JPH04192289A - Manufacture of electroluminescence element - Google Patents

Manufacture of electroluminescence element

Info

Publication number
JPH04192289A
JPH04192289A JP2324488A JP32448890A JPH04192289A JP H04192289 A JPH04192289 A JP H04192289A JP 2324488 A JP2324488 A JP 2324488A JP 32448890 A JP32448890 A JP 32448890A JP H04192289 A JPH04192289 A JP H04192289A
Authority
JP
Japan
Prior art keywords
substrate
layer
transparent electrode
layers
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2324488A
Other languages
Japanese (ja)
Inventor
Keiichi Kohama
恵一 小浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2324488A priority Critical patent/JPH04192289A/en
Publication of JPH04192289A publication Critical patent/JPH04192289A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To suppress thermal diffusion of the components between layers, to increase the luminous brightness of the element, to improve a voltage-resisting property, and to realize a long service life and a low cost, by maintaining the temperature of a substrate at 150 to 200 deg.C, and forming the layers by an ion beam spattering. CONSTITUTION:After a soda glass substrate 1 is cleaned and dried, it is set on a substrate holder 11 of a multi-beam spattering device. In the device, the targets of the materials to form layers are arranged, and the layers can be formed by only converting the radiation sources of ion beams. After the inside of a chamber is evacuated less than 2X10<-6> Torr, the asist ion beams are radiated on the substrate to maintain the heating at 150 to 200 deg.C. Then, by using an ion beam sputtering, a transparent electrode layer 2 of an ITO membrane, the first insulating layer 3 of Y2O3 a luminous substance layer 4 of ZnS.Mn, the second insulating layer 5 of Y2O3, and a transparent electrode layer 6 of an ITO membrane are formed in order to manufacture an electroluminescence element.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、発光表示素子として使用できるエレクトロル
ミネセンス素子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an electroluminescent device that can be used as a light emitting display device.

〔従来の技術〕[Conventional technology]

従来、透過型のエレクトロルミネセンス素子は、対向す
る一対の透明電極層と該透明電極層の間に、発光体層と
、該発光体層を両面から挟むように配置された絶縁層と
が基板上に形成されて構成されている。
Conventionally, a transmission-type electroluminescent element has a substrate, a light-emitting layer, and an insulating layer disposed to sandwich the light-emitting layer from both sides between a pair of opposing transparent electrode layers. formed and configured on.

このエレクトロルミネセンス素子は、透明電極間に発光
しきい値電圧以上の電圧を印加することにより発光体層
から発光する。この発光層をもちいて表示装置として利
用されている。
This electroluminescent element emits light from a light emitter layer by applying a voltage equal to or higher than a light emission threshold voltage between transparent electrodes. This light-emitting layer is used as a display device.

このエレクトロルミネセンス素子の製造方法は、一般に
上記の各層をイオンブレーティング法、電子ビーム蒸着
法、RFスパッタリング法により250〜350℃に加
熱したガラス基板上に成膜されて構成されている。とこ
ろで、上記のようにガラス基板を250〜350℃に加
熱して成膜すると、ガラス基板中に含まれるアルカリ成
分のNa。
This method of manufacturing an electroluminescent device generally consists of forming each of the above-mentioned layers on a glass substrate heated to 250 to 350° C. using an ion blating method, an electron beam evaporation method, or an RF sputtering method. By the way, when a glass substrate is heated to 250 to 350°C to form a film as described above, Na, which is an alkaline component contained in the glass substrate, is removed.

K、Caなどや、透明電極層のインジュウムや錫が絶縁
層、発光体層に熱拡散しやすくなる。これらは絶縁層、
発光体層中では不純物となり、本来高い絶縁性や発光特
性を有している膜質を劣化させる。その結果得られるエ
レクトロルミネセンス素子は、絶縁性が低(なりリーク
電流が太き(なったり、発光体層に充分な電圧を印加す
ることができなくなり発光輝度が低かった。
K, Ca, etc., and indium and tin in the transparent electrode layer are easily thermally diffused into the insulating layer and the light emitting layer. These are insulating layers,
It becomes an impurity in the light-emitting layer and deteriorates the film quality, which originally has high insulation and light-emitting properties. The resulting electroluminescent device had low insulation, high leakage current, and the inability to apply a sufficient voltage to the light emitting layer, resulting in low luminance.

