JPH0153349B2 - - Google Patents

Info

Publication number
JPH0153349B2
JPH0153349B2 JP57180282A JP18028282A JPH0153349B2 JP H0153349 B2 JPH0153349 B2 JP H0153349B2 JP 57180282 A JP57180282 A JP 57180282A JP 18028282 A JP18028282 A JP 18028282A JP H0153349 B2 JPH0153349 B2 JP H0153349B2
Authority
JP
Japan
Prior art keywords
electron beam
deposited
vapor deposition
film
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57180282A
Other languages
Japanese (ja)
Other versions
JPS5970769A (en
Inventor
Yasuo Konishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
Original Assignee
NEC Home Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd filed Critical NEC Home Electronics Ltd
Priority to JP57180282A priority Critical patent/JPS5970769A/en
Publication of JPS5970769A publication Critical patent/JPS5970769A/en
Publication of JPH0153349B2 publication Critical patent/JPH0153349B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 技術分野 この発明は蒸着方法に関し、より詳しくは薄膜
電界発光灯における絶縁膜や発光層等の材料とな
る低熱伝導性物質の蒸着方法に関する。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to a vapor deposition method, and more particularly to a method for vapor depositing a low thermal conductivity material that is used as a material for an insulating film, a light emitting layer, etc. in a thin film electroluminescent lamp.

背景技術 電界発光灯は基本的には、少なくとも一方が透
明である一対の電極間に発光層を配置した構造を
有し、従来鉄板を一方の電極として用いる無機型
のものと、プラスチツクフイルムを用いる有機型
のものとがあるが、いずれも発光輝度がそれほど
大きくないので、応用分野が限られていた。そこ
で、最近では、発光層を電子ビーム蒸着によつて
形成することにより、その印加電圧を大きくして
発光輝度を著しく改善した薄膜電界発光灯が脚光
を浴びている。
BACKGROUND ART An electroluminescent lamp basically has a structure in which a light emitting layer is placed between a pair of electrodes, at least one of which is transparent. Conventionally, an inorganic type uses an iron plate as one electrode, and an inorganic type uses a plastic film. There are organic types, but since their luminance is not very high, their fields of application are limited. Therefore, recently, thin film electroluminescent lamps have been attracting attention, in which the light emitting layer is formed by electron beam evaporation and the applied voltage is increased to significantly improve the luminance.

第1図は二重絶縁膜構造の薄膜電界発光灯の断
面図を示す。図において、1は透明ガラス基板
で、その一面に例えば酸化インジウムや酸化錫等
よりなる透明導電膜2が形成されている。3は前
記透明導電膜2の上にその一部を除いて形成され
た例えば酸化イツトリウム等よりなる第1の絶縁
膜、4は第1の絶縁膜3上にその周辺部を除いて
形成された例えばマンガン付活硫化亜鉛螢光体よ
りなる発光層、5は前記発光層4の上に形成さ
れ、その周辺部が前記第1の絶縁膜3の上に重ね
合わされた、例えば酸化イツトリウム等よりなる
第2の絶縁膜、6は第2の絶縁膜5の上に前記発
光層4とほぼ同一寸法に形成された例えばアルミ
ニウム等よりなる背面電極である。
FIG. 1 shows a cross-sectional view of a thin film electroluminescent lamp with a double insulating film structure. In the figure, reference numeral 1 denotes a transparent glass substrate, on one surface of which a transparent conductive film 2 made of, for example, indium oxide or tin oxide is formed. 3 is a first insulating film made of, for example, yttrium oxide, formed on the transparent conductive film 2 except for a part thereof; 4 is a first insulating film formed on the first insulating film 3 except for its peripheral part. A light-emitting layer 5 made of, for example, a manganese-activated zinc sulfide phosphor is formed on the light-emitting layer 4, and its peripheral portion is made of, for example, yttrium oxide, which is superimposed on the first insulating film 3. A second insulating film 6 is a back electrode made of, for example, aluminum and formed on the second insulating film 5 to have approximately the same dimensions as the light emitting layer 4.

