JPH0198203A - Magnetic substance film and manufacture thereof - Google Patents

Magnetic substance film and manufacture thereof

Info

Publication number
JPH0198203A
JPH0198203A JP25575787A JP25575787A JPH0198203A JP H0198203 A JPH0198203 A JP H0198203A JP 25575787 A JP25575787 A JP 25575787A JP 25575787 A JP25575787 A JP 25575787A JP H0198203 A JPH0198203 A JP H0198203A
Authority
JP
Japan
Prior art keywords
film
magnetic
range
films
permalloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25575787A
Other languages
Japanese (ja)
Inventor
Chizuko Wakabayashi
若林 千鶴子
Nobuyuki Ishiwata
延行 石綿
Takayuki Matsumoto
隆幸 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP25575787A priority Critical patent/JPH0198203A/en
Publication of JPH0198203A publication Critical patent/JPH0198203A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To improve soft magnetic characteristics, and to enhance corrosion resistance by laminating an Fe-Al film, which mainly comprises Fe and contains Al in a trace quantity within a specific range, and an Ni-Fe alloy (permalloy) film. CONSTITUTION:A magnetic substance film has thin-film structure in which FeAl films 10, which mainly comprise Fe and contain a trace quantity of Al, and NiFe alloy (permalloy) films 11 are laminated alternately in plural layers. The FeAl films 10 are laminated alternately to a shape that they hold the NiFe films 11. A film, which uses Al as a principal ingredient and to which Al is added in a trace quantity within a range of 3.0-16.0atomic% is sufficient as the composition of the FeAl film 10. A composition in which Al is added to a base material Fe within a range of 12.0-16.0atomic% is particularly preferable at the point of corrosion resistance. The soft magnetic characteristics of the film are not reduced and deteriorated even when a temperature is elevated to 500 deg.C or higher by glass fusion working, etc., at the stage of the manufacture of a head. The film can resist corrosion and deterioration and the lowering of saturation magnetic flux density with the corrosion and the deterioration sufficiently even under the conditions of a high temperature and high humidity.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高飽和磁束密度(Bs=4FπMs)が要求
される高密度記録用磁気ヘッドの磁極材等に用いて好適
な磁性体膜およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a magnetic film suitable for use as a magnetic pole material of a magnetic head for high-density recording, which requires a high saturation magnetic flux density (Bs = 4FπMs), and its manufacture. Regarding the method.

従来の技術およびその問題点 従来、磁気記録再生用の磁気ヘッドの磁極等を構成する
磁性材料として、フェライト、パーマロイ、センダスト
、アモルファス合金等が使用されている。
BACKGROUND TECHNOLOGY AND PROBLEMS Conventionally, ferrite, permalloy, sendust, amorphous alloys, and the like have been used as magnetic materials constituting the magnetic poles of magnetic heads for magnetic recording and reproduction.

ところで、磁気記録の高密度化を実現するためには、記
録媒体の保磁力Hcを増大させる必要がある。この高い
保磁力を持つ記録媒体に高密度記録をしようとした場合
に、磁気ヘッドの磁極材料として飽和磁束密度の十分に
高い磁性材が必要である。
Incidentally, in order to achieve higher density magnetic recording, it is necessary to increase the coercive force Hc of the recording medium. When attempting to perform high-density recording on a recording medium having such a high coercive force, a magnetic material with a sufficiently high saturation magnetic flux density is required as the magnetic pole material of the magnetic head.

ところが、従来用いられていたフェライト、センダスト
等の磁性材は、記録媒体の保磁力に対して飽和磁束密度
が相当程度小さく、十分な高密度記録を達成できない欠
点があった。ちなみに、上述した従来の磁性材料は、フ
ェライト材で5〜6KG(+ロガウス)、パーマロイで
8KG1センダスト材で10KG程度であり、高密度記
録に必要な高い飽和磁束密度は到底得られなかった。
However, conventionally used magnetic materials such as ferrite and sendust have a saturation magnetic flux density that is considerably lower than the coercive force of the recording medium, and thus have the disadvantage that sufficiently high-density recording cannot be achieved. Incidentally, the conventional magnetic materials mentioned above have a ferrite material of 5 to 6 KG (+logauss), a permalloy of 8 KG, and a sendust material of about 10 KG, making it impossible to obtain the high saturation magnetic flux density required for high-density recording.

一方、Co系のアモルファス合金は、15〜16KG程
度の記録に必要な比較的高い飽和磁束密度が得られるの
であるが、熱的な安定性に劣るという問題がある。すな
わち、磁気ヘッドの加工には、500℃程度の高温にお
けるガラス融着工程を伴うことが多いが、現在特性的に
優れているとされるCo系のアモルファス合金でさえモ
、500°C程度の加熱によって軟磁気特性か低減劣化
してしまうという問題があり、磁性材料として信頼性に
欠ける欠点がある。また、Feを母材とした材料ではそ
の耐蝕性も問題となって(る。
On the other hand, Co-based amorphous alloys can provide a relatively high saturation magnetic flux density necessary for recording on the order of 15 to 16 KG, but have a problem of poor thermal stability. In other words, the processing of magnetic heads often involves a glass fusing process at a high temperature of about 500°C, but even Co-based amorphous alloys, which are currently considered to have excellent properties, cannot be heated at a temperature of about 500°C. There is a problem that the soft magnetic properties deteriorate due to heating, and there is a drawback that it lacks reliability as a magnetic material. In addition, corrosion resistance of materials using Fe as a base material is also a problem.

