JPH0157075B2 - - Google Patents

Info

Publication number
JPH0157075B2
JPH0157075B2 JP56188381A JP18838181A JPH0157075B2 JP H0157075 B2 JPH0157075 B2 JP H0157075B2 JP 56188381 A JP56188381 A JP 56188381A JP 18838181 A JP18838181 A JP 18838181A JP H0157075 B2 JPH0157075 B2 JP H0157075B2
Authority
JP
Japan
Prior art keywords
silicon carbide
fibers
silicon
ceramics
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56188381A
Other languages
English (en)
Other versions
JPS5891061A (ja
Inventor
Yukio Fukatsu
Yasuhiko Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP56188381A priority Critical patent/JPS5891061A/ja
Publication of JPS5891061A publication Critical patent/JPS5891061A/ja
Publication of JPH0157075B2 publication Critical patent/JPH0157075B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】
本発明は高強度の炭化珪素質セラミツクスに関
するものである。 セラミツクス材料を高温で使用する機械部品例
えばガスタービン部品や軸受、ベアリング、高温
搬送用ローラーなどとして使用する上で最大の障
害となつているのは、セラミツクス材料が脆性材
料であることからくる信頼性の欠如である。 この信頼性を向上せしめる方法としては、材料
の平均的強度水準を向上せしめる他、特に脆性材
料であるセラミツクスの場合には応力の集中の原
因となる欠点(亀裂、低強度の異物)を少なくす
ると同時に、相対的に大きい欠点を完全に除くか
或いは大きい欠点を有する部分を除くことが必要
となる。 また、効果のある別の手段としては、応力の集
中を何らかの方法で防ぎ靭性材料に近つけること
であり、ジルコニア系セラミツクスにおいて検討
がなされている。 さらに、高信頼性のセラミツクス材料を実現す
るもう一つの可能性としてセラミツクスフアイバ
ーで複合強化するということがあるが製造上幾つ
かの困難があり、現在のところホツトプレスのよ
うな生産性の悪い作り方でしかつくられていな
い。 さらに、極めて高強度のセラミツクス材料は例
外なく緻密であり、この緻密な焼結体の製造に際
しては例外なく焼成収縮を伴うので、このような
セラミツクスを目的とした生素地の中に強化材料
としてのセラミツクスフアイバーを混入すると、
焼成収縮を阻害し、緻密なセラミツクスにならな
いので高強度のものが得られない。 尚、ホツトプレスのような方法で一方向から加
圧しながら焼結すれば緻密化が可能であるが量産
には向かない。 本発明は、これらの問題点を種々検討した結果
として見い出されたもので、その骨子は焼成収縮
を伴わない特徴を有している反応焼結(自己結合
型)セラミツクスにセラミツクスフアイバーを組
合わせることにより、優れた高強度と、寸法安定
性、信頼性を改善したセラミツクスを実現するこ
とに成功したものである。 即ち、本発明は、炭化珪素フアイバー及び/又
は窒化珪素フアイバーで強化されており、常温及
び1200℃での曲げ強度が50Kg/mm2以上を有する反
応焼結型の炭化珪素質セラミツクスを要旨とする
ものである。 炭化珪素質セラミツクスは、強度特に高温強度
が在来のセラミツクスに比べ、格段に大きいた
め、近年特に製造技術の向上により、より高強度
のものが得られるようになつたことも一つの大き
な背景になつて、耐熱金属が機械的強度を失うよ
うな高温で使用される構造部材、耐腐蝕性、耐摩
耗性或は高ヤング率で軽量性の要求される部材な
どに使用されるようになつている。 高強度を目的とした炭化珪素質のセラミツクス
焼結体としては、一般にホツトプレス品、常圧焼
結品及び反応焼結品があり、それぞれの特徴を備
えている。 なかでも反応焼結による炭化珪素質セラミツク
