A priority Critical patent/JPH04297835A/en
Priority to DE19924209537 priority patent/DE4209537A1/en
Priority to GB9206473A priority patent/GB2254144A/en
Publication of JPH04297835A publication Critical patent/JPH04297835A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/211Ellipsometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable an ellipticity of elliptic polarization and an orientation angle of a longer axis to be calculated at high speed and accurately by obtaining an intensity of output light with a photo detector and then using a specific expression in at least three rotary positions of an analyzer. CONSTITUTION:Light from a light source 1 is guided from a pin hole 5 to a polarizer 6 and an output light passes through an objective lens 7 and is emitted to a sample 8. A transmission light from the sample 8 passes through a lens 9 and an optical fiber 12, is fed to a spectrophotometer 13 for obtaining spectral intensity signal, and then it is calculated by a processing device 14. A standard polarizer 8a with a polarization axis is set in a reference direction and then a polarizer 6 and an analyzer 10 are rotated for matching to the reference direction. The polarizer 8a is removed, a sample 8 is inserted, a direction of a crystal axis of the sample 8 is set in parallel to the reference direction as an x axis. Then, an angle of the ananlyzer 10 is set to 0, 90, and 45 degrees, light intensities I1-I3 are selected by the spectrophotometer 13, and then an ellipticity rho and an orientation angle phi of elliptic polarization are calculated by using expressions I and II.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、異方性媒質中を進んだ
光の偏光特性を測定して、その媒質の性質を調べる偏光
測定方法及びその方法を用いた偏光測定装置に関するも
のである。 【0002】 【従来の技術】液晶、光学結晶等の異方性媒質中を進ん
だ光の偏光状態を測定することにより、媒質の光学軸の
方向、複屈折位相差等を知ることができる。そしてこれ
により媒質の膜厚、光学定数、さらには、前記測定を各
波長について行うことにより光学定数の波長依存性を知
ることができる。 【0003】例えば液晶を例にとると、最近では、液晶
の複屈折特性に対する評価がますます高まっており、偏
光特性の波長依存性の測定が重要な測定項目となってい
る。さらに具体的にいえば、スーパーツイスト型の液晶
では、白黒、コントラストを際立たせるために複屈折に
よる着色を位相差フィルムで補正しているが、正確な補
正を実現するには、偏光特性の波長依存性を正確に測定
する必要がある。 【0004】従来では、偏光特性を測定する方法として
次のようなものが採用されている。古典的な測定法は、
単色光源、偏光子、試料、検光子をこの順に配列し、検
光子を回転させて出力光強度を検出することにより、試
料を通った光の偏光特性(楕円率角χ、方位角φなどを
いう。図11参照)を測定することができる。この方法
を最大最小法という。 【0005】この最大最小法では、出力光強度を測定す
るには、検光子を細かく回転させる必要があり、時間が
かかる。特に、多波長で測定する場合は波長ごとに前記
測定を繰り返すので膨大な時間がかかる。そこで、分光
器とイメージセンサを利用して多波長での測定を容易に
し、かつストークスパラメータとミュラー行列表示を用
いて偏光特性を解析をする方法が提案されている(M.
C.K.Wiltshire and M.R. Le
wis, J.Phys.E:Sci.Instrum
. 20,884(1987)) 。この方法を4ポイ
ント法ということにする。 【0006】この提案の4ポイント法は、試料を透過し
た楕円偏光を検光子で受け、検光子を水平(0°),垂
直(90°)、45°、135°に固定して、それぞれ
出力光強度のスペクトルを測定する方法である。簡単に
説明すると、楕円偏光のストークスパラメータを、Σ0
 =(S0,S1,S2,S3) で表示する。検光子のミュラー行列は角度の関数として
分かっているのでこれをPi(iは0°,90°,45
°,135°を表わす。)と表示すると、検光子を通過
した光のストークスパラメータΣ1 は、Σ1 =Pi
Σ0  となり、前記S0〜S3により表現できる。したがって
、検光子を通過した光の強度I1,I2,I3,I4を
測定すれば、もとの楕円偏光のストークスパラメータS
0,S1,S2,S3,S4を推定することができる。 【0007】一方、楕円率角χと、長軸の方位角φは、
S0,S1,S2,S3の関数として表現できることが
分かっている。したがって、検光子を通過した光のスペ
クトル強度を測定することにより角波長の楕円率角χと
、長軸の方位角φが分かる。楕円率角χと、長軸の方位
角φを数式で表現すると、 【0008】 【数3】 【0009】となる。この(2) 式の右辺を強度I1
,I2,I3,I4の関数f(Ii)(i=1,2,3
,4) ということにする。また次の(3) 式から、
楕円率ρも分かる。 ρ=tanχ            (3)したがっ
て、試料の偏光特性とその波長依存性を知ることができ 【0010】 【発明が解決しようとする課題】前記のストークスパラ
メータを使った4ポイント法は、分光器を使うので高速
であるが、楕円率ρを測定する場合、まず楕円率角χを
求め、それから楕円率ρを求めるために次のような誤差
が入る。 【0011】 【数4】 【0012】cosχは分母に入るため、χが90°の
付近、すなわち直線偏光に近い場合は、強度のゆらぎが
小さくとも大きな測定誤差になる。したがって、この方
法の問題点は、あらゆる形の楕円偏光に対して楕円率ρ
の高精度な測定ができないことにある。そこで、本発明
の目的は、上述の技術的課題を解決し、高速かつ正確に
楕円率ρと方位角φとを測定することができる偏光測定
方法及びその方法を用いた偏光測定装置を提供すること
である。 【0013】 【課題を解決するための手段】上記の目的を達成するた
めの請求項1記載の偏光測定方法は、検光子の少なくと
も3つの回転位置において光検出器で検出された出力光
の強度I1,I2,I3 を求め、次の2つの式を用い
て試料から出射される楕円偏光の楕円率ρおよび方位角
φを算出する方法である。 【0014】   tan 2φ=(I1 +I2 −2I3 )/(
I2 −I1 )      (5) 【0015】 【数5】 【0016】また請求項2記載の偏光測定装置は、光源
と、直線偏光をつくり出す偏光子と、所望角度の偏光成
分のみを通過させる回転可能な検光子と、偏光子と検光
子との間に配置される試料と、検光子からの出力光の強
度を検出する光検出器と、検光子からの出力光の強度I
1,I2,I3 を表わす光検出器の検出信号に基づい
て前記2つの式を用いて試料を透過した楕円偏光の楕円
率ρおよび方位角φを算出する手段とを備えるものであ
る。 【0017】請求項3の偏光測定装置は、請求項2記載
の偏光測定装置において光検出器の前段に分光器を備え
、多波長での測定を同時にできるようにしたものである
。 【0018】 【作用】図2に示された楕円偏光を検光子に入射させる
とする。基準軸をx軸、y軸とし、図1に示すように、