また、上述したいずれの磁性材またはFe等の場合でも
、経時変化により軟磁気特性、特に飽和磁束密度か低下
する問題があり、実用上のレベルで考えると使用困難で
ある。
In addition, in the case of any of the above-mentioned magnetic materials or Fe, etc., there is a problem that the soft magnetic properties, particularly the saturation magnetic flux density, decrease due to changes over time, making it difficult to use from a practical level.

したがって、飽和磁束密度が十分に高く、かつ保磁力が
十分に低く、軟磁気特性に優れ、なおかつ耐蝕性にも優
れ、高周波電流による渦電流損も少ない磁性体膜が強く
要望される由縁である。
Therefore, there is a strong demand for a magnetic film with sufficiently high saturation magnetic flux density, sufficiently low coercive force, excellent soft magnetic properties, excellent corrosion resistance, and low eddy current loss due to high frequency current. .

本発明は上述した問題点を解決するために提案されたも
ので、その目的は、飽和磁束密度が十分に高く、かつ保
磁力が十分に低く、軟磁気特性に優れると共に、経時変
化による耐蝕性にも優れた磁性体膜およびその製法を提
供することにある。
The present invention was proposed in order to solve the above-mentioned problems, and its purpose is to provide a sufficiently high saturation magnetic flux density, a sufficiently low coercive force, excellent soft magnetic properties, and corrosion resistance due to aging. An object of the present invention is to provide an excellent magnetic film and a method for producing the same.

問題点を解決するための手段 上記の目的を達成するために、本発明は、Feを主成分
とし、Alを3.0〜18.0at、%の範囲で微少量
含有するFe−AlFXと、Ni −Fe合金(パーマ
ロイ)膜とを積層させた磁性体膜を要旨とする。
Means for Solving the Problems In order to achieve the above object, the present invention provides Fe-AlFX having Fe as a main component and containing a small amount of Al in the range of 3.0 to 18.0 at%, The gist is a magnetic film in which a Ni-Fe alloy (permalloy) film is laminated.

また、上記の目的は、Feを主成分とし、Alを3.0
〜18.0at、%の範囲で微少量含有するFe−Al
膜とパーマロイ膜とをガラスまたはセラミック等の非磁
性基板上に夫々の膜厚が0゜03〜0.5μm11〜9
nmの範囲になる様に選択して交互に積層し、次に真空
中で所定の温度条件、時間の下に熱処理する方法を採用
することによって達成できる。
In addition, the above purpose is to use Fe as the main component and Al as 3.0
Fe-Al containing a trace amount in the range of ~18.0at,%
The film and the permalloy film are placed on a non-magnetic substrate such as glass or ceramic to a thickness of 0°03 to 0.5 μm11 to 9.
This can be achieved by selecting and laminating layers alternately so that the thickness is in the nanometer range, and then heat-treating in vacuum under predetermined temperature conditions and time.

作   用 Feを主成分とし、3.0〜18.0at、%の範囲で
Alを微少量含有させたFe−Al膜と、パーマロイ膜
とを交互に積層させると、高飽和磁束密度と低い保磁力
を有する優れた軟磁気特性を持つ磁性体膜が形成される
Function: When Fe-Al films containing Fe as the main component and a small amount of Al in the range of 3.0 to 18.0 at% and permalloy films are alternately laminated, high saturation magnetic flux density and low retention can be achieved. A magnetic film having magnetic force and excellent soft magnetic properties is formed.

そして、これを所定の温度条件、時間等の下て熱処理す
ると、製造段階における軟磁気特性の熱的安定性に富み
、かつ、耐蝕性の良い磁性体膜が得られる。すなわち、
製造段階において、ガラス融着工程を行う場合等におい
ては、500℃程度の温度が必要であるが、例えこの温
度以上の600′C程度に上昇したとしても、軟磁気特
性には何ら変化は見られず、特性を低下させるようなこ
とはない。また、高温、高湿の条件で放置したとしても
、経時変化による耐蝕性の低減劣化、例えば、飽和磁束
密度の低下は見られない。
Then, by heat-treating this under predetermined temperature conditions, time, etc., a magnetic film with excellent thermal stability of soft magnetic properties during the manufacturing stage and good corrosion resistance can be obtained. That is,
During the manufacturing stage, when performing the glass fusing process, etc., a temperature of approximately 500°C is required, but even if the temperature rises above this temperature to approximately 600'C, no change will be observed in the soft magnetic properties. There is no possibility of deterioration of the characteristics. Further, even if the product is left under high temperature and high humidity conditions, no deterioration in corrosion resistance due to changes over time, such as a decrease in saturation magnetic flux density, is observed.

実施例 以下、本発明の実施例について図面を参照して説明する
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明に係る磁性体膜の基本構成を示している
。この磁性体膜は、Feを主成分とし、Alを3.0〜
18.0at、%の範囲で選択して微少量含有させたF
eAl膜10と、NiFe合金(パーマロイ)膜11と
を交互に複数層積層させた薄膜構造に形成されている。
FIG. 1 shows the basic structure of a magnetic film according to the present invention. This magnetic film has Fe as a main component and Al as a main component.
A trace amount of F was selected within the range of 18.0at%.
It is formed into a thin film structure in which a plurality of eAl films 10 and NiFe alloy (permalloy) films 11 are alternately laminated.