上記の二重絶縁構造の薄膜電界発光灯は、ガラ
ス基板1を加熱しておいて、それにインジウム等
の溶液を吹き付けて透明導電膜2を形成したの
ち、その上に第1の絶縁膜3、発光層4、第2の
絶縁膜5および背面電極6を順次蒸着して形成さ
れる。これらの蒸着形成に際して、抵抗加熱法も
採用されるが多くは電子ビーム法が採用されてい
る。
The thin film electroluminescent lamp with the double insulation structure described above is constructed by heating a glass substrate 1 and spraying a solution such as indium onto it to form a transparent conductive film 2, and then a first insulating film 3, The light emitting layer 4, the second insulating film 5, and the back electrode 6 are sequentially deposited. When forming these by vapor deposition, a resistance heating method is also employed, but in most cases an electron beam method is employed.

すなわち、電子ビーム蒸着法では、第2図に示
すように、るつぼ7上に所定間隔で透明導電膜2
等が形成されたガラス基板1を配置しておき、る
つぼ7内に酸化イツトリウム、マンガン付活硫化
亜鉛、アルミニウム等の蒸着しようとする物質
3′〜6′を載置し、電子銃8から電子ビーム9を
発射して前記物質3′〜6′に照射し、物質3′〜
6′の一部を蒸発させて上方に飛ばし、この蒸発
物10をガラス基板1に被着して各膜を形成して
いる。
That is, in the electron beam evaporation method, as shown in FIG.
A glass substrate 1 on which materials such as the like are formed is placed, materials 3' to 6' to be vapor-deposited, such as yttrium oxide, manganese-activated zinc sulfide, aluminum, etc., are placed in a crucible 7, and electrons are emitted from an electron gun 8. The beam 9 is emitted to irradiate the substances 3' to 6', and the substances 3' to 6' are
A portion of 6' is evaporated and sent upward, and the evaporated material 10 is deposited on the glass substrate 1 to form each film.

この場合、電子ビーム9が物質3′〜6′の一個
所のみに静止して照射されるときは、その部分の
みが集中的に消耗されていくので、電子ビーム9
を微動させている。ところが、物質がアルミニウ
ムのように熱伝導性の良い金属の場合は、電子ビ
ーム9の照射部分のみならず、熱伝導によつてそ
の近傍も高温状態になつており、電子ビーム9を
微動させても蒸着膜の成長速度は余り変化しない
が、第1、第2の絶縁膜3,5や発光層4を形成
する際には、これらの物質3′,4′,5′の熱伝
導率が低いために、電子ビーム9の照射部分と、
その近傍部分とでかなりの温度差があるため、蒸
着膜の成長速度が、第3図の点線Aで示すよう
に、かなり大幅に変動している。したがつて、蒸
着膜の膜厚を蒸着時間で管理することができず、
蒸着膜の膜厚の制御が困難で、品質のばらつきの
原因となり、また原価高の原因ともなつていた。
In this case, when the electron beam 9 is stationary and irradiated only on one part of the substance 3' to 6', only that part is intensively consumed, so the electron beam 9
is slightly moving. However, when the material is a metal with good thermal conductivity such as aluminum, not only the part irradiated by the electron beam 9 but also the vicinity becomes high temperature due to heat conduction, and the electron beam 9 is moved slightly. However, when forming the first and second insulating films 3 and 5 and the light emitting layer 4, the thermal conductivity of these materials 3', 4', and 5' changes. Because it is low, the irradiated part of the electron beam 9 and
Since there is a considerable temperature difference with the neighboring portion, the growth rate of the deposited film fluctuates considerably, as shown by the dotted line A in FIG. Therefore, the thickness of the deposited film cannot be controlled by the deposition time,
It has been difficult to control the thickness of the deposited film, causing variations in quality and increasing costs.