検光子の検出軸とx軸との角度をθとすると、出力光強
度I(θ)は、     I(θ)=a2cos2(θ−φ)+b2si
n2(θ−φ)        (7) で表される(
マリュスの法則)。ここにφはx軸と楕円長軸ξとがな
す角、aは長軸の長さ、bは短軸の長さである。 【0019】この(7) 式から分かるように、ある測
定角度θでの強度は、a,b,φの3つの変数で決まる
。そこで、θを3つ選び、それぞれの強度I1,I2,
I3 を測定し、これらの3つの強度I1,I2,I3
 について連立方程式を立てるとa,b,φを求めるこ
とが可能になる。 例えば、θ=0°、90°、45°を選ぶと、    
I1 =a2cos2 φ+b2sin2 φ    
                    (8)  
   I2 =a2sin2 φ+b2cos2 φ 
                       (9
)     I3 =a2cos2 (45 °−φ)
 +b2sin2 (45 °−φ)     (10
)という3つの式ができる。(8) 式から(10)式
を引いて、    I1 −I3 =a2 {cos2
φ−cos2(45 °−φ)}          
        +b2 {sin2φ−sin2(4
5 °−φ)}    (11)(9) 式から(10
)式を引いて、     I2 −I3 =a2 {sin2φ−cos
2(45 °−φ)}               
   +b2 {cos2φ−sin2(45 °−φ
)}    (12)が得られ、(11)式と(12)
式とを足して    I1 −I3 +I2 −I3 
=(b2 −a2 )sin 2φ      (13
)(9) 式から(8) 式を引いて、     I2 −I1 =(b2 −a2 )cos 
2φ                  (14)と
いう式が得られる。(13)式、(14) 式より、 
   tan 2φ=(I1 +I2 −2I3 )/
(I2 −I1 )    (15)が得られるので、
これにより方位角φが分かる。 【0020】楕円率ρは、I1 >I2 の場合は、ρ
=b/a なので、 【0021】 【数6】 【0022】により求めることができる。このときの方
位角φは     2φ=tan −1  (I1 +I2 −2
I3 )/(I2 −I1 )  となる。I1 <I
2 の場合は、 ρ=a/b であるが、計算の結果は(16)式と同じになる。方位
角φは     2φ=tan −1  (I1 +I2 −2
I3 )/(I2 −I1 )  +πとなる。 【0023】I1 =I2 の場合は、φ=π/4 となる。 【0024】 【実施例】以下実施例を示す添付図面によって詳細に説
明する。図3は、本発明の偏光測定装置を示す概略図で
ある。光源1から出た光は、ピンホール2を通り、ミラ
ー3により反射されて、レンズ4、ピンホール5を通っ
てポラライザー6に導かれる。ポラライザー6の出力光
は対物レンズを通って試料に照射され、試料の透過光は
、対物レンズ9に入り、アナライザー10に導かれる。 アナライザー10の透過光はレンズにより集光され光フ
ァイバ12を経て、分光光度計13に入力される。 分光光度計13によって得られる分光強度信号は、処理
装置14に供給され、ここにおいて、後述する演算が行
われる。 【0025】前記光源1は、例えばI2 ランプのよう
な白色光源である。ポラライザー6、アナライザー10
は、例えばニコルプリスム、グラン−トムソンプリズム
のような異方性プリズムやポラロイド膜を用いた直線偏
光器である。いずれも光の進行方向を中心にして回転で
きるようになっている。光ファイバ12は、測定光を分
光光度計13に導くものであるが、分光光度計13の受
光感度が偏光状態により影響を受けるのを防ぐためのデ
ポラライザーの機能も果たしている(特開平1−124
723号公報参照)。 【0026】分光光度計13は、回折格子等の分散素子
と、撮像素子とを組み合わせた公知のものである。処理
装置14は、アナライザー10の回転角に応じて測定さ
れた分光強度を前出の(15)(16)式に当てはめ、
楕円率ρと方位角φとを求めるものであり、具体的には
、パーソナルコンピュータを使用している。 【0027】偏光測定装置を使用した偏光測定方法を説
明すると、まず、試料を除いた状態で、ある基準方向に
偏光軸をもった標準偏光子8aをセットし、ポラライザ
ー6、アナライザー10を回転させて基準方向に合わす
。そして、標準偏光子8aを外し、試料を挿入し、試料
の結晶軸の方向(既知とする。もし分からなければ適当
な方法で測定する)をその基準方向と平行にセットしこ
れをx軸とする。次に、アナライザ10の角度を0°、
90°、45°にセットして光強度を測定する。 【0028】次に、前記の測定装置を利用して得られた
実測結果を紹介する。試料8には、ポリカーボネート位
相差フィルムを用いた。このポリカーボネート位相差フ
ィルムの波長分散特性(波長550nmでの屈折率差を
1とした場合の相対屈折率差)は図4のとおりであるこ
とが分かっている(山本他,日東技報,28,105 
(1980) )。 【0029】波長450nm、550nmでの楕円率ρ
の実測値のグラフを図5に示す。グラフの横軸は、入射
直線偏光の方位角すなわちポラライザー6の回転角であ
る。+のマークは550nmでの実測値、×のマークは
450nmでの実測値である。また、図4の波長分散特
性を使って直接計算した理論値を実線(550nm),
破線(450nm)で示す。 【0030】また、従来の最大最小法での実測値を図6
に示す。+のマークは550nmでの実測値、×のマー
クは450nmでの実測値である。4ポイント法での実
測値を図7に示す。+のマークは550nmでの実測値
、△のマークは450nmでの実測値である。次に、波
長450nm、550nmでの楕円の方位角φの実測値
のグラフを図8に示す。グラフの横軸は、入射直線偏光
の方位角すなわちポラライザー6の回転角である。+の
マークは550nmでの実測値、△のマークは450n
mでの実測値である。また、図4の波長分散特性を使っ
て直接計算した理論値を実線(550nm),破線(4
50nm)で示す。 【0031】また、従来の最大最小法での方位角φの実
測値を図9に、4ポイント法での実測値を図10に示す
。以上の図5〜図10のグラフを見ると、方位角φは、
本発明の方法、従来の最大最小法、従来の4ポイント法
とも理論値とよく合致している。しかし、楕円率ρにつ
いていえば、従来の4ポイント法では、図7から分かる
ように0°、90°180°の付近で誤差が目立ってい
る。本発明の方法および従来の最大最小法では、誤差は
少ない(図5、図6)。 【0032】そこで、楕円率ρの測定精度を正確に評価
するために、楕円率ρの理論計算値からの平均相対ずれ
δ1 を 【0033】 【数7】 【0034】のように定義する。この式において、ρe
xは実測値、ρthは理論値を示す。この式により、本
発明の方法、従来の最大最小法、従来の4ポイント法で
の平均相対ずれδ1 を求めた結果を表1に示す。 【0035】 【表1】 【0036】表1によれば本発明の方法、従来の最大最
小法では、平均相対ずれδ1 は比較的少ないが、4ポ
イント法では、平均相対ずれδ1 は多くなっており、
グラフから推測されたことが裏付けられている。また、
楕円方位角φの理論計算値からの平均誤差δ2 を求め
た結果を表2に示す。 【0037】 【表2】 【0038】表2によれば本発明の方法、従来の最大最
小法、4ポイント法ともほぼ同じ精度で測定されている
ことが分かる。以上のように、アナライザーの3つの回
転位置での強度を測定することにより、簡単な式に当て
はめて、楕円率ρと楕円方位角φを直接求めることがで
きる。求められた値は従来の方法に比べて十分正確であ
り、かつ、3つの回転位置のみで測定すればよいので測
定時間も少なくて済む。また、分光器を接続してスペク
トル強度を測定すれば、1回の測定で多波長での測定を
済ませることができる。 【0039】なお、本発明は前記実施例に限定されるも
のではなく、例えば、試料として予め偏光特性をもった
液晶のようなものを使う場合、又は光の偏光特性が初め
から分かっている光源を使う場合には、直線偏光を作る
ポラライザーを省略することも可能である。その他本発
明の要旨を変更しない範囲で種々の変更を施すことが可
能である。 【0040】 【発明の効果】以上のように本発明の偏光測定方法及び
その方法を用いた偏光測定装置によれば、少なくとも3
つの回転位置においてスペクトルを測定し、所定の式に
当てはめて計算するだけで楕円率ρ及び方位角φを十分
高い精度で求めることができる。 【0041】また、分光光度計を利用して多波長ポイン
トでの測定を行えば、楕円率ρ及び方位角φの波長依存
性を高速に測定することができる。