FeAl膜10は、NiFe膜11を挟む形で交互に積
層されている。この2つの膜10.11は、実施例では
、FeAl膜10が3層、NiFe膜11が2層の場合
について示しであるが、軟磁気特性の点では1層ずつで
あっても、図示例よりさらに多層であっても差支えない
The FeAl films 10 are alternately stacked with NiFe films 11 sandwiched therebetween. In the example, these two films 10 and 11 are shown in the case where the FeAl film 10 has three layers and the NiFe film 11 has two layers. There is no problem even if there are even more layers.

FeAl膜10の組成は、Feを主成分とし、Alを3
.0〜16.0at、%の範囲で微少量添加したもので
あれば十分に満足すべき結果が得られるのであるが、そ
の中でも、高飽和磁束密度の点で、Atを3.0〜12
.0at、%の範囲で選択し、母材Feに添加したもの
が特に好ましい。また、耐蝕性の点では、Alが12.
0〜16.0at、%範囲で母材Feに添加された組成
のものが特に好ましい。
The composition of the FeAl film 10 is mainly composed of Fe and 3% Al.
.. Sufficiently satisfactory results can be obtained if a small amount of At is added in the range of 0 to 16.0 at.
.. Particularly preferred is one selected within the range of 0 at.% and added to the base material Fe. Also, in terms of corrosion resistance, Al is 12.
Particularly preferred is a composition in which Fe is added to the base material in a range of 0 to 16.0 at.%.

実験結果によると、FeAl膜の組成は、Alが18.
0at、%を越えると、高い飽和磁束密度4πMs(K
G:キロガウス)が得られない。
According to the experimental results, the composition of the FeAl film is 18% Al.
When it exceeds 0at,%, the saturation magnetic flux density is high, 4πMs (K
G: kilogauss) cannot be obtained.

一方、Alが3.0at、%未満の場合には、例え高い
飽和磁束密度が得られたとしても、高密度記録用磁気ヘ
ッド等の用途に適する程度に保磁力を低くすることがで
きなくなる。したがって、FeA1膜10は、上記のよ
うに、Alを3.0〜18.0at、%の範囲で微少量
含有した組成であることが必要である。
On the other hand, if the Al content is less than 3.0 at.%, even if a high saturation magnetic flux density is obtained, the coercive force cannot be made low enough to be suitable for applications such as high-density recording magnetic heads. Therefore, as mentioned above, the FeA1 film 10 needs to have a composition containing a very small amount of Al in the range of 3.0 to 18.0 at%.

本発明の磁性体膜は、第一義的には上述したとおりのF
eAl膜10とNiFe膜11との積層膜であるが、よ
り具体的には、次のような膜構造を持つ。
The magnetic film of the present invention is primarily composed of F as described above.
It is a laminated film of an eAl film 10 and a NiFe film 11, and more specifically, it has the following film structure.

FeAl膜10の膜厚は、0.03〜0.5μmの範囲
で、また、NiFe膜11の膜厚は、1〜9nm(ナノ
争メータ)の範囲で選ばれる。この膜厚は実験結果で得
られた値であり、この範囲の膜厚を選択し、2つのWX
lo、11を積層させると、後述するように、上付に満
足すべき軟磁気特性が得られる。このようにして得られ
た積層膜10.11は、さらに真空中で、所定の温度と
時間等の設定条件の下で熱処理される。この熱処理によ
り、保磁力が低減し、良好な軟磁性体膜となる。そして
、この膜はヘッド製造段階において、ガラス融着加工等
で例え500℃以上に温度上昇したとしても、軟磁気特
性が低減劣化しない耐熱性と、例え高温・高湿の条件下
でも腐食・劣化、それに伴う飽和磁束密度の低下に十分
に耐え得る優れた耐蝕性とが得られる。
The thickness of the FeAl film 10 is selected in the range of 0.03 to 0.5 μm, and the thickness of the NiFe film 11 is selected in the range of 1 to 9 nm (nanometer). This film thickness is a value obtained from experimental results, and by selecting a film thickness within this range, two WX
By stacking LO and 11, satisfactory soft magnetic properties can be obtained for the overlay, as will be described later. The thus obtained laminated film 10.11 is further heat-treated in a vacuum under set conditions such as a predetermined temperature and time. This heat treatment reduces the coercive force, resulting in a good soft magnetic film. In addition, this film has heat resistance that will not cause the soft magnetic properties to deteriorate even if the temperature rises to over 500 degrees Celsius during the glass fusing process during the head manufacturing stage, and it will not corrode or deteriorate even under high temperature and high humidity conditions. , and excellent corrosion resistance that can sufficiently withstand the accompanying decrease in saturation magnetic flux density can be obtained.

次に、本発明に係る磁性体膜の製法ならびに処理手順に
ついて具体的な数値を示して説明する。
Next, the manufacturing method and processing procedure of the magnetic film according to the present invention will be explained by showing specific numerical values.

