JPH04218751A - Apparatus for measuring double refraction - Google Patents
Apparatus for measuring double refractionInfo
- Publication number
- JPH04218751A JPH04218751A JP9317691A JP9317691A JPH04218751A JP H04218751 A JPH04218751 A JP H04218751A JP 9317691 A JP9317691 A JP 9317691A JP 9317691 A JP9317691 A JP 9317691A JP H04218751 A JPH04218751 A JP H04218751A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- retardation
- polarizer
- analyzer
- plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005259 measurement Methods 0.000 claims description 13
- 230000010287 polarization Effects 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 abstract description 20
- 101150118300 cos gene Proteins 0.000 description 17
- 239000000463 material Substances 0.000 description 8
- 238000012545 processing Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 101100234408 Danio rerio kif7 gene Proteins 0.000 description 1
- 101100221620 Drosophila melanogaster cos gene Proteins 0.000 description 1
- 101100398237 Xenopus tropicalis kif11 gene Proteins 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明はわずかに複屈折を起こす
試料の複屈折を測定するのに適した複屈折測定装置に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a birefringence measurement device suitable for measuring the birefringence of a sample that slightly exhibits birefringence.
【0002】0002
【従来の技術】材料は内部歪とか延伸加工により複屈折
を起こすようになる。逆に複屈折の測定によって材料の
内部歪とか材料の延伸の度合いをしらべることができる
。複屈折の測定は試料に直線偏光を入射させ、その直交
2成分偏光の試料透過時の位相差(レターデーション)
を検出することにより行われる。今試料は薄板或はシー
ト状物で、光学軸が試料面と平行である場合を考えて、
試料の厚さをd、光軸方向と、それと直角の方向の各偏
光に対する屈折率をn1,n2とし、使用する光の波長
をλとすると、直線偏光を入射させた場合、その光学軸
と光学軸に直角な二方向の偏光成分の試料出射時の位相
差δはδ=2π(n1−n2)d/λである。こゝでδ
はレターデーションと呼ばれる。試料の厚さdが予め分
かっているときはδの測定からn1−n2が求まり、n
1−n2が予め分かっているときはδから厚さdを求め
ることができる。レターデーションの測定は次のように
して行われる。偏光子と検光子を平行に配置し、その間
に試料を挿入して回転させ、波長λの光を通して、試料
の回転角と透過光強度との関係グラフを求める。試料の
光学軸が偏光子,検光子と平行或はそれらと直交してい
るときは試料に入射した直線偏光はそのまゝ直線偏光と
して試料を出射するから、試料が2色性を有しないとき
はこの二方向では透過光の強さは同じになり、今これを
光強度の基準値にする。試料の光学軸が偏光子,検光子
と平行或は直角でないときは、一般に試料透過光は楕円
偏光となっていて、測定されるのはこの楕円偏光の検光
子方向の成分だけとなる。今試料の光学軸が偏光子,検
光子と45°の方向である場合を考えると、試料への入
射光の光学軸方向とそれと直角の方向の両成分の振幅は
等しい。偏光子出射光の振幅を1とすると、これら両成
分の振幅1/√2であり、これら両成分の夫々の検光子
方向の成分が検光子を通過することになるが、試料出射
時に上記両成分間にはδなる位相差があるので、検光子
透過光は(1/2)sin(ωt+δ/2)+(1/2
)sin(ωt−δ/2)で表される。
上式はcos(δ/2)sinωtとなり、検光子透過
光強度は基準値の{cos(δ/2)}2 になってい
る。以上の関係はグラフで画くと第2図のように十字花
形になる。この図で光強度の最大値と最小値の比が{c
os(δ/2)}2 となる。このようにして測定によ
ってcos(δ/2)が求められ、これからδが算出さ
れる。上述した方法によるときはレターデーションδが
或る程度以上大きいときはcos(δ/2)からδを正
確に求めることができるがδが小さいときは、cos(
δ/2)のδの変化に対する変化率はδの2乗に比例し
ていて大へん小さく{cos(δ/2)}2のわずかな
測定誤差によってδには大きな誤差が現れることになる
。
このため、異方性のきわめて小さい試料の異方性を偏光
によって測定することは困難であった。他方シート状材
料のわずかな異方性によって後日温度変化とか単なる経
時変化によって材料に反りが生じることがあり、このよ
うな反りの発生が甚だ不都合な場合がある。このためシ
ート状材料のきわめて軽度の異方性を正確に測定できる
方法が要求されている。2. Description of the Related Art Materials become birefringent due to internal strain or stretching. Conversely, by measuring birefringence, it is possible to determine the internal strain of the material and the degree of elongation of the material. To measure birefringence, linearly polarized light is incident on a sample, and the phase difference (retardation) of the orthogonal two-component polarized light when it passes through the sample is measured.