Detailed Description of the Invention [0001] [Industrial Application Field] The present invention relates to a polarization measurement method and method for measuring the polarization characteristics of light traveling through an anisotropic medium to investigate the properties of the medium. The present invention relates to a polarization measuring device using a polarization measuring device. 2. Description of the Related Art By measuring the polarization state of light traveling through an anisotropic medium such as a liquid crystal or an optical crystal, the direction of the optical axis of the medium, birefringence phase difference, etc. can be determined. As a result, it is possible to know the film thickness of the medium, the optical constants, and further the wavelength dependence of the optical constants by performing the above measurements for each wavelength. Taking liquid crystals as an example, recently, the birefringence properties of liquid crystals have been increasingly evaluated, and measurement of the wavelength dependence of polarization properties has become an important measurement item. More specifically, in super-twist LCDs, coloring due to birefringence is corrected using a retardation film to make black and white and contrast stand out, but in order to achieve accurate correction, it is necessary to Dependencies need to be measured accurately. Conventionally, the following methods have been adopted for measuring polarization characteristics. The classic measurement method is
By arranging a monochromatic light source, polarizer, sample, and analyzer in this order and rotating the analyzer to detect the output light intensity, the polarization characteristics of the light passing through the sample (ellipticity angle χ, azimuth angle φ, etc.) can be determined. (see Figure 11). This method is called the maximum-minimum method. In this maximum-minimum method, it is necessary to rotate the analyzer finely in order to measure the output light intensity, which takes time. In particular, when measuring at multiple wavelengths, the measurement is repeated for each wavelength, which takes an enormous amount of time. Therefore, a method has been proposed that uses a spectrometer and an image sensor to facilitate measurement at multiple wavelengths, and also analyzes polarization characteristics using Stokes parameters and Mueller matrix representation (M.
C. K. Wiltshire and M. R. Le
wis, J. Phys. E: Sci. Instrument
.. 20, 884 (1987)). This method will be referred to as the 4-point method. In this proposed four-point method, the elliptically polarized light transmitted through the sample is received by an analyzer, and the analyzer is fixed at horizontal (0°), vertical (90°), 45°, and 135°, and outputs are obtained respectively. This method measures the spectrum of light intensity. To explain briefly, the Stokes parameter of elliptically polarized light is Σ0
= (S0, S1, S2, S3). Since the Mueller matrix of the analyzer is known as a function of angle, it can be expressed as Pi (i is 0°, 90°, 45
°, 135°. ), the Stokes parameter Σ1 of the light passing through the analyzer is Σ1 = Pi
Σ0, which can be expressed by the above S0 to S3. Therefore, if we measure the intensities I1, I2, I3, and I4 of the light that has passed through the analyzer, we can obtain the Stokes parameter S of the original elliptically polarized light.
0, S1, S2, S3, and S4 can be estimated. On the other hand, the ellipticity angle χ and the azimuth angle φ of the major axis are:
It is known that it can be expressed as a function of S0, S1, S2, and S3. Therefore, by measuring the spectral intensity of the light that has passed through the analyzer, the ellipticity angle χ of the angular wavelength and the azimuth angle φ of the major axis can be determined. When the ellipticity angle χ and the azimuth angle φ of the major axis are expressed in a mathematical formula, the following equation is obtained. The right side of this equation (2) is the intensity I1
, I2, I3, I4 function f(Ii) (i=1,2,3
, 4). Also, from the following equation (3),