なお、以下に示す数値は例示であって、「請求の範囲」
で示された数値の範囲であれば本発明所期の膜特性を十
分に満たすことができる。その範囲で任意の数値に選択
し得るものである。
Please note that the numerical values shown below are examples, and are not included in the "Claims".
Within the range of numerical values shown in , the desired film properties of the present invention can be fully satisfied. Any value within that range can be selected.

■先ず、使用アルゴンガス圧lX10’T。■First, use argon gas pressure 1X10'T.

rrの真空槽内において、イオンビームスパッタ法によ
り、ガラスまたはセラミック等の非磁性基板上にFeA
l膜とNiFe合金(パーマロイ)膜とを交互に成膜・
積層させる。その場合のターゲノ)物質は、次に述べる
組成を持つFeA1合金、およびNiFe合金である。
FeA is deposited on a non-magnetic substrate such as glass or ceramic by ion beam sputtering in a vacuum chamber of RR.
1 film and NiFe alloy (permalloy) film alternately.
Laminate. The target material in this case is an FeA1 alloy and a NiFe alloy having the compositions described below.

FeAlの組成は、Feを主成分とし、この母゛ 材F
e中に3.0〜18.Oat、%の範囲で数値を選択し
、Al(アルミニューム)を微少量含有させたものであ
る。また、NiFe合金は、パーマロイの組成を持つ。
The composition of FeAl is mainly composed of Fe, and this base material F
3.0-18. A value is selected within the range of Oat.%, and a small amount of Al (aluminum) is contained. Further, the NiFe alloy has a permalloy composition.

これらの・ターゲット物質を用いて交互にスパッタする
ことにより、ガラスまたはセラミック等の非磁性基板上
には、上述したターゲット物質と同一の組成を持つFe
Al膜とNiFe膜とが交互に所定膜厚で積層・成膜さ
れる。その膜厚は、FeA1合金が0.03〜0゜58
m1NiFe合金膜が1〜9nmの範囲に設定されてい
る。その膜厚の範囲であれば、高密度記録に必要な十分
に高い軟磁気特性(高飽和磁束密度Bsおよび低い保磁
力He)と高い高周波特性が得られる。すなわち、軟磁
気特性の点では、後に示す実験結果の比較例から見ても
明らかなように、Fe単体dものは勿論の事、F e 
A l膜単体のもの、あるいは従来−収約に用いられて
来たフェライト、センダスト、パーマロイ等の磁性材の
単体膜に比べて十分に高い良好な結果が得られる。また
、高密度記録用磁気へノドを形成する際等に必要とされ
る高周波特性の点ては、上記のような2つの薄膜の積層
膜とすることにより、軟磁気特性に優れたFe単体のも
のやFeAl単体膜等に比べて良好な結果が得られる。
By alternately sputtering using these target materials, Fe having the same composition as the target material described above is deposited on a non-magnetic substrate such as glass or ceramic.
Al films and NiFe films are alternately stacked and formed to a predetermined thickness. The film thickness of FeA1 alloy is 0.03~0°58
The m1NiFe alloy film is set to have a thickness in the range of 1 to 9 nm. Within this range of film thickness, sufficiently high soft magnetic properties (high saturation magnetic flux density Bs and low coercive force He) necessary for high-density recording and high high frequency properties can be obtained. In other words, in terms of soft magnetic properties, as is clear from the comparative example of experimental results shown later, not only Fe alone but also Fe
Good results that are sufficiently higher than those of a single Al film or a single film of magnetic materials such as ferrite, sendust, and permalloy that have been conventionally used for aggregation can be obtained. In addition, in terms of the high-frequency characteristics required when forming a magnetic node for high-density recording, by using a laminated film of two thin films as described above, Fe alone, which has excellent soft magnetic characteristics, can be used. Better results can be obtained than with a single FeAl film or the like.

すなわち、Fe単体膜は、一般に良く知られているよう
に、高い飽和磁束密度Bs=4πMsと低い保磁力He
を持ち、−見高密度記録に適した磁性材であると考えら
れるが、それ単体をヘッドのコア材として用いると、高
周波電流による渦電流損が大きく、到底実用に供し得な
い。
That is, as is generally well known, the single Fe film has a high saturation magnetic flux density Bs=4πMs and a low coercive force He.
Although it is considered to be a magnetic material suitable for high-density recording, if it is used alone as a core material of a head, the eddy current loss due to high frequency current is large and it cannot be put to practical use.

一方、上記のように、F e A I合金の薄膜とNi
Fe合金の超薄膜とを交互に積層させると、高周波特性
は大幅に改善され、渦電流損はほとんど生じない。した
がって、通電される高周波電流に応じた高い外部磁界を
発生させることができる。
On the other hand, as mentioned above, a thin film of F e A I alloy and Ni
By alternately stacking ultra-thin films of Fe alloy, high frequency characteristics are greatly improved and almost no eddy current loss occurs. Therefore, it is possible to generate a high external magnetic field according to the high frequency current that is applied.

以上の如く、非磁性基板上にFeA1合金の薄膜とNi
Fe合金の超薄膜とが交互に積層・成膜された積層膜が
形成される。この場合、FeAl膜はNiFe膜をサン
ドウィッチ状に挾んだ形で成膜される。
As described above, FeA1 alloy thin film and Ni
A laminated film is formed in which ultra-thin Fe alloy films are alternately laminated and formed. In this case, the FeAl film is formed in the form of a sandwich sandwiching the NiFe film.