This is done by detecting the Let's assume that the sample is a thin plate or sheet, and the optical axis is parallel to the sample surface.
If the thickness of the sample is d, the refractive index for each polarized light in the direction of the optical axis and the direction perpendicular to it is n1, n2, and the wavelength of the light used is λ, then when linearly polarized light is incident, the optical axis and The phase difference δ between polarized light components in two directions perpendicular to the optical axis when the sample is emitted is δ=2π(n1−n2)d/λ. Here δ
is called retardation. When the thickness d of the sample is known in advance, n1-n2 can be found from the measurement of δ, and n
When 1-n2 is known in advance, the thickness d can be determined from δ. Measurement of retardation is performed as follows. A polarizer and an analyzer are arranged in parallel, a sample is inserted between them and rotated, and a graph of the relationship between the rotation angle of the sample and the intensity of transmitted light is obtained by passing light of wavelength λ. When the optical axis of the sample is parallel to the polarizer or analyzer or perpendicular to them, the linearly polarized light incident on the sample exits the sample as linearly polarized light, so when the sample does not have dichroism. The intensity of the transmitted light is the same in these two directions, and we will now use this as the reference value for the light intensity. When the optical axis of the sample is not parallel to or perpendicular to the polarizer or analyzer, the light transmitted through the sample is generally elliptically polarized light, and only the component of this elliptically polarized light in the direction of the analyzer is measured. If we now consider the case where the optical axis of the sample is at 45° with respect to the polarizer and analyzer, the amplitudes of both the components of the incident light on the sample in the optical axis direction and in the direction perpendicular thereto are equal. If the amplitude of the light emitted from the polarizer is 1, the amplitude of both of these components is 1/√2, and each of these components in the direction of the analyzer passes through the analyzer. Since there is a phase difference of δ between the components, the light transmitted through the analyzer is (1/2) sin (ωt + δ/2) + (1/2
) sin(ωt−δ/2). The above equation becomes cos (δ/2) sin ωt, and the analyzer transmitted light intensity is the reference value {cos (δ/2)} 2 . If the above relationship is drawn in a graph, it will look like a cross, as shown in Figure 2. In this figure, the ratio of the maximum and minimum light intensity is {c
os(δ/2)}2. In this way, cos(δ/2) is determined by measurement, and δ is calculated from this. When using the method described above, when the retardation δ is large to a certain extent, δ can be accurately determined from cos(δ/2), but when δ is small, cos(
The rate of change of δ/2) with respect to a change in δ is proportional to the square of δ and is very small, so a small measurement error of {cos(δ/2)}2 will cause a large error in δ. For this reason, it has been difficult to measure the anisotropy of samples with extremely small anisotropy using polarized light. On the other hand, the slight anisotropy of the sheet material may cause the material to warp at a later date due to changes in temperature or simply due to changes over time, and the occurrence of such warping can be extremely disadvantageous. Therefore, there is a need for a method that can accurately measure extremely mild anisotropy in sheet materials.
【0003】0003
【発明が解決しようとする課題】本発明はレターデーシ
ョンが小さい試料のレターデーションを簡単に精度良く
測定できる装置を提供しようとするものである。SUMMARY OF THE INVENTION An object of the present invention is to provide an apparatus that can easily and accurately measure the retardation of a sample having small retardation.
【0004】0004
【課題を解決するための手段】従来のレターデーション
測定方法で試料にレターデーションが既知の板を重ね、
試料とこの板を重ねた物全体のレターデーションを求め
、それから上記既知レターデーションの値を引き算する
ことによって試料のレターデーションを算出するように
した。[Means for solving the problem] Using the conventional retardation measurement method, a plate with known retardation is stacked on the sample,
The retardation of the sample was calculated by determining the retardation of the entire stack of the sample and this plate, and then subtracting the above-mentioned known retardation value from it.