また、無理に電圧を印加しようとすると、リーク電流に
よる発熱のためエレクトロルミネセンス素子が破壊され
るなどの問題があった。
Further, if a voltage is applied forcibly, there is a problem that the electroluminescent element is destroyed due to heat generation due to leakage current.

そこで透明電極層を形成したガラス基板に、絶縁層、発
光体層をイオンブレーティング法で加熱を低く(200
〜400℃)して成膜速度を速めて成膜する方法の開示
がある(特公昭63−29396号公報)。
Therefore, on the glass substrate on which the transparent electrode layer was formed, the insulating layer and the luminescent layer were heated at a low temperature (200°C) using the ion blasting method.
There is a disclosure of a method of forming a film by increasing the film forming rate (Japanese Patent Publication No. 63-29396).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記の方法では熱拡散によりインジウムや錫が
絶縁層に浸透するのを充分抑制することが困難であった
However, with the above method, it is difficult to sufficiently suppress indium and tin from penetrating into the insulating layer due to thermal diffusion.

本発明は上記の事情に鑑みてなされたもので、発光輝度
の低下を防いだエレクトロルミネセンス素子とすること
を目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electroluminescent element that prevents a decrease in luminance.

〔課題を解決するための手段〕 本発明のエレクトロルミネセンス素子の製造方法は、対
向する一対の透明電極層と該透明電極層の間に、発光層
と、該発光体層を両面から挟むように配置された絶縁層
とが基板上に形成されて構成されるエレクトロルミネセ
ンス素子の製造方法であって、 基板を150〜200 ”Cの温度に保持してイオンビ
ームスパッタリングて各層を形成することを特徴とする
[Means for Solving the Problems] The method for manufacturing an electroluminescent device of the present invention includes sandwiching a light-emitting layer and a light-emitting layer from both sides between a pair of opposing transparent electrode layers and the transparent electrode layer. A method of manufacturing an electroluminescent device comprising an insulating layer disposed on a substrate, the method comprising forming each layer by ion beam sputtering while holding the substrate at a temperature of 150 to 200''C. It is characterized by

このエレクトロルミネセンス素子の製造方法は、イオン
ビームスパッタリング装置内で透明電極層、絶縁層、発
光体層、絶縁層、透明電極層の順に連続して成膜するこ
とができる。そしてこの方法で成膜する場合は、基板の
温度を150〜200 ℃の低い範囲に保つことで良好
な膜層を形成することができる。
In this method for manufacturing an electroluminescent device, a transparent electrode layer, an insulating layer, a light emitter layer, an insulating layer, and a transparent electrode layer can be successively formed in this order within an ion beam sputtering apparatus. When forming a film using this method, a good film layer can be formed by keeping the temperature of the substrate in a low range of 150 to 200°C.

基板温度が150°C未満であるとエレクトロルミネセ
ンス素子の発光輝度が低くなり好ましくない。また20
0℃を超えると耐電圧、発光輝度とも低下するので好ま
しくない。
If the substrate temperature is less than 150° C., the luminance of the electroluminescent device will be low, which is not preferable. 20 again
If it exceeds 0°C, both the withstand voltage and luminance will decrease, which is not preferable.

この理由は、ガラス基板が低温であるので基板中のアル
カリ成分や透明電極層のインジウム、錫が絶縁層や発光
体層に不純物として熱拡散して絶縁性の低下や膜質の低
下を抑制することができる。
The reason for this is that since the glass substrate is at a low temperature, alkali components in the substrate and indium and tin in the transparent electrode layer thermally diffuse into the insulating layer and the light emitting layer as impurities, suppressing deterioration in insulation properties and film quality. I can do it.