なお、2つの膜の成膜順序は、どちらが先であっても良
く、任意に選択できる。また、本発明に係る成膜方法は
、上述したイオンビームスパッタ法だけに限らず、その
他のRFマグネトロンスパッタ法、蒸着法等の薄膜形成
技術により実現できる。
Note that the order in which the two films are formed may be formed first, and can be arbitrarily selected. Further, the film forming method according to the present invention is not limited to the above-mentioned ion beam sputtering method, but can be realized by other thin film forming techniques such as RF magnetron sputtering method and vapor deposition method.

■以上の如くイオンビームスパッタ工程テ得うれた積層
膜は、次に熱処理を施される。その熱処理にあたり選択
された処理条件は、真空加熱中0de(エルステッド)
の回転磁場か与えられる。すなわち、真空φ回転磁界中
で熱処理が行われる。その処理に要した時間は1時間[
:Hr]である。
(2) The laminated film obtained by the ion beam sputtering process as described above is then subjected to heat treatment. The processing conditions selected for the heat treatment were 0de (Oersted) during vacuum heating.
A rotating magnetic field is given. That is, heat treatment is performed in a vacuum φ rotating magnetic field. The time required for the processing was 1 hour [
:Hr].

以上のように設定された条件の下で、真空加熱中におい
て積層膜を1[Hrコ放置すると、必要な熱処理が施さ
れる。こうして得られた膜は、例えば、ガラス融着工程
等において500℃以上に加熱された場合でも、その加
熱による軟磁気特性の低減劣化は確実に防止でき、60
0℃以上の加熱でも磁気特性の低減劣化に十分に耐える
ことができる。また、後に示すように高温・高湿の雰囲
気中で長時間放置した場合でも、飽和磁束密度の残存率
の低下はほとんど見られない。すなわち、良好な耐蝕性
を示す。
Under the conditions set as above, the laminated film is left for 1 hour during vacuum heating, and the necessary heat treatment is performed. Even when the film thus obtained is heated to 500°C or higher in a glass fusing process, for example, it can reliably prevent deterioration of the soft magnetic properties caused by the heating, and
Even when heated to 0° C. or higher, it can sufficiently withstand deterioration in magnetic properties. Furthermore, as will be shown later, even when left in a high temperature and high humidity atmosphere for a long time, there is almost no decrease in the residual rate of saturation magnetic flux density. That is, it exhibits good corrosion resistance.

以上のような薄膜積層工程と、得られた積層膜の熱処理
工程とを経ることにより、下記の特性を持つ磁性体膜が
得られた。
Through the above-described thin film lamination process and heat treatment process of the obtained laminated film, a magnetic film having the following characteristics was obtained.

(イ)保磁力He→2[Φe] (ロ)飽和磁束密度Bs=4πMs≧20[KCl (ハ)磁気特性の耐熱性・(保持力)=600℃以上(
それ以上加熱しても磁気性 −性は保持される) (ニ)優れた耐蝕性:経時変化による膜の腐食・劣化等
がない。
(a) Coercive force He → 2[Φe] (b) Saturation magnetic flux density Bs = 4πMs≧20[KCl (c) Heat resistance of magnetic properties (coercive force) = 600℃ or more (
(D) Excellent corrosion resistance: There is no corrosion or deterioration of the film due to changes over time.

[実験例コ 第2図〜第5図は、上述した工程・手順を経て得られる
本発明の磁性体膜について、実際に数値を選んで軟磁気
特性、耐蝕性の面から実験した結果を示す特性図である
。この場合は、F e A I M、NiFeMの膜厚
およびFeAl中のAlの添加量、すなわち含有量を上
掲した各数値の範囲の中から最も良い結果が得られる値
を選んで積層・成膜し、熱処理した磁性体膜が使用され
ている。
[Experimental Example Figures 2 to 5 show the results of experiments conducted in terms of soft magnetic properties and corrosion resistance by actually selecting numerical values for the magnetic film of the present invention obtained through the above-mentioned steps and procedures. It is a characteristic diagram. In this case, the film thickness of F e A I M, NiFeM and the amount of Al added in FeAl, that is, the content, should be selected from the numerical ranges listed above to obtain the best results. A magnetic film that has been coated and heat-treated is used.

磁性体膜は、FeAl膜が膜厚0.1μm1NiFe膜
が膜厚6nm(ナノ・メータ)、FeAl中のAlの含
有量が10.7at、%に夫々設定されて形成されてい
る。
The magnetic films are formed by setting the FeAl film to a thickness of 0.1 μm, the NiFe film to a film thickness of 6 nm (nanometer), and the Al content in the FeAl to 10.7 at%.

なお、これらの膜厚、含有量は、実験で用いた一つの例
示であって、上述した各数値の範囲であれば本実験例で
示すのと同様の優れた特性が得られることが本発明者に
よる実験結果によって判明している。本実験例はその中
の代表的な一例を提示するものであり、本発明は本実験
例で示した数値のみ゛に限定されるものでないことは明
らかであろう。
Note that these film thicknesses and contents are just examples used in the experiment, and it is the present invention that excellent characteristics similar to those shown in this experimental example can be obtained within the above-mentioned numerical ranges. This has been confirmed by the results of experiments conducted by researchers. This experimental example presents a typical example thereof, and it is clear that the present invention is not limited to only the numerical values shown in this experimental example.