発明の開示 この発明は上記の問題点を解決し、絶縁体や螢
光体等の低熱伝導性物質や昇華性物質に電子ビー
ムを照射して、その蒸着膜の成長速度を可及的に
均一にできる蒸着方法を提供することを目的とす
る。
DISCLOSURE OF THE INVENTION This invention solves the above-mentioned problems and makes the growth rate of the deposited film as uniform as possible by irradiating low thermal conductivity materials and sublimable materials such as insulators and phosphors with an electron beam. The purpose is to provide a vapor deposition method that allows for

この発明は簡単に言えば、蒸着しようとする物
質を加熱する手段を設けて、この加熱手段により
物質全体を溶融もしくは昇華の起こらない範囲の
所定温度(以下所定温度と称する)に加熱して電
子ビーム照射部分と非照射部分の温度差を小さく
して電子ビームを微動して蒸着することを特徴と
するものである。
Simply put, this invention provides means for heating a substance to be vapor-deposited, and uses this heating means to heat the entire substance to a predetermined temperature (hereinafter referred to as the predetermined temperature) within a range where melting or sublimation does not occur, thereby allowing electrons to be deposited. This method is characterized in that the temperature difference between the beam irradiated area and the non-irradiated area is reduced, and the electron beam is slightly moved for vapor deposition.

すなわち、るつぼに収容配置した物質全体を加
熱手段で加熱することによつて、物質全体を所定
温度に上昇せしめ、電子ビームの照射部分と非照
射部分との温度差を小さくすると、電子ビームが
微動しても、同様に電子ビームの照射部分と非照
射部の温度差が小さくなり、蒸着膜の成長速度を
ほぼ均一にできるものであり、それによつて蒸着
膜の膜厚の制御を蒸着時間によつて行なうことを
可能にし、薄膜電界発光灯における絶縁膜や発光
層の形成を著しく容易にし、品質の向上と原価低
減とを図り得るものである。
In other words, by heating the entire material housed in a crucible with a heating means, the entire material is raised to a predetermined temperature, and the temperature difference between the irradiated part and the non-irradiated part is reduced, and the electron beam trembles slightly. However, the temperature difference between the electron beam irradiation area and the non-irradiation area is similarly small, and the growth rate of the deposited film can be made almost uniform, making it possible to control the thickness of the deposited film based on the deposition time. This makes it possible to significantly facilitate the formation of an insulating film and a light-emitting layer in a thin-film electroluminescent lamp, thereby improving quality and reducing costs.

発明を実施するための最良の形態 以下、この発明の一実施例を図面を参照して説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第4図はこの発明を実施するための蒸着装置の
概略構成図である。次の点を除いては第2図と同
様であるため、同一部分には同一参照符号を付し
ている。第2図と相違するのは、るつぼ7上に加
熱手段の一例としてのヒータ11を配置し、この
ヒータ11に通電して、酸化イツトリウム等の絶
縁物質3′,5′やマンガン添加硫化亜鉛等の螢光
体物質4′全体を所定温度に加熱した状態で、前
記物質3′〜5′の一部に電子銃8から電子ビーム
9を照射して、絶縁膜や発光層を形成するように
していることである。前記ヒータ11による物質
3′〜5′の加熱温度は、蒸着しようとする物質の
種類によつて異なり、電子ビーム9のパワーもそ
れに応じて適宜設定される。例えば、蒸着しよう
とする物質が酸化イツトリウムとマンガン添加硫
化亜鉛螢光体の場合は、次のように設定される。
ただし、物質の寸法は35mmφ×10mmtとし、電子
ビーム9のパワーは蒸着時のエミツシヨン電流と
加速電圧の積をいう。
FIG. 4 is a schematic diagram of a vapor deposition apparatus for carrying out the present invention. Since it is the same as FIG. 2 except for the following points, the same reference numerals are given to the same parts. What is different from FIG. 2 is that a heater 11 as an example of a heating means is arranged on the crucible 7, and the heater 11 is energized to produce insulating materials 3', 5' such as yttrium oxide, manganese-added zinc sulfide, etc. While the entire phosphor material 4' is heated to a predetermined temperature, parts of the materials 3' to 5' are irradiated with an electron beam 9 from an electron gun 8 to form an insulating film and a light emitting layer. This is what is happening. The heating temperature of the substances 3' to 5' by the heater 11 varies depending on the type of substance to be deposited, and the power of the electron beam 9 is also set appropriately accordingly. For example, when the substance to be vapor-deposited is yttrium oxide and manganese-doped zinc sulfide phosphor, the settings are as follows.
However, the dimensions of the material are 35 mmφ x 10 mmt, and the power of the electron beam 9 is the product of the emission current and accelerating voltage during vapor deposition.