【0005】[0005]
【作用】レターデーション既知の板として例えば1/2
波長板を考えると、1/2波長板のレターデーションで
はπである。試料のレターデーションをδとし、両者を
重ねた全体のレターデーションをΔとすると、直接測定
されるのは透過光強度の最大と最小との比であって、こ
れはcos2 (Δ/2)である。これはcos{(δ
+π)/2}=cos(δ/2+π/2}=sin(δ
/2)δが小さい範囲を考えているので、直接測定され
るのは{sin(δ/2)}2 =(δ/2)2 であ
り、{cos(δ/2)}2 からδを求めるより測定
誤差がδに及ぼす影響が著しく小さくなる。[Operation] As a board with known retardation, for example, 1/2
Considering a wave plate, the retardation of a 1/2 wave plate is π. If the retardation of the sample is δ and the overall retardation of both is Δ, what is directly measured is the ratio between the maximum and minimum transmitted light intensity, which is cos2 (Δ/2). be. This is cos {(δ
+π)/2}=cos(δ/2+π/2}=sin(δ
/2) Since we are considering a range in which δ is small, what is directly measured is {sin(δ/2)}2 = (δ/2)2, and δ can be calculated from {cos(δ/2)}2. The effect of measurement error on δ is significantly smaller than when calculated.
【0006】一般の場合、挿入する板のレターデーショ
ンが既知でこれをdとし、かつこれが1/2波長に近い
(と云っても位相角で180°±90°位の範囲であれ
ばよい)とする。このように選択できる範囲は広いから
、挿入する板の選択は容易である。試料とこの板を重ね
た場合の全体のレターデーションδはδ+dで、透過光
強度の最大と最小の比Rは
R={cos(Δ/2)}2
であるから、Rの平方根としてIn general, the retardation of the plate to be inserted is known and is defined as d, and this is close to 1/2 wavelength (although it is sufficient that the phase angle is within a range of about 180°±90°). shall be. Since there is a wide selection range, it is easy to select the board to be inserted. The overall retardation δ when the sample and this plate are stacked is δ + d, and the ratio R of the maximum and minimum transmitted light intensity is R = {cos (Δ/2)}2, so as the square root of R
【数3】
が求まる。こゝでδは小さいから、上の値はcos(d
/2)に近く、これは角度で45°から135°の範囲
であり、この辺ではcosの値は正から負へ略直線的に
変化しており、従って、[Equation 3] is found. Here, δ is small, so the upper value is cos(d
/2), which is in the range of 45° to 135°, and the value of cos changes approximately linearly from positive to negative in this area, therefore,
【数4】
として精度良く(δ+d)を求めることができ、これか
ら既知レターデーションを引き算すればδが求まる。(δ+d) can be obtained with high accuracy as follows, and by subtracting the known retardation from this, δ can be obtained.
【0007】[0007]
【実施例】第1図に本発明の一実施例装置を示す。この
実施例では試料を回す代わりに偏光子と検光子とを一体
的に回転させるようになっている。この構成によると帯
状の連続試料に対して、長さ方向に連続的に異方性を検
査するのが容易である。図で1が偏光子,2が検光子で
、これらは同一軸線A上に上下に配置された回転台11
,12上に取り付けられており、各回転台11,12は
ベルト3を介してパルスモータ4により同時に同じ角速
度で回転せしめられるようになっている。偏光子1,検
光子2は相互に偏光方向が平行であるように各回転台上
に取り付けられている。Sは試料のシートで上下の回転
台11,12の間を通過せしめられる。偏光子1の上方
で5はフィルタであり、特定の波長の光を透過する。
6は光源のハロゲンランプで光ファイバー7を通してフ
ィルタ5上に導かれ、フィルタ透過光が偏光子1,試料
S,検光子2を透過して受光素子8で検出されるように
なっている。受光素子8の出力は増幅器9を通してデー
タ処理装置10に送られる。データ処理装置10からは
パルス信号が発せられ、モータ駆動回路13に入力され
、モータ駆動パルスに変換されてモータ4に入力される
。データ処理装置はこのパルスを計数して偏光子,検光
子の回転角を検知している。回転台11と試料Sとの間
に1/2波長板14が固定的に挿入されている。1/2
波長板14の光学軸は試料Sの光学軸と平行或は直交に
してある。試料の光学軸はその延伸方向と一致している
から、1/2波長板の光学軸は試料Sの長手方向と一致
させておけばよい。一般の試料でその光学軸の方向が予
め判明していない場合、例えば試料が既にシート材から
所定の形に打抜かれた半製品であるような場合は、1/
2波長板14を外し、偏光子1,検光子2を回転させて
各偏光子回転角に対する受光素子8の出力を求め、この
出力から角度で45°隔てた2つの出力の差を偏光子の
各回転角について算出すると、偏光子の一回転のの間に
この差が0(正負反転する位置)になる角が8個所あり
、その中間に差が最大になる角が4個所ある。この4個
所の角位置は互いに90°離れていて、この方向が試料
の光学軸或はそれと直角の方向である。こゝで差の最大
の角位置を直接求めてもよいが、差が最大の近辺では差
の変化が小さく角位置が正確に求められないから、差が
正負反転する角位置から求める方が良い。試料の光学軸
の検出方法はこれに限らないが、これらの方法により、
試料の光学的異方性の存在は分かっても、異方性の程度
を定量的に測定しようとするとき、レターデーションが
小さいと従来は精度の良い測定ができなかったのであり
、本発明はこゝで異方性を高精度で定量化できるのであ
る。第1図で1/2波長板は支柱15に回転可能に保持
された腕16に取り付けられ腕16を回すことにより、
測定光路上に出入せられるようにしてある。この装置で
1/2波長板14を測定光路上に挿入し、偏光子,検光
子1,2を回転させながら、例えば角度1°飛びに受光
素子8の出力をデータ処理装置に取り込ませる。この結
果を図示したものが第2図であるが、異方性の小さな試
料では、この第2図の花形は円に近くなり、最大径とそ
れと45°離れた最小径との比Rからレターデーション
δはDESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an apparatus according to an embodiment of the present invention. In this embodiment, instead of rotating the sample, the polarizer and analyzer are rotated integrally. With this configuration, it is easy to continuously test the anisotropy of a strip-shaped continuous sample in the length direction. In the figure, 1 is a polarizer, 2 is an analyzer, and these are rotary tables 11 arranged vertically on the same axis A.