次に、上述した各図を用いて本実験例による実験結果に
ついて説明する。
Next, the experimental results of this experimental example will be explained using the above-mentioned figures.

先ず、第2図、第3図は保磁力HeとNiFe膜厚およ
びFeAl膜厚との関連を熱処理の際の温度条件を変え
て検討した結果を示す特性図で、第2図はFeAl膜厚
は0.1μmに固定しておき、NiAlM厚を土間の数
値の範囲で種々変えて保磁力HcのNiFe1i厚に対
する依存性を見た結果を示し、また、第3図はNiAl
膜厚は6nmに固定しておき、FeAl膜厚を土間の数
値の範囲で種々変えて保磁力HcのFeA1膜厚依存性
を見た結果を示している。
First, Figures 2 and 3 are characteristic diagrams showing the results of examining the relationship between the coercive force He and the NiFe film thickness and FeAl film thickness by changing the temperature conditions during heat treatment. is fixed at 0.1 μm, and the NiAlM thickness is varied within the numerical range of the dirt floor to see the dependence of the coercive force Hc on the NiFe1i thickness.
The film thickness is fixed at 6 nm, and the FeAl film thickness is varied within the numerical value range of Doma to see the dependence of the coercive force Hc on the FeA1 film thickness.

第2図、第3図において、積層膜の熱処理の際の温度条
件は上述した500℃〜800℃の範囲で代表的な3種
が選ばれている。破線で示すグラフは温度条件を500
°Cに設定して熱処理したもの、実線で示すグラフは6
00°Cに設定したものにつき、また、−点鎖線で示す
グラフは800℃に設定したものにつき、保磁力Hcの
膜厚依存性を見た結果である。
In FIGS. 2 and 3, three representative temperature conditions are selected from the above-mentioned range of 500° C. to 800° C. for the heat treatment of the laminated film. The graph shown by the broken line shows the temperature condition at 500°C.
The graph shown by the solid line is 6.
The graph shown by the - dotted chain line shows the result of looking at the dependence of the coercive force Hc on the film thickness for the case where the temperature was set at 00°C, and the graph shown by the -dotted chain line was set at 800°C.

第2図、第3図より明らかなように、いずれの温度条件
で熱処理された磁性体膜であっても、FeA11Eの膜
厚が0.03〜0.5μm1NiFe膜の膜厚が1〜9
nmの範囲で選択し積層・成膜させたものであれば、保
磁力Heの点では10[de]以下で、なおかつ略5[
del以下の高密度磁気記録を行うに必要な十分に低い
値が得られていることが良く判る。
As is clear from FIGS. 2 and 3, no matter which temperature condition the magnetic film is heat-treated, the thickness of the FeA11E film is 0.03 to 0.5 μm, the thickness of the NiFe film is 1 to 9 μm.
If the film is laminated and formed in the nanometer range, the coercive force He is less than 10[de] and approximately 5[de].
It is clearly seen that a sufficiently low value necessary for high-density magnetic recording below del is obtained.

次に、第4図は、・上述のように膜厚ならびにAl含有
量を設定して得られた磁性体膜の耐蝕性を見るために得
た結果を示すものである。この実験では、温度60″C
1相対湿度90%の雰囲気中に磁性体膜を放置したとき
の飽和磁束密度の低下の度合いを測定している。図で横
軸は放置時間[Hrコ、縦軸は飽和磁束密度の残存率、
すなわち、放置時間tのときの飽和磁束密度Bst=4
πMstと時間零のときの飽和磁束密度Bso=4π・
Msoとの比を表している。この図でグラフAは本発明
に係る磁性体膜、グラフBはFeAl単体の磁性体膜、
グラフCは純鉄Feの夫々の特性を表している。この比
較例より明らかにように、本発明に係る磁性体膜は、高
温Φ高湿下で500時間以上の長時間放置しても初期の
値1.0を一定に保っているのに対し、FeAl単体膜
は、放置初期より緩やかに低下し、500時間を越える
と飽和磁束密度の残存率は0.8以下に低減し劣化して
しまう傾向にある。また、純鉄Feの場合は、放置初期
より急激に残存率が低下し、500時間を越えると0.
2以下の値まで低減してしまい、耐蝕性の点で実用に全
く耐え得ないことがよく判る。これにより、純鉄Feの
場合は、本発明の磁性体膜は勿論、FeAl単体膜に比
べても耐蝕性の点では全く比較にならず、極めて悪いこ
とが良く判った。したがって、Fe単体では、実用化レ
ベルの磁性体膜は実現不可能である。
Next, FIG. 4 shows the results obtained to examine the corrosion resistance of the magnetic film obtained by setting the film thickness and Al content as described above. In this experiment, the temperature was 60″C.
1. The degree of decrease in saturation magnetic flux density is measured when a magnetic film is left in an atmosphere with a relative humidity of 90%. In the figure, the horizontal axis is the standing time [Hr], and the vertical axis is the residual rate of saturation magnetic flux density,
That is, the saturation magnetic flux density Bst at the time of standing time t=4
πMst and the saturation magnetic flux density Bso at time zero = 4π・
It represents the ratio with Mso. In this figure, graph A is a magnetic film according to the present invention, graph B is a magnetic film made of FeAl alone,
Graph C represents the respective characteristics of pure iron Fe. As is clear from this comparative example, the magnetic film according to the present invention maintains its initial value of 1.0 even after being left at high temperature and high humidity for over 500 hours. The FeAl single film deteriorates gradually from the initial stage of storage, and after 500 hours, the residual rate of saturation magnetic flux density decreases to 0.8 or less and tends to deteriorate. In addition, in the case of pure iron (Fe), the survival rate decreases rapidly from the initial stage of storage, and after 500 hours, the survival rate decreases to 0.
It is clearly seen that the corrosion resistance has decreased to a value of 2 or less, which is completely unacceptable for practical use in terms of corrosion resistance. As a result, it was clearly understood that in the case of pure iron, Fe, not only the magnetic film of the present invention, but also the single FeAl film, cannot be compared in terms of corrosion resistance and is extremely poor. Therefore, it is impossible to create a magnetic film of a practical level using Fe alone.