The ellipticity ρ can also be found. ρ=tanχ (3) Therefore, the polarization characteristics of the sample and its wavelength dependence can be known. [Problem to be solved by the invention] The four-point method using the Stokes parameter described above uses a spectrometer. Therefore, it is fast, but when measuring the ellipticity ρ, the following errors are introduced because the ellipticity angle χ is first determined and then the ellipticity ρ is determined. ##EQU4## Since cos χ is included in the denominator, when χ is around 90°, that is, when the light is close to linearly polarized light, even if the intensity fluctuation is small, there will be a large measurement error. Therefore, the problem with this method is that for any form of elliptically polarized light, the ellipticity ρ
The problem lies in the inability to measure with high precision. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned technical problems and provide a polarization measurement method that can measure the ellipticity ρ and the azimuth φ quickly and accurately, and a polarization measurement device using the method. That's true. Means for Solving the Problems The polarization measuring method according to claim 1 for achieving the above object is characterized in that the intensity of the output light detected by the photodetector at at least three rotational positions of the analyzer is In this method, I1, I2, and I3 are obtained, and the ellipticity ρ and azimuth φ of the elliptically polarized light emitted from the sample are calculated using the following two equations. tan 2φ=(I1 +I2 −2I3 )/(
I2 - I1 ) (5) [0016] Furthermore, the polarization measuring device according to claim 2 includes a light source, a polarizer that produces linearly polarized light, and a rotatable device that allows only polarized light components at a desired angle to pass through. an analyzer, a sample placed between the polarizer and the analyzer, a photodetector that detects the intensity of the output light from the analyzer, and an intensity I of the output light from the analyzer.
1, I2, I3, and means for calculating the ellipticity ρ and azimuth φ of the elliptically polarized light transmitted through the sample using the above two equations. The polarization measuring device according to a third aspect of the present invention is the polarization measuring device according to the second aspect, which is equipped with a spectrometer before the photodetector so as to be able to measure at multiple wavelengths simultaneously. [Operation] Let us assume that the elliptically polarized light shown in FIG. 2 is incident on the analyzer. The reference axes are the x-axis and the y-axis, and as shown in Figure 1,
If the angle between the detection axis of the analyzer and the x-axis is θ, the output light intensity I(θ) is: I(θ)=a2cos2(θ-φ)+b2si
n2(θ−φ) (7) (
Malus' law). Here, φ is the angle formed by the x-axis and the ellipse major axis ξ, a is the length of the major axis, and b is the length of the minor axis. As can be seen from equation (7), the intensity at a certain measurement angle θ is determined by the three variables a, b, and φ. Therefore, we selected three values of θ and their respective intensities I1, I2,
I3 and these three intensities I1, I2, I3
By setting up simultaneous equations for , it becomes possible to find a, b, and φ. For example, if you choose θ=0°, 90°, 45°,
I1 = a2cos2 φ+b2sin2 φ
(8)
I2 = a2 sin2 φ + b2 cos2 φ
(9
) I3 = a2cos2 (45°-φ)
+b2sin2 (45°−φ) (10
) are created. Subtracting equation (10) from equation (8), I1 - I3 = a2 {cos2
φ−cos2(45°−φ)}
+b2 {sin2φ−sin2(4
5 °−φ)} (11) (9) From equation (10
) subtracting the formula, I2 −I3 = a2 {sin2φ−cos
2(45°−φ)}
+b2 {cos2φ−sin2(45 °−φ
)} (12) is obtained, and equation (11) and (12)
Add the formula and I1 −I3 +I2 −I3
= (b2 - a2 ) sin 2φ (13
)(9) by subtracting equation (8), I2 - I1 = (b2 - a2 ) cos
The formula 2φ (14) is obtained. From equations (13) and (14),
tan 2φ=(I1 +I2 −2I3 )/
(I2 - I1) (15) is obtained, so
This determines the azimuth angle φ. When I1 > I2, the ellipticity ρ is
=b/a, so it can be obtained from the following equation. The azimuth angle φ at this time is 2φ=tan −1 (I1 +I2 −2
I3)/(I2-I1). I1 <I