蒸着物質 加熱速度 電子ビームパワー Y2O3 500℃ 500VA ZnS;Mn 300℃ 25VA 上記酸化イツトリウムの場合について蒸着膜の
成長速度は、第3図の実線Bのようになり、ヒー
タ11による加熱を行なわない同図の点線Aに比
較して著しく均一化されている。
Deposited substance Heating rate Electron beam power Y 2 O 3 500℃ 500VA ZnS; Mn 300℃ 25VA In the case of yttrium oxide, the growth rate of the deposited film is as shown by the solid line B in FIG. It is much more uniform than the dotted line A in the same figure, which does not have the same shape.

第5図はこの発明の蒸着方法に用いる他の実施
例の蒸着装置の概略構成図で、第4図との相違点
は、物質3′〜5′の加熱手段として電子銃8の他
に第2の電子銃8aを設け、この電子銃8aの電
子ビーム9aのビーム径を大きくして、物質3′
〜5′の全体を照射するようにしたものである。
FIG. 5 is a schematic configuration diagram of another embodiment of the vapor deposition apparatus used in the vapor deposition method of the present invention. The difference from FIG. 2 electron guns 8a are provided, and the beam diameter of the electron beam 9a of this electron gun 8a is increased to remove the material 3'.
The entire area from 5' to 5' is irradiated.

さらに他の加熱手段として赤外線ビーム加熱装
置を採用することもできる。
Furthermore, an infrared beam heating device can also be employed as another heating means.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は薄膜電界発光灯の断面図、第2図は従
来の蒸着方法で用いられている蒸着装置の概略構
成図、第3図は従来の蒸着方法およびこの発明の
蒸着方法による蒸着膜の成長速度の特性図、第4
図および第5図はこの発明の蒸着方法を実施する
ために用いる蒸着装置の異なる実施例の概略構成
図である。 1……ガラス基板、2……透明導電膜、3,5
……絶縁膜、4……発光層、7……るつぼ、8…
…電子銃、9,9a……電子ビーム、3′〜5′…
…蒸着しようとする物質、8a……加熱手段(電
子銃)、11……加熱手段(ヒータ)。
FIG. 1 is a cross-sectional view of a thin film electroluminescent lamp, FIG. 2 is a schematic diagram of a vapor deposition apparatus used in a conventional vapor deposition method, and FIG. Characteristic diagram of growth rate, 4th
5 and 5 are schematic configuration diagrams of different embodiments of a vapor deposition apparatus used to carry out the vapor deposition method of the present invention. 1... Glass substrate, 2... Transparent conductive film, 3, 5
... Insulating film, 4 ... Light emitting layer, 7 ... Crucible, 8 ...
...Electron gun, 9,9a...Electron beam, 3'-5'...
...Substance to be vapor deposited, 8a... Heating means (electron gun), 11... Heating means (heater).