以上のように、本発明に係る磁性体膜は耐蝕性の点で極
めて優れている。
As described above, the magnetic film according to the present invention is extremely excellent in corrosion resistance.

次に、第5図は上述のように設定して得た本発明に係る
磁性体膜の磁気的なヒステリシスを測定した結果を表す
もので、横軸は保磁力(磁化力)Hc (be) 、縦
軸は磁束密度Bs(KG:キロガウス)を示している。
Next, FIG. 5 shows the results of measuring the magnetic hysteresis of the magnetic film according to the present invention obtained by setting as described above, and the horizontal axis represents the coercive force (magnetizing force) Hc (be) , the vertical axis indicates the magnetic flux density Bs (KG: kilogauss).

この図より明らかなように、保磁力Hcは、HcLq2
 (Ue)であり、高密度磁気記録に必要な十分に低い
値が得られていることが良く理解できる。これは、Fe
AlとNiFe膜との積層による。
As is clear from this figure, the coercive force Hc is HcLq2
(Ue), and it can be clearly understood that a sufficiently low value required for high-density magnetic recording has been obtained. This is Fe
By laminating Al and NiFe films.

発明の詳細 な説明したとおり、本発明によれば、Feを主成分とし
、この母材Feに3.0〜16.0at1%の範囲でA
lを微少量含有するFeAl膜とNiFe (パーマロ
イ)膜とを交互に積層させたので、保磁力)(c:2 
[:jjeコと十分に低く、また、飽和磁束密度Bsが
Bs≧20[KGコと十分に高く、従来の磁性材より成
る磁性膜に比べて高密度磁気記録に必要な軟磁気特性を
大幅に改善することができる。また、優れた耐蝕性を持
−つ磁性体膜を実現できる。     ゝさらに、60
0℃以上の加熱にも十分に耐えることができる。よって
、膜作製時における従来生じていた500℃以上の高温
加熱による特性劣化はなくなり、軟磁気特性の熱的安定
性に冨む磁性体膜を作製することができる。
As described in detail, according to the present invention, Fe is the main component, and A is added to the base material Fe in a range of 3.0 to 16.0 at 1%.
Since the FeAl film containing a small amount of l and the NiFe (permalloy) film were alternately laminated, the coercive force
The saturation magnetic flux density Bs is sufficiently low as Bs≧20[KG], and the soft magnetic properties required for high-density magnetic recording are significantly improved compared to magnetic films made of conventional magnetic materials. can be improved. Furthermore, a magnetic film with excellent corrosion resistance can be realized. Furthermore, 60
It can sufficiently withstand heating above 0°C. Therefore, characteristic deterioration due to high-temperature heating of 500° C. or higher, which conventionally occurs during film production, is eliminated, and a magnetic film with high thermal stability of soft magnetic properties can be produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る磁性体膜の膜構造の一例を示す断
面図、第2図、第3図は本発明で得られた磁性体膜のN
iFe膜およびFeAl膜の膜厚に対する保磁力Hcの
膜厚依存性を表す特性図、第4図は同じく磁性体膜の耐
蝕性を飽和磁束密度の面から見た特性図、第5図は同じ
く得られた磁性体膜の磁気的なヒステリシスを示すもの
で、特に十分に低い保磁力Heが得られていることを表
す。 10***FeAl膜、 11・・・NiFe (パーマロイ)膜、Hs・・・保
磁力、 Bs・・・飽和磁束密度、 0.03〜0.5μm**FeAlの膜厚、1〜9nm
・・・NiFeの膜厚。 第1図 Ni Fe鯉厚 (nml 第3悶 イ呆 FeAz    (nm)
FIG. 1 is a cross-sectional view showing an example of the film structure of the magnetic film according to the present invention, and FIGS. 2 and 3 show the N of the magnetic film obtained by the present invention.
A characteristic diagram showing the film thickness dependence of the coercive force Hc on the film thickness of the iFe film and the FeAl film. Figure 4 is a characteristic diagram showing the corrosion resistance of the magnetic film from the perspective of saturation magnetic flux density. Figure 5 is the same. This shows the magnetic hysteresis of the obtained magnetic film, and particularly indicates that a sufficiently low coercive force He has been obtained. 10***FeAl film, 11...NiFe (permalloy) film, Hs...coercive force, Bs...saturation magnetic flux density, 0.03 to 0.5 μm**FeAl film thickness, 1 to 9 nm
...NiFe film thickness. Fig. 1 Ni Fe thickness (nml) 3rd anguish FeAz (nm)