2, ρ=a/b, but the calculation result is the same as equation (16). The azimuth angle φ is 2φ=tan −1 (I1 +I2 −2
I3 )/(I2 - I1) +π. When I1 = I2, φ=π/4. Embodiments [0024] Hereinafter, embodiments will be explained in detail with reference to the accompanying drawings. FIG. 3 is a schematic diagram showing the polarization measuring device of the present invention. Light emitted from a light source 1 passes through a pinhole 2, is reflected by a mirror 3, and is guided to a polarizer 6 through a lens 4 and a pinhole 5. The output light of the polarizer 6 passes through the objective lens and is irradiated onto the sample, and the transmitted light of the sample enters the objective lens 9 and is guided to the analyzer 10. The transmitted light of the analyzer 10 is focused by a lens, passes through an optical fiber 12, and is input to a spectrophotometer 13. The spectral intensity signal obtained by the spectrophotometer 13 is supplied to a processing device 14, where calculations described below are performed. The light source 1 is, for example, a white light source such as an I2 lamp. Polarizer 6, Analyzer 10
is a linear polarizer using an anisotropic prism such as a Nicol prism or a Glan-Thompson prism, or a Polaroid film. Both can be rotated around the direction in which the light travels. The optical fiber 12 guides the measurement light to the spectrophotometer 13, but also functions as a depolarizer to prevent the light receiving sensitivity of the spectrophotometer 13 from being affected by the polarization state (Japanese Patent Application Laid-Open No. 1999-1-1993). 124
(See Publication No. 723). The spectrophotometer 13 is a known one that combines a dispersive element such as a diffraction grating and an image pickup element. The processing device 14 applies the spectral intensity measured according to the rotation angle of the analyzer 10 to the above-mentioned equations (15) and (16),
The ellipticity ρ and the azimuth φ are determined using a personal computer. To explain the polarization measurement method using a polarization measuring device, first, with the sample removed, set the standard polarizer 8a with the polarization axis in a certain reference direction, and rotate the polarizer 6 and analyzer 10. to align with the reference direction. Then, remove the standard polarizer 8a, insert the sample, and set the direction of the crystal axis of the sample (assumed to be known. If unknown, measure with an appropriate method) parallel to the reference direction, and set this as the x-axis. do. Next, set the angle of the analyzer 10 to 0°,
Measure the light intensity by setting at 90° and 45°. Next, actual measurement results obtained using the above-mentioned measuring device will be introduced. For sample 8, a polycarbonate retardation film was used. It is known that the wavelength dispersion characteristics (relative refractive index difference when the refractive index difference at a wavelength of 550 nm is 1) of this polycarbonate retardation film are as shown in Figure 4 (Yamamoto et al., Nitto Giho, 28, 105
(1980)). Ellipticity ρ at wavelengths of 450 nm and 550 nm
A graph of the actual measured values is shown in FIG. The horizontal axis of the graph is the azimuth angle of the incident linearly polarized light, that is, the rotation angle of the polarizer 6. The + mark is an actual value measured at 550 nm, and the x mark is an actual value measured at 450 nm. In addition, the theoretical values directly calculated using the wavelength dispersion characteristics in Figure 4 are shown as the solid line (550 nm),
Indicated by a broken line (450 nm). In addition, the actual measured values using the conventional maximum-minimum method are shown in FIG.
Shown below. The + mark is an actual value measured at 550 nm, and the x mark is an actual value measured at 450 nm. Figure 7 shows the actual measured values using the 4-point method. The + mark is an actual value measured at 550 nm, and the △ mark is an actual value measured at 450 nm. Next, FIG. 8 shows a graph of actually measured values of the azimuth angle φ of the ellipse at wavelengths of 450 nm and 550 nm. The horizontal axis of the graph is the azimuth angle of the incident linearly polarized light, that is, the rotation angle of the polarizer 6. + mark is actual measurement value at 550nm, △ mark is 450n