Claims (1)

【特許請求の範囲】[Claims] 1 るつぼ内に配置した低熱伝導性物質もしくは
昇華性物質である被蒸着物質に電子ビームを照射
して前記物質を蒸着させ上方に配置された基体に
蒸着する方法において、前記物質を加熱する手段
を設けて、この加熱手段により前記物質全体を溶
融もしくは昇華の起こらない範囲の所定温度に加
熱し、電子ビームを微動させて蒸着することを特
徴とする蒸着方法。
1. In a method of irradiating a material to be deposited, which is a low thermal conductivity material or a sublimable material, placed in a crucible with an electron beam, and depositing the material on a substrate placed above, a means for heating the material is provided. A vapor deposition method characterized in that the entire substance is heated by the heating means to a predetermined temperature within a range in which melting or sublimation does not occur, and the vapor deposition is carried out by slightly moving an electron beam.
JP57180282A 1982-10-13 1982-10-13 Vapor deposition method Granted JPS5970769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57180282A JPS5970769A (en) 1982-10-13 1982-10-13 Vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57180282A JPS5970769A (en) 1982-10-13 1982-10-13 Vapor deposition method

Publications (2)

Publication Number Publication Date
JPS5970769A JPS5970769A (en) 1984-04-21
JPH0153349B2 true JPH0153349B2 (en) 1989-11-14

Family

ID=16080486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57180282A Granted JPS5970769A (en) 1982-10-13 1982-10-13 Vapor deposition method

Country Status (1)

Country Link
JP (1) JPS5970769A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950334A (en) * 1986-08-12 1990-08-21 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Gas carburizing method and apparatus
KR102319130B1 (en) * 2020-03-11 2021-10-29 티오에스주식회사 Metal-Oxide semiconductor evaporation source equipped with variable temperature control module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556408A (en) * 1978-06-26 1980-01-17 Hitachi Ltd Vacuum evaporating apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5548832A (en) * 1978-10-04 1980-04-08 Matsushita Electric Ind Co Ltd Magnetic recording and reproducing unit of rotary head type
JPS5622172Y2 (en) * 1978-11-27 1981-05-25
JPS55139630A (en) * 1979-04-16 1980-10-31 Sony Corp Supporter for magnetic head
JPS5928363Y2 (en) * 1979-05-17 1984-08-16 オリンパス光学工業株式会社 Ultrasonic microscope scanning device
JPS5774657A (en) * 1980-08-30 1982-05-10 Olympus Optical Co Ltd Ultrasonic microscope device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS556408A (en) * 1978-06-26 1980-01-17 Hitachi Ltd Vacuum evaporating apparatus

Also Published As

Publication number Publication date
JPS5970769A (en) 1984-04-21

Similar Documents

Publication Publication Date Title
US20030072876A1 (en) Method of evaporating film used in an organic electro-luminescent display
US5443862A (en) Process for the treatment of thin films having properties of electrical conduction and/or reflection in the infrared
JP3359073B2 (en) Organic thin film EL device
JPH0487187A (en) Organic electroluminescence element
JPH0153349B2 (en)
JP3719797B2 (en) Method for forming conductive thin film on organic thin film surface
JP3698506B2 (en) EL element and method of forming cathode electrode film on organic thin film surface
JP2001076887A (en) Forming method of transparent conductive film and manufacture of organic el device using this
JPH0440836B2 (en)
JP2570560Y2 (en) Electron beam evaporation source
JPS6155237B2 (en)
JPS6134890A (en) Method of forming electric field light emitting thin film
JPS61183813A (en) Formation of conductive film
JPS6141112B2 (en)
JPH06101252B2 (en) Method for forming transparent conductive metal oxide film
JPH04192289A (en) Manufacture of electroluminescence element
JPH10228982A (en) Organic light emitting element and manufacture thereof
JPH06349582A (en) Organic thin film electroluminescence element and manufacture thereof
KR840008534A (en) Continuous attaching method of high conductivity, high permeability film and apparatus thereof
JPH07135081A (en) Organic thin film electroluminescence element and manufacture thereof
JPH02135697A (en) Manufacture of thin film el device
JPS6329396B2 (en)
JPH0598421A (en) Formation of electroluminescence light emitting film
JPH0578918B2 (en)
JPH07320871A (en) Manufacture of electroluminescent element