Claims (5)

【特許請求の範囲】[Claims] (1)Feを主成分とし、Alを3.0〜16.0at
.%(アトミック・パーセント)の範囲で微少量含有す
るFe−Al膜と、Ni−Fe合金(パーマロイ)膜と
を積層させたことを特徴とする磁性体膜。
(1) Fe is the main component, Al is 3.0 to 16.0 at
.. 1. A magnetic film characterized in that a Fe-Al film containing a minute amount in the range of atomic percent (atomic percent) and a Ni-Fe alloy (permalloy) film are laminated.
(2)前記Fe−Al膜の膜厚を0.03〜0.5μm
)パーマロイ膜の膜厚を1〜9nm(ナノ・メータ)の
範囲に選択して積層させたことを特徴とする特許請求の
範囲第(1)項に記載の磁性体膜。
(2) The thickness of the Fe-Al film is 0.03 to 0.5 μm.
) The magnetic film according to claim 1, wherein the permalloy film is laminated with a film thickness selected in the range of 1 to 9 nm (nanometers).
(3)前記積層されたFe−Al膜とパーマロイ膜とが
所定の温度、時間で熱処理されたことを特徴とする特許
請求の範囲第(1)項または第(2)項に記載の磁性体
膜。
(3) The magnetic material according to claim (1) or (2), wherein the stacked Fe-Al film and permalloy film are heat-treated at a predetermined temperature and time. film.
(4)Feを主成分とし、Alを3.0〜16.0at
.%の範囲で微少量含有するFe−Al膜とパーマロイ
膜とをガラスまたはセラック等の非磁性基板上に夫々の
膜厚が0.03〜0.5μm、1〜9nmの範囲になる
様に選んで交互に積層し、次に真空中で熱処理を施すこ
とを特徴とする磁性体膜の製造方法。
(4) Fe is the main component, Al is 3.0 to 16.0 at
.. A Fe-Al film and a permalloy film containing a very small amount in the range of 1.5% are selected on a non-magnetic substrate such as glass or shellac so that the film thickness is in the range of 0.03 to 0.5 μm and 1 to 9 nm, respectively. A method for manufacturing a magnetic film, which comprises alternately laminating layers in a vacuum and then heat-treating the film in a vacuum.
(5)500℃〜800℃の範囲で温度条件を設定し、
かつ、1時間程度真空槽内で熱処理することを特徴とす
る特許請求の範囲第(4)項に記載の磁性体膜の製造方
法。
(5) Set temperature conditions in the range of 500°C to 800°C,
The method for producing a magnetic film according to claim 4, further comprising performing heat treatment in a vacuum chamber for about one hour.
JP25575787A 1987-10-10 1987-10-10 Magnetic substance film and manufacture thereof Pending JPH0198203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25575787A JPH0198203A (en) 1987-10-10 1987-10-10 Magnetic substance film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25575787A JPH0198203A (en) 1987-10-10 1987-10-10 Magnetic substance film and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0198203A true JPH0198203A (en) 1989-04-17

Family

ID=17283203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25575787A Pending JPH0198203A (en) 1987-10-10 1987-10-10 Magnetic substance film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0198203A (en)

Similar Documents

Publication Publication Date Title
US4935311A (en) Magnetic multilayered film and magnetic head using the same
JPH0744110B2 (en) High saturation magnetic flux density soft magnetic film and magnetic head
JPS63119209A (en) Soft magnetic thin-film
JPS60220914A (en) Magnetic thin film
JPS58185742A (en) Amorphous magnetic alloy magnetic material
JP3382084B2 (en) Magnetic thin film for magnetic head, method of manufacturing the same, and magnetic head using the magnetic thin film
JPS6082638A (en) Thin film of ternary ni-co-fe alloy and its manufacture
JPS58100412A (en) Manufacture of soft magnetic material
JPH0198203A (en) Magnetic substance film and manufacture thereof
JPH01119005A (en) Magnetic film and manufacture thereof
KR0173856B1 (en) Heat resistant high saturation magnetic flux density film
JP2570337B2 (en) Soft magnetic laminated film
JPS63293707A (en) Multi-layered fe-co magnetic film and magnetic head
JPH03106003A (en) Soft magnetic amorphous alloy thin film
JP2774705B2 (en) High saturation magnetic flux density soft magnetic film
JPH01119004A (en) Magnetic film
JPH03265105A (en) Soft magnetic laminate film
JPH0282601A (en) Multilayer magnetic film
JP2001015339A (en) Soft magnetic laminate film and thin-film magnetic head
JP2752199B2 (en) Magnetic head
JPH01143312A (en) Amorphous soft magnetic laminated film
JPS5975610A (en) Iron base magnetic alloy thin film and manufacture thereof
JP3087265B2 (en) Magnetic alloy
JP2551008B2 (en) Soft magnetic thin film
JP2727274B2 (en) Soft magnetic thin film