スは、焼結時の寸法変化がわずかであり、焼きが
あり寸法精度が優れているとともに、1350℃程度
までの高温長時間強度や熱衝撃性においても、優
れているが、強度的には、他のストレートボンド
品にやや及ばないことが多い。 本発明による焼結体は、強度がより大きくな
り、反応焼結品の特徴をそのまま備えているもの
である。 本発明の炭化珪素質セラミツクスは、一般の反
応焼結による製造法をそのまま適用してつくるこ
とができる。 即ち、炭化珪素(SiC)粉末と炭素(C)粉末およ
び結合剤からなる混合物にフアイバーを所定量配
合し、これを十分混合したあと成形し、これを加
熱処理して結合剤の揮発成分を除き、ついでこの
成形体に金属シリコン(Si)を含浸させ、さらに
非酸化性雰囲気中または減圧下でシリコンの融点
以上で加熱焼成し、炭素と珪素を反応させ強固な
結合組織からなる炭化珪素質セラミツクスとする
ことができる。得られたセラミツクスは通常大部
分がSiCであつて残部は10%前後の金属Siからな
ることが多い。 本発明で使用する炭化珪素原料としては、α
型、β型いずれの結晶形のものも使用できるが、
入手し易いα型がよく使われる。純度は98%以上
のものが好ましいが、90〜98%のものも有効に使
用できる。粒度は、平均粒径で1〜50μ程度、好
ましくは5〜20μ程度のものを使用するのがよ
い。 炭素粉末としては、黒鉛粉末、カーボンブラツ
ク、ピツチ、コークス粉、炭水化物や炭化水素の
熱分解炭素などが適当で、いずれにしろ炭素含有
量が80%以上で、150メツシユ以下の微粉末とし
て使用するのがよい。 また結合剤としては、ポリビニルアルコール、
メチルセルロース、スチロール樹脂、フルフラー
ル樹脂、フエノール樹脂、ピツチなどの有機質の
もの或はその混合物で、〓後の加熱処理で残留炭
素を有し揮発成分を容易に分解除去しうるものが
適当である。 本発明でこれらの配合割合としては、炭化珪素
100(重量部)に対して、炭素分はCとして20〜50
重量部が一般に適当であり、また結合剤として
は、3〜15重量部程度が適当である。 本発明の炭化珪素質セラミツクスの反応焼結法
では、原料的にはつぎにのべるフアイバーを加え
た実質的にこれらからなる混合物であればよいの
であるが、勿論不可避的に不純物として含まれる
又は粉砕過程で混入する少量の他の成分や、影響
を及ぼさない程度の少量の他の成分が含まれてい
ても差支えない。 本発明においてはこれらの混合物に対して、成
形体を形成する前に強化用フアイバーが配合され
る。 強化用フアイバーの配合形態としては、原料混
合物のなかに短繊維として予め十分混合せしめて
おく場合と織布状又はフイラメントワインデイン
グなどによる長繊維として、成形体の所定部位に
位置せしめるようにすることができる。 前者の場合の好ましい態様は、フアイバー径は
5〜20μ程度で、長さ20mm程度までのものであ
り、引張強度が200Kg/mm2以上のものである。 また後者の場合は、目的によつて種々の態様が
可能であり、繊維の長さ、径、集束数など或は織
り方、織目の粗さ、使用繊維の番手など目的に合
つたものとして選択できる。このような織布状と
しての使用は、成形体の一部例えば特に表面部の
みを強化したいときや望みの方向に特に強度を大
きくしたいときなどに、そのような型の所定位置
に配しておくことで可能であり、反応焼結法とし
てはこのような使用が何ら支障にはならないこと
も利点の一つである。 尚、短繊維として均一に原料と混合する場合
の、フアイバーの配合量としては、焼結セラミツ
クス中における重量%として5〜35%程度が適当
であり、通常10〜25%が最適のようである。 これは、少なすぎるとそれなりの強度向上が十
分でないし、多すぎると、フアイバー間のすき間
の充填が困難となつて強度の向上の効果が得られ
なかつたり、高価なフアイバーを使用する場合に
は性能向上の程度以上にコスト高になる欠点が生
じるなどのためである。 尚、織布状としての使用においても、焼結体中
における割合としては、短繊維の場合と同様5〜
35%程度が適当であるが、部分的にフアイバー密
度がこれより高くなることもある。 本発明において使用されるこのようなフアイバ
ーは、母体と同じ炭化珪素フアイバーが最適であ
る。これは本発明のような高ヤング率のセラミツ
クスにおいては、フアイバーと母体セラミツクス
の熱膨張率が同じか極めて近いことが必要である
こと及び母体セラミツクス以上の高温強度を備え
ているものでなければならないからである。 このような点から本発明で使用できるフアイバ
ーは、その他窒化珪素(Si3N4)フアイバーがあ