This is an actual measured value at m. In addition, the theoretical values directly calculated using the wavelength dispersion characteristics in Figure 4 are shown for the solid line (550 nm) and the broken line (4
50 nm). Further, the actual measured values of the azimuth angle φ using the conventional maximum-min method are shown in FIG. 9, and the actual measured values using the 4-point method are shown in FIG. Looking at the graphs in Figures 5 to 10 above, the azimuth angle φ is
The method of the present invention, the conventional maximum-minimum method, and the conventional 4-point method all agree well with the theoretical values. However, regarding the ellipticity ρ, in the conventional four-point method, as can be seen from FIG. 7, errors are noticeable near 0°, 90°, and 180°. The method of the present invention and the conventional maximum-minimum method have small errors (FIGS. 5 and 6). Therefore, in order to accurately evaluate the measurement accuracy of the ellipticity ρ, the average relative deviation δ1 from the theoretically calculated value of the ellipticity ρ is defined as follows. In this formula, ρe
x is an actual value, and ρth is a theoretical value. Table 1 shows the results of determining the average relative deviation δ1 using the method of the present invention, the conventional maximum-minimum method, and the conventional 4-point method using this equation. [Table 1] According to Table 1, in the method of the present invention and the conventional maximum-minimum method, the average relative deviation δ1 is relatively small, but in the 4-point method, the average relative deviation δ1 is large. Ori,
What was inferred from the graph is confirmed. Also,
Table 2 shows the results of determining the average error δ2 from the theoretically calculated value of the ellipse azimuth angle φ. Table 2 shows that the method of the present invention, the conventional maximum-minimum method, and the 4-point method all measure with almost the same accuracy. As described above, by measuring the intensity at the three rotational positions of the analyzer, the ellipticity ρ and the ellipse azimuth φ can be directly determined by applying a simple formula. The determined values are sufficiently accurate compared to conventional methods, and since measurements only need to be made at three rotational positions, the measurement time can be shortened. Furthermore, if a spectrometer is connected to measure the spectral intensity, measurements at multiple wavelengths can be completed in one measurement. It should be noted that the present invention is not limited to the above-mentioned embodiments. For example, when using a liquid crystal that has polarization characteristics in advance as a sample, or when using a light source whose polarization characteristics are known from the beginning, When using , it is also possible to omit the polarizer that creates linearly polarized light. Various other changes can be made without departing from the gist of the invention. Effects of the Invention As described above, according to the polarization measuring method of the present invention and the polarization measuring device using the method, at least 3
The ellipticity ρ and the azimuth angle φ can be determined with sufficiently high accuracy by simply measuring the spectrum at two rotational positions and calculating by applying it to a predetermined formula. Furthermore, if a spectrophotometer is used to perform measurements at multiple wavelength points, the wavelength dependence of the ellipticity ρ and the azimuthal angle φ can be measured at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】楕円偏光の強度偏光特性を示すグラフである。FIG. 1 is a graph showing intensity polarization characteristics of elliptically polarized light.