その結果、輝度が高くなり耐電圧も高いエレクトロルミ
ネセンス素子が製造できる。
As a result, an electroluminescent element with high brightness and high withstand voltage can be manufactured.

また従来法のように、透明電極の形成をイオンブレーテ
ィング法またはRFスパッタリング法で形成した後、絶
縁層と発光体層の形成が効率的におこなえる電子ビーム
蒸着やイオンブレーティングなどの別の方法で形成する
必要がない。したがって、製造工程が効率を高めること
ができる。
In addition, unlike conventional methods, after the transparent electrode is formed using the ion blating method or RF sputtering method, another method such as electron beam evaporation or ion blating that can efficiently form the insulating layer and the luminescent layer is used. There is no need to form it with Therefore, the manufacturing process can be made more efficient.

〔作用〕[Effect]

本発明のエレクトロルミネセンス素子の製造方法によれ
ば、イオンビームスパッタリング法でガラス基板上に順
次各層層を成膜する。そして基板の温度は150〜20
0℃に保持して各膜層が形成される。したがって、上記
の範囲の加熱では、熱拡散が起こらず基板のガラス成分
や透明電極成分が不純物として絶縁層や発光体層に浸透
するのを防ぐことができる。その結果、発光輝度の高い
エレクトロルミネセンス素子が得られる。またガラス基
板として安価なソーダガラスを使用することができる。
According to the method for manufacturing an electroluminescent device of the present invention, each layer is sequentially formed on a glass substrate using an ion beam sputtering method. And the temperature of the board is 150-20
Each film layer is formed while maintaining the temperature at 0°C. Therefore, heating in the above range does not cause thermal diffusion and can prevent the glass components and transparent electrode components of the substrate from penetrating into the insulating layer and the light emitting layer as impurities. As a result, an electroluminescent device with high luminance can be obtained. Furthermore, inexpensive soda glass can be used as the glass substrate.

また同一の装置で各膜層が形成できるので、製造工程を
簡略化することができる。
Furthermore, since each film layer can be formed using the same device, the manufacturing process can be simplified.

〔実施例〕〔Example〕

以下実施例により具体的に説明する。 This will be explained in detail below using examples.

このエレクトロルミネセンス素子は第1図に示すように
ガラス基板1に透明電極2のITO膜層、第1絶縁層3
の酸化イツトリウム膜、発光体層4のZnS−Mn膜、
第2絶縁層5の酸化イツトリウム膜、透明電極6のIT
O膜層とが積層されて形成されている。そして透明電極
間に交流電圧を印加して発光させる構成である。
As shown in FIG. 1, this electroluminescent element includes a glass substrate 1, an ITO film layer of a transparent electrode 2, and a first insulating layer 3.
Yttrium oxide film of , ZnS-Mn film of luminescent layer 4,
Yttrium oxide film of second insulating layer 5, IT of transparent electrode 6
It is formed by stacking an O film layer. The structure is such that an AC voltage is applied between the transparent electrodes to emit light.

(実施例1) エレクトロルミネセンス素子の製造 厚さ1.1mnのソーダガラス基板を洗浄、乾燥した後
、第2図に示すマルチイオンビームスパッタ装置(日新
電機株製Nl1−250T−A型)(以下MIBS法と
称する)の基板ホルダにセットする。
(Example 1) Production of electroluminescent device After cleaning and drying a soda glass substrate with a thickness of 1.1 mm, a multi-ion beam sputtering apparatus (Nl1-250T-A type manufactured by Nissin Electric Co., Ltd.) shown in FIG. 2 was used. (hereinafter referred to as MIBS method).

装置内部には透明電極層、絶縁層、発光体層を形成する
材料の3種のターゲットが配置されておりイオンビーム
の照射源を変えることで各膜層を形成することができる
。基板にはアシストイオンビームが照射される。そして
装置内部は真空チャンバーとなっている。
Three types of targets for forming the transparent electrode layer, the insulating layer, and the luminescent layer are arranged inside the device, and each film layer can be formed by changing the ion beam irradiation source. The substrate is irradiated with an assist ion beam. The inside of the device is a vacuum chamber.