るが、アルミナフアイバーなどは熱膨張率が大き
く不適である。 尚、炭化珪素フアイバーの結晶状態としては、
多結晶状のものであつても或は単結晶(ウイスカ
ー)状のものであつてもよく、またα型であつて
もβ型であつてもよい。 つぎに本発明における成形方法としては、普通
のセラミツクスの成形に使用される方法が使用で
きる。即ち、プレス成形、押出し成形が適当であ
るが、泥漿鋳込成形、射出成形などでもよい。成
形体をついで加熱処理(仮焼)し、含まれている
結合剤の揮発成分を、分解除去するわけである
が、この温度は250〜1300℃程度が適当で、雰囲
気としては真空中又はアルゴン中などの不活性雰
囲中が望ましいが温度が低ければ空気中でもよ
い。 このようにして得られた未焼結の成形体は、一
般に10〜30%程度の気孔率をもつ多孔体であり、
これに対して溶融金属シリコンを含浸すると同時
にC+Si→SiCの反応を伴つて焼結し、残留気孔
が溶融金属シリコンで埋められ、本発明の炭化珪
素質セラミツクスが得られる。 溶融シリコンの多孔体への浸透含浸は、脱気処
理した或は脱気処理しつつ成形体を溶融シリコン
に浸漬してもよいし、一部を浸漬し、毛細管現象
を利用して浸透させてもよいし、真空或は減圧中
に成形体を置いてシリコンの融点以上に加熱した
状態でシリコン蒸気を浸透せしめることもでき
る。また予め成形体表面にシリコン層を形成さ
せ、これを加熱処理して浸透せしめるようにする
ことなどもできる。 いずれにしてもこの反応焼結ではシリコンの浸
透含浸と成形体における炭素との反応及び焼結は
同時になされるものであつて、その適当な条件と
しては次の通りである。 まず、雰囲気としては非酸化性又は真空下であ
り、温度は1550〜1750℃程度である。 このようにして得られる炭化珪素質焼結セラミ
ツクスは、通常曲げ強度として常温及び1200℃の
高温のいずれにおいても50Kg/mm2以上のものが容
易に可能であり、そのほかの物性値としても通常
の反応焼結型炭化珪素質セラミツクスと何ら遜色
のないものである。 このように本発明は、高強度の反応焼結型炭化
珪素質セラミツクスを提供しうるものであり、そ
の実用的な価値は多大である。 実施例 1 比表面積2m2/g、純度98%以上のα炭化珪素
粉末100重量部に対し、200メツシユ以下の黒鉛粉
末50部、β炭化珪素多結晶フアイバー(日本カー
ボン株式会社ニカロンNLM―102;径約15μ、平
均長さ5mm)15部、メチルセルロース12部からな
る調合物に水を加えて十分混練してからついで、
押出し成形機にかけて、断面寸法3.5×3.5mmの棒
状成形体を得た。この棒状体を長さ100mmに切断
し、空気中で280℃で加熱処理して結合剤を除き、
炭素32重量%、炭化珪素フアイバー10重量%、残
部炭化珪素からなる嵩密度1.62の生成形体とし
た。この棒状成形体をついで、黒鉛ルツボに立設
するとともに、黒鉛ルツボの底にはシリコンに4
%のSiO2を混合した粉末成形体を入れておき、
ルツボごと真空中で1650℃に加熱した。 このようにして得られた反応焼結体は、炭化珪
素と約11%の金属シリコンを含むものであつた。 尚、反応焼結に伴う焼成収縮は測定誤差以下で
あり、実質的にゼロであつた。 この焼結体を、3×3×30mmの棒状体に加工し
たものについて測定した曲げ強度及び耐熱衝撃温
度を第1表に示す。 実施例 2 織布状の炭化珪素フアイバー(日本カーボン株
式会社製ニカロンS;織方……朱子織、目付……
300〜500g/m2)に実施例1と同じ黒鉛、α炭化
珪素及びバインダーからなるペーストを塗布した
2枚のシートを作成し、これらの間に同様の黒鉛
とα炭化珪素とバインダーの混合物をはさんでプ
レス成形し、3.5×50×100mmの成形体とした。 この成形体を空気中で280℃で加熱してバイン
ダーを除き、炭素29重量%、フアイバー15重量
%、残部炭化珪素からなる嵩密度1.63の生成形体
とした。 ついでこの成形体を実施例1と同様にシリコン
の存在下で反応焼結して、約12%のシリコンを含
む反応焼結セラミツクスを得た。この反応焼結に
伴う焼成収縮は実施例1と同様実質的にゼロであ
つた。このセラミツクスの物性を実施例1と同様
にして測定した結果を第1表に示す。 比較例 実施例1と同様であるが、フアイバーを混入し
ない混合物を使つて得た焼結セラミツクスについ
ての測定結果を第1表に示す。この試料について
の焼成収縮も実施例1と同様実質的にゼロであつ
た。
【表】 尚、耐熱衝撃温度差とは、予め電気炉中で加熱
した曲げ強度測定試料を水中に急冷したとき、強
度の低下が生ずる温度差を測定したものである。