【図2】楕円偏光の振幅偏光特性を示すグラフである。FIG. 2 is a graph showing amplitude polarization characteristics of elliptically polarized light.

【図3】本発明の偏光測定装置の実施例を示す概略図で
ある。
FIG. 3 is a schematic diagram showing an embodiment of the polarization measuring device of the present invention.

【図4】試料として用いたポリカーボネート位相差フィ
ルムの複屈折特性を示すグラフである。
FIG. 4 is a graph showing the birefringence characteristics of a polycarbonate retardation film used as a sample.

【図5】波長450nm、550nmでの楕円率ρの実
測値のグラフである。
FIG. 5 is a graph of actually measured values of ellipticity ρ at wavelengths of 450 nm and 550 nm.

【図6】従来の最大最小法での実測値をのグラフである
FIG. 6 is a graph of actually measured values using the conventional maximum-minimum method.

【図7】従来の4ポイント法での実測値を示すグラフで
ある。
FIG. 7 is a graph showing actual measured values using the conventional 4-point method.

【図8】波長450nm、550nmでの楕円の方位角
φの実測値のグラフである。
FIG. 8 is a graph of actually measured values of the azimuth angle φ of an ellipse at wavelengths of 450 nm and 550 nm.

【図9】従来の最大最小法での方位角φの実測値のグラ
フである。
FIG. 9 is a graph of actually measured values of the azimuth angle φ using the conventional maximum-minimum method.

【図10】4ポイント法での実測値のグラフである。FIG. 10 is a graph of actual measured values using the 4-point method.

【図11】一般の楕円偏光の特性を示す図である。FIG. 11 is a diagram showing the characteristics of general elliptically polarized light.

【符号の説明】[Explanation of symbols]

1    光源 6    ポラライザー 8    試料 10  アナライザー 13  分光光度計 14  処理装置 1 Light source 6 Polarizer 8 Sample 10 Analyzer 13 Spectrophotometer 14 Processing equipment

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】試料から出射される光のうち所望角度の偏
光成分のみを通過させる回転可能な検光子と、検光子か
らの出力光の強度を検出する光検出器とを備える偏光測
定装置を用いて、検光子の少なくとも3つの回転位置に
おいて光検出器で検出された出力光の強度I1,I2,
I3 を求め、次の2つの式を用いて試料から出射され
る楕円偏光の長軸の長さと短軸の長さで決まる楕円率ρ
および楕円偏光の長軸の方位角φを算出することを特徴
とする偏光測定方法。 tan 2φ=(I1 +I2 −2I3 )/(I2
 −I1 )【数1】
1. A polarization measuring device comprising: a rotatable analyzer that allows only a polarized component at a desired angle to pass among the light emitted from a sample; and a photodetector that detects the intensity of the output light from the analyzer. Intensities I1, I2, of the output light detected by the photodetector at at least three rotational positions of the analyzer using
I3 is calculated and the ellipticity ρ determined by the length of the major axis and the length of the minor axis of the elliptically polarized light emitted from the sample is calculated using the following two formulas.
and a polarization measurement method characterized by calculating the azimuth angle φ of the long axis of the elliptically polarized light. tan 2φ=(I1 +I2 −2I3 )/(I2
-I1) [Math. 1]
【請求項2】光源と、直線偏光をつくり出す偏光子と、
所望角度の偏光成分のみを通過させる回転可能な検光子
と、検光子からの出力光の強度を検出する光検出器と、
偏光子と検光子との間に試料を配置し、検光子の少なく
とも3つの回転位置において光検出器で検出された出力
光の強度I1,I2,I3 を表わす光検出器の検出信
号に基づいて、次の2つの式を用いて試料を透過した楕
円偏光の長軸の長さと短軸と長さで決まる楕円率ρおよ
び楕円偏光の長軸の方位角φを算出する手段とを備える
ことを特徴とする偏光測定方法を用いた偏光測定装置。 tan 2φ=(I1 +I2 −2I3 )/(I2
 −I1 )【数2】
[Claim 2] A light source, a polarizer that produces linearly polarized light,
a rotatable analyzer that allows only polarized light components at a desired angle to pass; a photodetector that detects the intensity of output light from the analyzer;
A sample is placed between a polarizer and an analyzer, and based on the detection signals of the photodetector representing the intensities I1, I2, I3 of the output light detected by the photodetector at at least three rotational positions of the analyzer. , means for calculating the length and short axis of the major axis of the elliptically polarized light transmitted through the sample, the ellipticity ρ determined by the length, and the azimuth angle φ of the major axis of the elliptically polarized light using the following two equations. A polarization measurement device using a distinctive polarization measurement method. tan 2φ=(I1 +I2 −2I3 )/(I2
-I1) [Math. 2]
【請求項3】光検出器の前段に分光器を備え、多波長で
の測定を同時にできるようにした請求項2記載の偏光測
定方法を用いた偏光測定装置。
3. A polarization measuring device using the polarization measuring method according to claim 2, further comprising a spectrometer upstream of the photodetector to enable simultaneous measurement at multiple wavelengths.
JP6330791A 1991-03-27 1991-03-27 Method for measuring polarization and polarization measuring device using it Pending JPH04297835A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6330791A JPH04297835A (en) 1991-03-27 1991-03-27 Method for measuring polarization and polarization measuring device using it
DE19924209537 DE4209537A1 (en) 1991-03-27 1992-03-24 METHOD AND DEVICE FOR MEASURING POLARIZED LIGHT
GB9206473A GB2254144A (en) 1991-03-27 1992-03-25 Three-angle polarisation analyser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6330791A JPH04297835A (en) 1991-03-27 1991-03-27 Method for measuring polarization and polarization measuring device using it