, 12, and each rotary table 11, 12 is rotated simultaneously by a pulse motor 4 via a belt 3 at the same angular velocity. The polarizer 1 and the analyzer 2 are mounted on each rotating table so that their polarization directions are parallel to each other. A sample sheet S is passed between the upper and lower rotary tables 11 and 12. A filter 5 above the polarizer 1 transmits light of a specific wavelength. Reference numeral 6 denotes a halogen lamp as a light source, which is guided onto a filter 5 through an optical fiber 7, and the filter-transmitted light passes through a polarizer 1, a sample S, and an analyzer 2, and is detected by a light receiving element 8. The output of the light receiving element 8 is sent to a data processing device 10 through an amplifier 9. A pulse signal is emitted from the data processing device 10, inputted to the motor drive circuit 13, converted into a motor drive pulse, and inputted to the motor 4. The data processing device counts these pulses and detects the rotation angle of the polarizer and analyzer. A half-wave plate 14 is fixedly inserted between the rotating table 11 and the sample S. 1/2
The optical axis of the wave plate 14 is parallel to or perpendicular to the optical axis of the sample S. Since the optical axis of the sample coincides with its stretching direction, the optical axis of the half-wave plate may be aligned with the longitudinal direction of the sample S. When the direction of the optical axis of a general sample is not known in advance, for example, when the sample is a semi-finished product that has already been punched into a predetermined shape from a sheet material,
Remove the two-wavelength plate 14 and rotate the polarizer 1 and analyzer 2 to find the output of the light receiving element 8 for each polarizer rotation angle. From this output, calculate the difference between the two outputs separated by 45 degrees from the polarizer. When calculated for each rotation angle, there are eight angles where this difference is 0 (positions where the positive and negative are reversed) during one rotation of the polarizer, and four angles where the difference is maximum between them. These four angular positions are 90° apart from each other, and this direction is the optical axis of the sample or a direction perpendicular thereto. You can directly find the angular position of the maximum difference here, but since the change in difference is small near the maximum difference and the angular position cannot be found accurately, it is better to find it from the angular position where the difference is reversed. . Although the method for detecting the optical axis of the sample is not limited to this, these methods can
Even if the existence of optical anisotropy in a sample is known, when trying to quantitatively measure the degree of anisotropy, if the retardation is small, it has not been possible to measure with high precision. This allows anisotropy to be quantified with high precision. In FIG. 1, the 1/2 wavelength plate is attached to an arm 16 that is rotatably held by a support 15, and by rotating the arm 16,
It is designed so that it can be moved in and out of the measurement optical path. In this device, the 1/2 wavelength plate 14 is inserted on the measurement optical path, and while the polarizer and analyzer 1 and 2 are rotated, the output of the light receiving element 8 is input into the data processing device at 1° intervals, for example. This result is illustrated in Figure 2. In a sample with small anisotropy, the flower shape in Figure 2 becomes close to a circle, and the ratio R of the maximum diameter to the minimum diameter 45° away from it is a letter. dation δ is