Claims (1)

  1. 【特許請求の範囲】 1 炭化珪素フアイバー及び/又は窒化珪素フア
    イバーで強化されており、含浸された金属シリコ
    ンを含み、常温および1200℃での曲げ強度が50
    Kg/cm2以上である反応焼結型の炭化珪素質セラミ
    ツクス。 2 フアイバーの含有量が重量%で5〜35%であ
    る特許請求の範囲第1項記載の炭化珪素質セラミ
    ツクス。 3 フアイバーが炭化珪素フアイバーである特許
    請求の範囲第1項又は第2項記載の炭化珪素質セ
    ラミツクス。 4 フアイバーが織布状として存在せしめてなる
    特許請求の範囲第3項記載の炭化珪素質セラミツ
    クス。
JP56188381A 1981-11-26 1981-11-26 炭化珪素質セラミツクス Granted JPS5891061A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56188381A JPS5891061A (ja) 1981-11-26 1981-11-26 炭化珪素質セラミツクス

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56188381A JPS5891061A (ja) 1981-11-26 1981-11-26 炭化珪素質セラミツクス

Publications (2)

Publication Number Publication Date
JPS5891061A JPS5891061A (ja) 1983-05-30
JPH0157075B2 true JPH0157075B2 (ja) 1989-12-04

Family

ID=16222621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56188381A Granted JPS5891061A (ja) 1981-11-26 1981-11-26 炭化珪素質セラミツクス

Country Status (1)