Publications (1)

Publication Number Publication Date
JPH04297835A true JPH04297835A (en) 1992-10-21

Family

ID=13225505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6330791A Pending JPH04297835A (en) 1991-03-27 1991-03-27 Method for measuring polarization and polarization measuring device using it

Country Status (3)

Country Link
JP (1) JPH04297835A (en)
DE (1) DE4209537A1 (en)
GB (1) GB2254144A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105277A1 (en) * 2007-02-28 2008-09-04 Nitto Denko Corporation Compensating layer optical property evaluating method and compensating layer optical property evaluating device
JP2013036792A (en) * 2011-08-05 2013-02-21 Seiko Epson Corp Apparatus and method for measuring polarization state

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5764209A (en) * 1992-03-16 1998-06-09 Photon Dynamics, Inc. Flat panel display inspection system
JPH0749303A (en) * 1993-04-01 1995-02-21 High Yield Technol Inc Particle sensor and particle detecting method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663223A (en) * 1979-10-26 1981-05-29 Mizojiri Kogaku Kogyosho:Kk Automatic ellipsometry system
JPS6227632A (en) * 1985-07-29 1987-02-05 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for measuring polarization degree

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030836A (en) * 1975-10-28 1977-06-21 The United States Of America As Represented By The Secretary Of The Air Force Method for mapping surfaces with respect to ellipsometric parameters
US4850711A (en) * 1986-06-13 1989-07-25 Nippon Kokan Kabushiki Kaisha Film thickness-measuring apparatus using linearly polarized light

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5663223A (en) * 1979-10-26 1981-05-29 Mizojiri Kogaku Kogyosho:Kk Automatic ellipsometry system
JPS6227632A (en) * 1985-07-29 1987-02-05 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for measuring polarization degree

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105277A1 (en) * 2007-02-28 2008-09-04 Nitto Denko Corporation Compensating layer optical property evaluating method and compensating layer optical property evaluating device
JP2013036792A (en) * 2011-08-05 2013-02-21 Seiko Epson Corp Apparatus and method for measuring polarization state

Also Published As

Publication number Publication date
GB2254144A (en) 1992-09-30
GB9206473D0 (en) 1992-05-06
DE4209537A1 (en) 1992-10-01

Similar Documents

Publication Publication Date Title
US5956145A (en) System and method for improving data acquisition capability in spectroscopic rotatable element, rotating element, modulation element, and other ellipsometer and polarimeter and the like systems
JP3909363B2 (en) Spectral polarization measurement method
US6894781B2 (en) Monitoring temperature and sample characteristics using a rotating compensator ellipsometer
US6473181B1 (en) Measurement of waveplate retardation using a photoelastic modulator
KR100195397B1 (en) Method and apparatus for measuring thickness of birefringence layer
JP2017207446A (en) Total reflection spectroscopic measurement apparatus and total reflection spectroscopic measurement method
KR20080091002A (en) Apparatus for measuring phase difference using spectrometer
KR100351267B1 (en) Method and apparatus for measuring the retardation of a composite layer
TWI615604B (en) Calibration method for wide-band achromatic composite wave plate
EP0737856B1 (en) A method of investigating samples by changing polarisation
US6633358B1 (en) Methods and apparatus for measurement of LC cell parameters
JP2000509830A (en) Rotation compensator-type spectroscopic ellipsometer system with regression calibration with photoarray detector
JPH04297835A (en) Method for measuring polarization and polarization measuring device using it
US7342661B2 (en) Method for noise improvement in ellipsometers
US20020159069A1 (en) Optical characterization of retarding devices
TWI467156B (en) Liquid crystal cell properties measuring apparatus and liquid crystal cell properties measuring method
US3016789A (en) Polarimetric apparatus
US7230713B2 (en) Method for measuring gap of liquid crystal cell
US7233395B2 (en) Performing retardation measurements
JPS60122333A (en) Polarization analyzer
JP2014167392A (en) Phase difference measuring method and device
US7075648B2 (en) Performing retardation measurements
JPH02102436A (en) Birefringence measuring method
JP3414156B2 (en) Birefringence measurement device
US7224457B2 (en) Performing retardation measurements