【数5】 によって算出される。[Math 5] Calculated by
【0008】図1の装置で1/2波長板14の代わりに
、レターデーション既知のシート17を取り付けて測定
を行うこともできる。この場合シート17は光学軸を試
料Sと平行にしておく。シート17は測定を行う者が身
近な試料のレターデーションを測って適当な値のものを
選べばよい。レターデーションの値は試料のレターデー
ションと合わせた値が角度で180°前後になるように
選ぶ。測光出力の最大最小の比Rを求め、試料のレター
デーションをδ、シート17のレターデーションをdと
して、In the apparatus shown in FIG. 1, a sheet 17 with a known retardation may be attached in place of the 1/2 wavelength plate 14 for measurement. In this case, the optical axis of the sheet 17 is made parallel to the sample S. The sheet 17 may be selected by the person performing the measurement by measuring the retardation of a familiar sample and selecting one having an appropriate value. The value of retardation is selected so that the value combined with the retardation of the sample is approximately 180 degrees in angle. Find the maximum and minimum ratio R of the photometric output, and let the retardation of the sample be δ and the retardation of the sheet 17 be d,
【数6】
でδ+dを算出し、これからdを引き算すればδが求ま
る。このようにすると1/2波長板がないときでも、レ
ターデーションの変化に対するcosの値の変化が比例
的であるから、直接cosδ/2=√Rによってδを求
めるより精度が上がることは1/2波長板を使う場合と
同じである。Calculate δ+d using Equation 6, and subtract d from this to find δ. In this way, even when there is no 1/2 wavelength plate, the change in the cos value with respect to the change in retardation is proportional to the change in cos, so the accuracy is improved by 1/2 compared to calculating δ directly by cos δ/2 = √R. This is the same as when using a two-wavelength plate.
【0009】[0009]
【発明の効果】従来方法ではレターデーションδの測定
が(測定出力)=(cosδ/2)の関係で求められて
いたので、δの小さな所ではδの変化に対する測定出力
の変化率が小さくて正確なδの測定ができなかった所が
、本発明ではcosδの所をsinδに変換したので、
δの変化と測定出力の変化とが同率となり、異方性が小
さい材料の異方性を精度良く定量化できるようになった
。また請求項1の発明は1/2波長板が入手できなくて
も、手近な試料からレターデーションがπに近いものを
探して使えばよいので実行が容易である。[Effects of the Invention] In the conventional method, the measurement of retardation δ was obtained using the relationship (measured output) = (cos δ/2), so where δ is small, the rate of change in measured output with respect to change in δ is small. In the present invention, where it was not possible to accurately measure δ, cos δ was converted to sin δ, so
The change in δ and the change in measurement output are at the same rate, making it possible to accurately quantify the anisotropy of a material with small anisotropy. Further, the invention of claim 1 is easy to implement even if a half-wave plate is not available because it is sufficient to search for a plate with a retardation close to π from a sample at hand and use it.
【図1】 本発明の一実施例装置の斜視図[Fig. 1] Perspective view of an apparatus according to an embodiment of the present invention
【図2】
図は測定出力の極座標によるグラフである[Figure 2]
The figure is a graph of measured output in polar coordinates.
1 偏光子 2 検光子 3 ベルト 4 パルスモータ 5 フィルタ 6 光源 7 オプチカルファイバー 8 受光系 9 増幅器 10 データ処理装置 11,12回転台 13 モータ駆動回路 14 1/2波長板 15 支柱 16 回転腕 1 Polarizer 2 Analyzer 3 Belt 4 Pulse motor 5 Filter 6 Light source 7 Optical fiber 8 Light receiving system 9 Amplifier 10 Data processing device 11, 12 turntable 13 Motor drive circuit 14 1/2 wavelength plate 15 Pillar 16 Rotating arm
Claims (2)
、偏光子と検光子との間に試料とレターデーション既知
の板を重ねて挿入して、これら試料とレターデーション
既知の板と偏光子および検光子の組との相対角位置を変
えたときの偏光子,レターデーション既知の板,試料,
検光子を透過した光の強度の最大,最小の比Rを測定し
、試料とレターデーション既知の板とを合わせた全体の
レターデーションΔを 【数1】 で算出し、これから既知レターデーションを引き算して
、試料のレターデーションを算出するようにしたことを
特徴とする複屈折測定装置。Claim 1: A polarizer and an analyzer are arranged with their polarization planes parallel to each other, and a plate with a known retardation is inserted between the polarizer and the analyzer to overlap the sample and a plate with a known retardation. Polarizer, plate with known retardation, sample, when changing the relative angular position between the plate and the pair of polarizer and analyzer.