Country Link
JP (1) JPS5891061A (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220191Y2 (ja) * 1985-06-24 1990-06-01
JPS62226862A (ja) * 1986-03-27 1987-10-05 株式会社 香蘭社 繊維強化セラミツク
US5204319A (en) * 1988-01-30 1993-04-20 Ibiden Co., Ltd. Fiber reinforced ceramics of calcium phosphate series compounds
US5273941A (en) * 1988-01-30 1993-12-28 Ibiden Co., Ltd. Fiber reinforced silicon carbide ceramics and method of producing the same
WO1993013030A1 (en) * 1988-01-30 1993-07-08 Ryo Enomoto Fiber-reinforced calcium phosphate compound ceramics and process for their production
JPH029777A (ja) * 1988-03-02 1990-01-12 Honda Motor Co Ltd 繊維強化セラミック成形体及びその製造方法
JPH04130058A (ja) * 1990-09-20 1992-05-01 Japan Metals & Chem Co Ltd 炭化珪素ウィスカー複合炭化珪素焼結体
GB9023268D0 (en) * 1990-10-25 1990-12-05 Nat Res Dev Sol-gel method of making silicon carbide and of protecting a substrate
JP5413384B2 (ja) * 2011-02-28 2014-02-12 新日鐵住金株式会社 製鉄設備部材および製鉄設備部材の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247803A (en) * 1975-10-15 1977-04-16 Sumitomo Chemical Co High strength ceramic sintering body
JPS5281309A (en) * 1975-10-27 1977-07-07 Tohoku Daigaku Kinzoku Zairyo Manufacture of heat resistant ceramic complex materials reinforced by silicon carbide continuous fiber
JPS54112909A (en) * 1978-02-24 1979-09-04 Kawasaki Heavy Ind Ltd Silicon carbide composite material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247803A (en) * 1975-10-15 1977-04-16 Sumitomo Chemical Co High strength ceramic sintering body
JPS5281309A (en) * 1975-10-27 1977-07-07 Tohoku Daigaku Kinzoku Zairyo Manufacture of heat resistant ceramic complex materials reinforced by silicon carbide continuous fiber
JPS54112909A (en) * 1978-02-24 1979-09-04 Kawasaki Heavy Ind Ltd Silicon carbide composite material

Also Published As

Publication number Publication date
JPS5891061A (ja) 1983-05-30

Similar Documents

Publication Publication Date Title
US5470806A (en) Making of sintered silicon carbide bodies
EP0891956B1 (en) Silicon-silicon carbide material and silicon carbide fiber-reinforced silicon-silicon carbide composite material
JP2642573B2 (ja) SiC質焼結体
US4657876A (en) Composite by infiltration
US4636480A (en) Composite by infiltration
EP0417493A2 (en) Fiber reinforced composite having an aluminum phosphate bonded matrix
SATO et al. Fabrication of silicon nitride based composites by impregnation with perhydropolysilazane
US20060269683A1 (en) Silicon carbide-based, porous, lightweight, heat-resistant structural material and manufacturing method therefor
EP1284251B1 (en) Silicon carbide-based, porous, lightweight, heat-resistant structural material and manufacturing method therefor
JPH0157075B2 (ja)
JP2535768B2 (ja) 高耐熱性複合材料
US5464583A (en) Method for manufacturing whisker preforms and composites
Kim et al. Nicalon-fibre-reinforced silicon-carbide composites via polymer solution infiltration and chemical vapour infiltration
Semen et al. Structural ceramics derived from a preceramic polymer
US5077242A (en) Fiber-reinforced ceramic green body and method of producing same
US5034356A (en) Ceramic matrix composite
JPS5891073A (ja) 窒化珪素質セラミツクス
KR100299099B1 (ko) 액상 반응소결에 의한 탄화규소 세라믹 밀봉재의 제조방법
Kuk Woo et al. Fabrication and microstructural evaluation of ZrB 2/ZrC/Zr composites by liquid infiltration
JP3287202B2 (ja) 窒化珪素質セラミックス基複合材及びその製造方法
JP2508511B2 (ja) アルミナ複合体
JPH08169761A (ja) 炭化珪素基繊維複合材料の製造方法
JP3358472B2 (ja) 窒化珪素質セラミックス基複合材料の製造方法
JPH06287062A (ja) 強化SiC基セラミックス部材
JP2784280B2 (ja) セラミック複合焼結体及びその製法、並びに摺動部材