装置のチャンバー内を2X10−@Torr以下に排気
した後、基板1を150〜200℃に加熱する。なお、
成膜中は基板温度は一定に保持する。
After evacuating the inside of the chamber of the apparatus to below 2×10 −@Torr, the substrate 1 is heated to 150 to 200° C. In addition,
The substrate temperature is kept constant during film formation.

基板加熱後、イオンビームスパッタで厚さ2000人の
JTO!iの透明電極層2、厚さ4000人のY2O,
の第1絶縁層3、厚さ6000人のZnS−Mnの発光
体層4、厚さ4000人のY2O3の第2絶縁層5、厚
さ2000人のITO膜の透明電極層6を順次成膜し第
1図に示す構造のエレクトロルミネセンス素子(a)を
作成した。
After heating the substrate, use ion beam sputtering to create a JTO with a thickness of 2,000 people! i transparent electrode layer 2, thickness 4000 Y2O,
A first insulating layer 3 of ZnS-Mn with a thickness of 6000, a second insulating layer 5 of Y2O3 with a thickness of 4000, and a transparent electrode layer 6 of ITO with a thickness of 2000 are sequentially formed. An electroluminescent device (a) having the structure shown in FIG. 1 was prepared.

なお、スパッタ用イオンビームとしてイオンエネルギー
はIKeV 〜1.5KeV、イオン電流70mA〜1
00mAのアルゴンイオンを用いた。
In addition, as an ion beam for sputtering, the ion energy is IKeV ~ 1.5KeV, and the ion current is 70mA ~ 1
00 mA of argon ion was used.

(比較例1) 実施例の方法で基板の温度を100℃(b)。(Comparative example 1) The temperature of the substrate was set to 100°C (b) using the method of the example.

250(c)とした以外は同様にしてエレクトロルミネ
センス素子を作製した。
An electroluminescent device was produced in the same manner except that 250(c) was used.

(比較例2) 実施例と同様の処理をしたソーダガラス基板をイオンブ
レーティング装置にセットする。
(Comparative Example 2) A soda glass substrate treated in the same manner as in the example was set in an ion blating device.

基板1を300℃に加熱してイオンプレーテング法によ
り厚さ2000人のITOの透明電極層2を成膜した。
The substrate 1 was heated to 300° C., and a transparent electrode layer 2 of 2000 layers of ITO was formed by ion plating.

続いてこの透明電極膜2の上に、300℃に加熱した基
板に電子ビーム蒸着法により厚さ4000人のY2O,
の第1絶縁体層3を、厚さ6000人のZnS−Mnの
発光体層4を、厚さ4000人のY2O3の第2絶縁層
5を成膜した。
Subsequently, on this transparent electrode film 2, Y2O of 4000 nm thick was deposited on a substrate heated to 300°C by electron beam evaporation.
A first insulating layer 3 of 6,000 thick, a phosphor layer 4 of ZnS-Mn with a thickness of 6000, and a second insulating layer 5 of Y2O3 with a thickness of 4000.

さらに絶縁層5の上に基板を300℃に加熱してイオン
プレーテング法により厚さ2000人のITOの透明電
極層6を成膜してエレクトロルミネセンス素子(d)を
作製した。
Furthermore, the substrate was heated to 300° C. on top of the insulating layer 5, and a transparent electrode layer 6 of ITO having a thickness of 2000 layers was formed by ion plating to produce an electroluminescent device (d).

評価 実施例および比較例で作製したエレクトロルミネセンス
素子について、両電極間に5KHzの交流電圧を印加し
、発光輝度−電圧特性を測定した。
For the electroluminescent elements produced in the evaluation examples and comparative examples, an alternating current voltage of 5 KHz was applied between both electrodes, and the emission brightness-voltage characteristics were measured.

結果を第3図に示す。The results are shown in Figure 3.

基板温度を150〜200℃で成膜した(a)が最も輝
度が高< (140V、275cd/m)、それ以下の
100°Cの温度では素子(b)の耐電圧は向上するも
のの、発光輝度は低くい。また、200℃より高い温度
で形成した素子(c)は、耐電圧、輝度ともに低い。こ
れは基板温度が低いとエレクトロルミネセンス素子を構
成する材料、特にZnS−Mn発光体層の膜質が悪くな
るためと考えられる。一方基板温度が高い場合は、不純
物の拡散が多くなるためであると考えられる。
(a), where the film was formed at a substrate temperature of 150 to 200°C, has the highest luminance (140V, 275cd/m); at a temperature lower than that, 100°C, the withstand voltage of the device (b) improves, but no light is emitted. Brightness is low. Further, the element (c) formed at a temperature higher than 200° C. has low withstand voltage and low luminance. This is considered to be because when the substrate temperature is low, the film quality of the materials constituting the electroluminescent element, especially the ZnS-Mn luminescent layer, deteriorates. On the other hand, when the substrate temperature is high, it is thought that this is because impurity diffusion increases.

比較例2のイオンブレーティング法で成膜した場合は、
基板温度を300〜350℃で作製したエレクトロルミ
ネセンス素子が最も発光輝度が高かった(80V、  
30 c d/if)。
When the film was formed using the ion blating method of Comparative Example 2,
The electroluminescent device fabricated at a substrate temperature of 300 to 350°C had the highest luminance (80V,
30 c d/if).

したがって、成膜をイオンビームスパッタ法で基板温度
を150〜200℃の範囲でおこなうと従来法で形成し
た素子に比べて発光輝度が約10倍向上した。
Therefore, when the film was formed using the ion beam sputtering method at a substrate temperature in the range of 150 to 200° C., the luminance was improved by about 10 times compared to the device formed by the conventional method.

〔効果〕〔effect〕

この方法では、基板の温度を低く保持して成膜できるの
で層間で成分の熱拡散が抑制できる。その結果、素子の
発光輝度が高くなり、耐電圧も向上して寿命が長くなる
In this method, the film can be formed while keeping the temperature of the substrate low, so thermal diffusion of components between layers can be suppressed. As a result, the luminance of the device increases, the withstand voltage also improves, and the lifetime of the device increases.

さらにこの温度範囲で製造された素子は、しきい値電圧
、発光輝度、絶縁破壊電圧などの特性値が略一定となる
ので、製造時の温度管理が容易となる。
Furthermore, since elements manufactured in this temperature range have substantially constant characteristic values such as threshold voltage, luminance, and dielectric breakdown voltage, temperature control during manufacturing becomes easy.

基板温度が低いのでアルカリ成分の拡散が抑制で基板と
してソーダガラスが使用できる。したがって、コスト低
下を図ることができる。
Since the substrate temperature is low, diffusion of alkaline components is suppressed and soda glass can be used as the substrate. Therefore, it is possible to reduce costs.

また成膜を全てMIBS法で形成できるので工程が簡略
化できる。
Further, since all the films can be formed by the MIBS method, the process can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はエレクトロルミネセンス素子の構成を示す断面
模式図、第2図はマルチイオンビームスパッタ装置の概
略説明図、第3図は素子の印加電圧と発光輝度との関係
を示す線グラフである。 1・・・ガラス基板   2.6・・・透明電極3・・
・第1絶縁層   4・・・発光体層5・・・第2絶縁
層 特許出願人  トヨタ自動車株式会社
Fig. 1 is a schematic cross-sectional diagram showing the structure of an electroluminescent device, Fig. 2 is a schematic explanatory diagram of a multi-ion beam sputtering device, and Fig. 3 is a line graph showing the relationship between applied voltage of the device and luminance. . 1...Glass substrate 2.6...Transparent electrode 3...
・First insulating layer 4... Luminous layer 5... Second insulating layer Patent applicant Toyota Motor Corporation

Claims (1)

【特許請求の範囲】  対向する一対の透明電極層と該透明電極層の間に、発
光体層と、該発光体層を両面から挟むように配置された
絶縁層とが基板上に形成されて構成されるエレクトロル
ミネセンス素子の製造方法であって、 基板を150〜200℃の温度に保持してイオンビーム
スパッタリングで各層を形成することを特徴とするエレ
クトロルミネセンス素子の製造方法。
[Claims] A luminescent layer and an insulating layer disposed to sandwich the luminescent layer from both sides are formed on a substrate between a pair of opposing transparent electrode layers and the transparent electrode layer. 1. A method for manufacturing an electroluminescent device comprising the steps of: maintaining a substrate at a temperature of 150 to 200° C. and forming each layer by ion beam sputtering.
JP2324488A 1990-11-26 1990-11-26 Manufacture of electroluminescence element Pending JPH04192289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2324488A JPH04192289A (en) 1990-11-26 1990-11-26 Manufacture of electroluminescence element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2324488A JPH04192289A (en) 1990-11-26 1990-11-26 Manufacture of electroluminescence element

Publications (1)

Publication Number Publication Date
JPH04192289A true JPH04192289A (en) 1992-07-10

Family

ID=18166366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2324488A Pending JPH04192289A (en) 1990-11-26 1990-11-26 Manufacture of electroluminescence element

Country Status (1)

Country Link
JP (1) JPH04192289A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020008352A (en) * 2000-07-22 2002-01-30 이영춘 electroluminescent dispay
EP1318209A1 (en) * 2001-10-30 2003-06-11 Anelva Corporation Sputtering apparatus and film forming method
KR100635041B1 (en) * 2001-08-24 2006-10-17 삼성에스디아이 주식회사 Method for formming organic electro luminescence display having front emitting structure and apparatus thereby

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020008352A (en) * 2000-07-22 2002-01-30 이영춘 electroluminescent dispay
KR100635041B1 (en) * 2001-08-24 2006-10-17 삼성에스디아이 주식회사 Method for formming organic electro luminescence display having front emitting structure and apparatus thereby
EP1318209A1 (en) * 2001-10-30 2003-06-11 Anelva Corporation Sputtering apparatus and film forming method
US7156961B2 (en) 2001-10-30 2007-01-02 Anelva Corporation Sputtering apparatus and film forming method

Similar Documents

Publication Publication Date Title
KR101139662B1 (en) Plasma display panel-use protection film and production method for the protection film, plasma display panel and production method therefor
JPH08287833A (en) Manufacture of plasma display panel
JP2002124379A (en) Manufacturing method of organic el device
JP4310843B2 (en) Method for manufacturing organic electroluminescent device
JP3719797B2 (en) Method for forming conductive thin film on organic thin film surface
JPH04192289A (en) Manufacture of electroluminescence element
JP2005340225A (en) Organic el device
KR100813241B1 (en) Field emission type backlight unit, and manufacturing method of upper panel thereof
JP2001332175A (en) Alternating plasma display panel and production method of the same
JP2001326071A (en) Manufacturing method of passivation film for organic led element
JP2001076887A (en) Forming method of transparent conductive film and manufacture of organic el device using this
JPH0992133A (en) Manufacture of plasma display panel
JP2825756B2 (en) Method and apparatus for manufacturing thin film EL element
KR20020091640A (en) Electroluminescent display with carbon contained electron generating material and method for fabricating the same
JP2000173775A (en) Ultraviolet emission electroluminescent element and its manufacture
JP2819804B2 (en) Electroluminescence device and method of manufacturing the same
JP2000243569A (en) Organic electroluminescence element and its manufacture
JP2009146803A (en) Plasma display panel
JP2003234194A (en) Organic el element and its manufacturing method
JPS62154495A (en) Manufacture of thin film electroluminescence device
JP2000150146A (en) Organic el element and its manufacture
JPH03236195A (en) Double-insulated thin film electroluminescence device
JP2018195462A (en) Method for manufacturing upper electrode film of organic el element by sputtering
JPH11224777A (en) Thin film electroluminescence element, its manufacture, and manufacturing apparatus
JP3446542B2 (en) Thin film EL element