Measure the maximum and minimum ratio R of the intensity of light transmitted through the analyzer, calculate the overall retardation Δ of the sample and the board with known retardation using [Equation 1], and subtract the known retardation from this. A birefringence measuring device characterized in that the retardation of a sample is calculated by calculating the retardation of a sample.
、偏光子と検光子との間に試料と1/2波長板を重ねて
挿入して、これら試料と1/2波長板と偏光子および検
光子の組との相対的角位置を変えたときの偏光子,1/
2波長板,試料,検光子を透過した光の強度の最大と最
小の比Rを測定し、試料のレターデーションδを【数2
】 で算出するようにしたことを特徴とする複屈折測定装置
。2. A polarizer and an analyzer are arranged with their polarization planes parallel to each other, and a sample and a 1/2 wavelength plate are inserted in a stacked manner between the polarizer and the analyzer. Polarizer, 1/ when the relative angular position between the plate and the pair of polarizer and analyzer is changed.
Measure the ratio R of the maximum and minimum intensity of light transmitted through the two-wave plate, sample, and analyzer, and calculate the retardation δ of the sample using the formula 2
] A birefringence measurement device characterized by calculating the birefringence.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9317691A JP2789575B2 (en) | 1990-07-31 | 1991-03-30 | Birefringence measurement device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2-204453 | 1990-07-31 | ||
JP20445390 | 1990-07-31 | ||
JP9317691A JP2789575B2 (en) | 1990-07-31 | 1991-03-30 | Birefringence measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04218751A true JPH04218751A (en) | 1992-08-10 |
JP2789575B2 JP2789575B2 (en) | 1998-08-20 |
Family
ID=26434599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9317691A Expired - Fee Related JP2789575B2 (en) | 1990-07-31 | 1991-03-30 | Birefringence measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2789575B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011013140A (en) * | 2009-07-03 | 2011-01-20 | Oji Keisoku Kiki Kk | On-line phase difference measuring instrument for polarizing plate |
-
1991
- 1991-03-30 JP JP9317691A patent/JP2789575B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011013140A (en) * | 2009-07-03 | 2011-01-20 | Oji Keisoku Kiki Kk | On-line phase difference measuring instrument for polarizing plate |
Also Published As
Publication number | Publication date |
---|---|
JP2789575B2 (en) | 1998-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rothen | The ellipsometer, an apparatus to measure thicknesses of thin surface films | |
US3183763A (en) | Polarization analyzers for optical systems employing polarized light | |
JPH0478137B2 (en) | ||
TWI467157B (en) | Method and apparatus for measuring optically anisotropic parameters | |
EP1060369A1 (en) | Birefringence measurement system | |
US6473181B1 (en) | Measurement of waveplate retardation using a photoelastic modulator | |
US2829555A (en) | Polarimetric method and apparatus | |
KR100195397B1 (en) | Method and apparatus for measuring thickness of birefringence layer | |
US5018863A (en) | Apparatus for analysis by ellipsometry, procedure for ellipsometric analysis of a sample and application to the measurement of variations in the thickness of thin films | |
JP2791479B2 (en) | Retardation measurement method | |
JPH11160199A (en) | Liquid crystal initial alignment angle measuring method and device thereof | |
JPH04218751A (en) | Apparatus for measuring double refraction | |
JP4926003B2 (en) | Polarization analysis method | |
JP2645252B2 (en) | Automatic birefringence meter | |
US5157259A (en) | Measuring method and measuring arrangement for determining the orientation ratio of flexible magnetic recording media | |
JP2791506B2 (en) | Birefringence measurement device | |
JP3246040B2 (en) | Birefringence measurement device | |
JP3518313B2 (en) | Method and apparatus for measuring retardation | |
JP2014167392A (en) | Phase difference measuring method and device | |
JP2924938B2 (en) | Method for measuring retardation of composite film | |
JP2712987B2 (en) | Adjustment method of polarization measuring device | |
JPH09178608A (en) | Method and device for measuring extinction ratio | |
JPH06229910A (en) | Measuring method for retardation | |
WO1999042796A1 (en) | Birefringence measurement system | |
JPH07301597A (en) | Apparatus for measuring retardation in polarization of sample |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090612 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090612 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100612 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |