JPH0992133A - Manufacture of plasma display panel - Google Patents

Manufacture of plasma display panel

Info

Publication number
JPH0992133A
JPH0992133A JP27344395A JP27344395A JPH0992133A JP H0992133 A JPH0992133 A JP H0992133A JP 27344395 A JP27344395 A JP 27344395A JP 27344395 A JP27344395 A JP 27344395A JP H0992133 A JPH0992133 A JP H0992133A
Authority
JP
Japan
Prior art keywords
magnesium oxide
discharge
display panel
plasma display
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27344395A
Other languages
Japanese (ja)
Other versions
JP2793532B2 (en
Inventor
Yoshito Tanaka
義人 田中
Kiyoshi Hosokawa
清 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Showa Shinku Co Ltd
Original Assignee
NEC Corp
Showa Shinku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Showa Shinku Co Ltd filed Critical NEC Corp
Priority to JP7273443A priority Critical patent/JP2793532B2/en
Publication of JPH0992133A publication Critical patent/JPH0992133A/en
Application granted granted Critical
Publication of JP2793532B2 publication Critical patent/JP2793532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a magnesium oxide film having <111> orientation being a protective film for obtaining an excellent discharge characteristic by protecting a dielectric layer, at a low temperature with high throughput, in a manufacturing method of an AC type plasma display panel(PDP). SOLUTION: In the case of forming a protective layer of a magnesium oxide to protect a dielectric layer from ion bombardment by plasma discharge by contacting with a discharge space of PDP, high frequency voltage is impressed on a base board holder 13 in a chamber 15 from a power source device 12, and plasma discharge is generated on a surface of a base board. In this condition, the magnesium oxide is evaporated from a crucible 18 by using a thermoelectron flow 16, and a magnesium oxide film is formed on a surface of the base board by an evaporation method. Since plasma discharge is generated, even at a low base board temperature of about 180 deg.C, the magnesium oxide film can be formed with high throughput by the evaporation method. The magnesium oxide film having <111> orientation has an action to reduce driving voltage of an AC type PDP since a secondary electron emitting factor is high. Particularly, it is suitable for manufacturing a plasma display panel having the large area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、表示デバイスなど
に用いるプラズマディスプレイパネル(ガス放電表示パ
ネル、又は、PDPとも呼ぶ)の製造方法に関し、特
に、ガス放電表示パネルにおいて誘電体層を保護する保
護層の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a plasma display panel (also referred to as a gas discharge display panel or PDP) used for a display device or the like, and more particularly to protection for protecting a dielectric layer in the gas discharge display panel. A method for forming a layer.

【0002】[0002]

【従来の技術】交流駆動型(AC)ガス放電表示パネル
では、放電によるイオン衝撃から誘電体層を保護するた
めに、耐熱性の保護層が設けられている。保護層には、
酸化マグネシウム(MgO)膜が好適に用いられてい
る。酸化マグネシウム膜は、一般に、例えば電子ビーム
照射を利用した加熱などによって膜材料を蒸発させ、誘
電体層の表面に結晶成長の形で堆積させる手法、すなわ
ち蒸着法によって形成される。
2. Description of the Related Art In an AC drive type (AC) gas discharge display panel, a heat resistant protective layer is provided in order to protect the dielectric layer from ion bombardment due to discharge. The protective layer is
A magnesium oxide (MgO) film is preferably used. The magnesium oxide film is generally formed by a method of evaporating a film material by heating using electron beam irradiation and depositing it on the surface of the dielectric layer in the form of crystal growth, that is, an evaporation method.

【0003】ガス放電表示パネルの駆動電圧は、素子構
造や封入ガス等、多くの要因によって決定される。放電
空間に接する保護層の二次電子放出係数はそのひとつで
あり、二次電子放出係数が大きいほど低電圧で駆動する
ことが出来る。酸化マグネシウムから成る保護層は、二
次電子放出係数が大きく、このような観点から保護層に
特に適している。
The driving voltage of the gas discharge display panel is determined by many factors such as the element structure and the enclosed gas. The secondary electron emission coefficient of the protective layer in contact with the discharge space is one of them, and the larger the secondary electron emission coefficient is, the lower the voltage can be driven. The protective layer made of magnesium oxide has a large secondary electron emission coefficient, and is particularly suitable for the protective layer from this viewpoint.

【0004】ところで、ガス放電表示パネルの駆動電圧
は、駆動回路の耐電圧特性や大面積化した場合の消費電
力の観点から、更に一層の低電圧化が望まれている。低
電圧化の面では、酸化マグネシウム膜の結晶配向性に依
存する二次電子放出係数の違いが注目されている。すな
わち、酸化マグネシウム膜においては、<111>配向
膜が他の配向の酸化マグネシウム膜に比して、二次電子
放出係数が高いことが知られている。特開平第5−23
4519号公報には、保護膜としての経時変化の面から
も、酸化マグネシウムの<111>配向膜の優位性が記
述されている。
Incidentally, the driving voltage of the gas discharge display panel is required to be further reduced from the viewpoint of the withstand voltage characteristics of the driving circuit and the power consumption when the area is increased. From the viewpoint of lowering the voltage, attention has been paid to the difference in secondary electron emission coefficient depending on the crystal orientation of the magnesium oxide film. That is, in the magnesium oxide film, it is known that the <111> orientation film has a higher secondary electron emission coefficient than the other orientation magnesium oxide films. Japanese Patent Laid-Open No. 5-23
In Japanese Patent No. 4519, the superiority of the <111> orientation film of magnesium oxide is also described in terms of change over time as a protective film.

【0005】[0005]

【発明が解決しようとする課題】従来、電子ビームを用
いた蒸着法で酸化マグネシウムの<111>配向膜を得
るためには、230℃以上の高い基板温度で膜を堆積さ
せるか、或いは、低い基板温度で1.5〜3Å/秒以下
の低い堆積速度で形成するかの何れかによる方法のみが
知られていた。しかし、230℃以上の高い基板温度で
酸化マグネシウム膜を形成すると、下地層である低融点
ガラス内の鉛(Pb)成分が酸化マグネシウム膜中に拡
散し、このような酸化マグネシウム膜をAC−PDPの
保護層として用いると、良好な低い駆動電圧が得られな
いという問題がある。他方、1.5〜3Å/秒以下とい
う低い堆積速度は、スループットの観点からは採用し難
い。
Conventionally, in order to obtain a <111> oriented film of magnesium oxide by a vapor deposition method using an electron beam, the film is deposited at a high substrate temperature of 230 ° C. or higher, or low. Only the method of forming at a low deposition rate of 1.5 to 3 Å / sec or less at the substrate temperature was known. However, when the magnesium oxide film is formed at a high substrate temperature of 230 ° C. or higher, the lead (Pb) component in the low-melting-point glass that is the underlayer diffuses into the magnesium oxide film, and such a magnesium oxide film is formed in the AC-PDP. When used as a protective layer for the above, there is a problem that a favorable low driving voltage cannot be obtained. On the other hand, a low deposition rate of 1.5 to 3Å / sec or less is difficult to adopt from the viewpoint of throughput.

【0006】本発明は、上記に鑑み、交流放電型プラズ
マディスプレイパネルの製造にあたって、酸化マグネシ
ウムの<111>配向膜を形成する際に、鉛成分の下地
層からの拡散を抑えることを可能とする低い基板温度を
採用し、且つ、高いスループットで該配向膜を形成する
ことが出来る、プラズマディスプレイパネルの製造方法
を提供することを目的とする。
In view of the above, the present invention makes it possible to suppress the diffusion of the lead component from the underlayer when forming the <111> orientation film of magnesium oxide in the production of the AC discharge type plasma display panel. An object of the present invention is to provide a method for manufacturing a plasma display panel, which can adopt a low substrate temperature and can form the alignment film with high throughput.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、発明に係る交流放電型プラズマディスプレイパネル
(AC−PDP)の製造方法は、保護層である酸化マグ
ネシウム層を形成する工程が、成膜面上でプラズマ放電
を発生させる手順と、プラズマ放電を発生させた状態で
蒸着法により酸化マグネシウムを形成する手順とを含む
ことを特徴とする。
In order to achieve the above object, in the method for manufacturing an AC discharge type plasma display panel (AC-PDP) according to the present invention, the step of forming a magnesium oxide layer as a protective layer is performed. The method is characterized by including a procedure of generating a plasma discharge on the film surface and a procedure of forming magnesium oxide by a vapor deposition method in a state where the plasma discharge is generated.

【0008】また、本発明の好ましいAC−PDPの製
造方法では、前記プラズマ放電を発生させる工程は、チ
ャンバ内にアルゴンガス、酸素ガス、又は、アルゴン及
び酸素の混合ガスの何れかの放電ガスを導入し、膜を形
成する絶縁基板を取り付けた基板ホルダに高周波電圧を
印加してプラズマ放電を発生させる。
Further, in the preferable method for manufacturing an AC-PDP of the present invention, in the step of generating the plasma discharge, a discharge gas of argon gas, oxygen gas, or a mixed gas of argon and oxygen is used in the chamber. A high frequency voltage is applied to the substrate holder which is introduced and attached with an insulating substrate for forming a film to generate plasma discharge.

【0009】本発明に係るAC−PDPの製造方法で
は、基板面上でプラズマ放電を発生させることにより、
230℃未満の低い基板温度であっても、5Å/秒以上
の高い成膜速度で、結晶方位<111>に配向した酸化
マグネシウム膜から成る保護層が得られる。
In the method of manufacturing an AC-PDP according to the present invention, plasma discharge is generated on the substrate surface,
Even at a low substrate temperature of less than 230 ° C., a protective layer made of a magnesium oxide film oriented in a crystal orientation <111> can be obtained at a high film forming rate of 5 Å / sec or more.

【0010】[0010]

【発明の実施の形態】図2は、本発明方法で製造される
一般的なAC−PDPの構造を模式的に示す要部断面図
である。AC−PDPは、前面及び背面に配設されるガ
ラス製の第1の絶縁基板1a及び第2の絶縁基板1bを
有する。第1の絶縁基板1a上には、相互に平行に配置
された多数の透明な表示電極対2a、2bが形成され、
これらを覆って絶縁体層6aが形成される。更に、この
絶縁体層6aを覆って酸化マグネシウムから成る保護層
7が形成されている。保護層7は、放電によるイオン衝
撃から誘電体層6aを保護するために設けられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 is a cross-sectional view of essential parts schematically showing the structure of a general AC-PDP manufactured by the method of the present invention. The AC-PDP has a first insulating substrate 1a and a second insulating substrate 1b made of glass, which are arranged on the front surface and the back surface. A large number of transparent display electrode pairs 2a and 2b arranged in parallel with each other are formed on the first insulating substrate 1a,
The insulator layer 6a is formed so as to cover these. Further, a protective layer 7 made of magnesium oxide is formed so as to cover the insulating layer 6a. The protective layer 7 is provided to protect the dielectric layer 6a from ion bombardment due to discharge.

【0011】第1及び第2の絶縁性基板の相互間には、
放電ガス空間5が設けられ、該放電ガス空間5内には、
例えばヘリウム及びキセノンから成るペニングガスが放
電ガスとして封入されている。放電空間5は、隔壁4に
より相互に区画されて単位発光領域を形成する。第2の
絶縁性基板1b上には、単位発光領域を選択的に発光さ
せるためのデータ電極3、これらを覆う誘電体層6bが
形成され、更に、その上に所定発光色の蛍光体8が塗布
される。各誘電体層6a及び6bは、低融点ガラスペー
ストを所定形状に印刷し、これを焼成することにより形
成される。
Between the first and second insulating substrates,
A discharge gas space 5 is provided, and in the discharge gas space 5,
A Penning gas composed of, for example, helium and xenon is enclosed as a discharge gas. The discharge spaces 5 are partitioned from each other by the partition walls 4 to form unit light emitting regions. On the second insulating substrate 1b, a data electrode 3 for selectively emitting light in the unit light emitting region and a dielectric layer 6b that covers these are formed, and a phosphor 8 of a predetermined emission color is further formed thereon. Is applied. Each of the dielectric layers 6a and 6b is formed by printing a low melting point glass paste in a predetermined shape and firing it.

【0012】上記形式のAC−PDPでは、一対の表示
電極2a、2bに対して、これらの間の相対電位が交互
に反転するような交番パルスを成す所定の駆動電圧を印
加すると、印加毎に誘電体層6aの表面に放電が起こ
り、これにより生じた紫外線によって蛍光体8が励起さ
れて発光する。
In the AC-PDP of the above-mentioned type, when a predetermined drive voltage forming an alternating pulse such that the relative potential between them is alternately inverted is applied to the pair of display electrodes 2a and 2b, each application is performed. Discharge occurs on the surface of the dielectric layer 6a, and the ultraviolet rays generated thereby excite the phosphor 8 to emit light.

【0013】上記構造のAC−PDPは、各ガラス基板
1a、1b上に夫々所定の構成要素を別個に設ける工
程、ガラス基板1a、1bを対向配置して周囲を封止す
る工程、及び、放電ガスを封入する工程などを経て製造
される。その工程中において、第1のガラス基板1a側
に形成される保護層7は、本発明に従ってプラズマ放電
を利用した蒸着法によって形成される。
The AC-PDP having the above structure has a step of separately providing predetermined constituent elements on each of the glass substrates 1a and 1b, a step of disposing the glass substrates 1a and 1b to face each other and sealing the periphery, and a discharge. It is manufactured through a process of filling gas. In the process, the protective layer 7 formed on the first glass substrate 1a side is formed by the vapor deposition method using plasma discharge according to the present invention.

【0014】図1は、本発明方法を実施して酸化マグネ
シウムを成膜する成膜装置の概略構成を例示する。成膜
装置は、チャンバ15と、その内部に夫々設けられる熱
電子流加熱型の蒸発源9、ヒーター10及び電子線照射
用の電子線源11と、プラズマ放電発生用の高周波電源
装置(RF電源装置)12とから構成されている。本成
膜装置では、基板を設置するための基板ホルダ13は、
チャンバ15とは電気的に絶縁され、RF電源装置12
に接続されている。
FIG. 1 illustrates a schematic structure of a film forming apparatus for forming a magnesium oxide film by carrying out the method of the present invention. The film forming apparatus includes a chamber 15, a thermionic flow heating type evaporation source 9, a heater 10 and an electron beam source 11 for irradiating an electron beam, and a high frequency power source device (RF power source) for generating a plasma discharge. Device) 12. In this film forming apparatus, the substrate holder 13 for setting the substrate is
The RF power supply device 12 is electrically insulated from the chamber 15.
It is connected to the.

【0015】蒸発源9は、熱電子流16を放出するフィ
ラメント17、膜材料の蒸発物質(ターゲット)として
の酸化マグネシウムを収納する耐熱容器(ルツボ)1
8、熱電子流を偏向してターゲットに導く図示しない磁
束発生部、及び、支持台19からなり、熱電子流16の
照射エネルギーを制御して酸化マグネシウムを加熱し、
蒸発させる。
The evaporation source 9 is a heat-resistant container (crucible) 1 for containing a filament 17 for emitting a thermoelectron stream 16 and magnesium oxide as an evaporation substance (target) of a film material.
8. A magnetic flux generator (not shown) that deflects the thermionic flow to the target, and a support 19, controls the irradiation energy of the thermionic flow 16 to heat the magnesium oxide,
Allow to evaporate.

【0016】図1の成膜装置を用いる保護層の成膜は、
例えば以下のように行なわれる。基板ホルダ13には、
所定の構造物を形成したガラス基板1aを設置し、これ
にRF電源装置12を接続する。次いで、チャンバ15
の内部を、図示しない真空ポンプにより排気し、チャン
バ15内を例えば1×10-5Torr程度の真空とする。こ
の排気と並行してヒーター10によりガラス基板1aを
加熱する。
Film formation of the protective layer using the film forming apparatus of FIG.
For example, it is performed as follows. The substrate holder 13 has
A glass substrate 1a on which a predetermined structure is formed is installed, and an RF power supply device 12 is connected to the glass substrate 1a. Then chamber 15
The inside of the chamber is evacuated by a vacuum pump (not shown), and the inside of the chamber 15 is evacuated to about 1 × 10 −5 Torr, for example. In parallel with this exhaust, the heater 10 heats the glass substrate 1a.

【0017】基板表面が180℃程度に達した後に、図
示しないガスボンベから配管20を経由してチャンバ1
5内にアルゴン(Ar)ガスを導入する。このとき、マ
スフローコントローラ14により流量の制御を行い、チ
ャンバ15内のアルゴン分圧を所定値、例えば、2×1
-3Torrに保つ。
After the temperature of the substrate surface reaches about 180 ° C., the chamber 1 is passed through a pipe 20 from a gas cylinder (not shown).
Argon (Ar) gas is introduced into 5. At this time, the flow rate is controlled by the mass flow controller 14, and the argon partial pressure in the chamber 15 is set to a predetermined value, for example, 2 × 1.
Keep at 0 -3 Torr.

【0018】チャンバ15内のアルゴン分圧が前記所定
値に安定した後に、RF電源装置12から基板ホルダ1
3に高周波電圧を印加し、ガラス基板1a表面にプラズ
マ放電を発生させる。ここで、高周波電圧印加によるプ
ラズマ放電への供給電力密度が低くてプラズマ放電の維
持が難しい場合には、プラズマ放電の連続的なトリガと
して、電子線源11からガラス基板1a表面に、プラズ
マ放電トリガ用の電子線を照射し、これによりプラズマ
放電を維持する。
After the partial pressure of argon in the chamber 15 is stabilized at the above-mentioned predetermined value, the RF power supply 12 moves the substrate holder 1
A high frequency voltage is applied to 3 to generate plasma discharge on the surface of the glass substrate 1a. When it is difficult to maintain the plasma discharge due to the low density of the power supplied to the plasma discharge due to the application of the high frequency voltage, the plasma discharge trigger from the electron beam source 11 to the surface of the glass substrate 1a is used as a continuous trigger of the plasma discharge. And a plasma discharge is maintained.

【0019】次いで、蒸発源9のフィラメント17を加
熱し、熱電子流16を発生させて、酸化マグネシウムを
蒸発させる。これにより、ガラス基板1a上に酸化マグ
ネシウムからなる保護層が形成される。このとき、堆積
速度が、例えば10Å/秒となるように蒸発源9の熱電
子流の制御を行う。
Next, the filament 17 of the evaporation source 9 is heated to generate a thermoelectron stream 16 to evaporate magnesium oxide. As a result, a protective layer made of magnesium oxide is formed on the glass substrate 1a. At this time, the thermoelectron flow of the evaporation source 9 is controlled so that the deposition rate is, for example, 10Å / sec.

【0020】所定の時間が経過し、例えば5000Å程
度の膜厚の保護層の形成が終了すると、蒸発源9及びヒ
ーター10を断とし、高周波電圧の印加を停止する。ガ
ラス基板1aの温度が下がるのを待って、チャンバ15
内を大気圧に戻し、ガラス基板1aを取り出して次工程
へ送る。
When the formation of the protective layer having a film thickness of, for example, about 5000 Å is completed after a predetermined time has passed, the evaporation source 9 and the heater 10 are turned off, and the application of the high frequency voltage is stopped. After waiting for the temperature of the glass substrate 1a to drop, the chamber 15
The inside is returned to atmospheric pressure, and the glass substrate 1a is taken out and sent to the next step.

【0021】図3は、基板面積あたりのRF電力、即
ち、高周波電圧によるプラズマ放電への供給電力密度
と、形成される酸化マグネシウム膜の結晶配向性との関
係を示すグラフである。同図において、縦軸はX線回折
で得られた酸化マグネシウム膜の各結晶方位<111>
及び<200>におけるピーク強度である。同図から容
易に理解できるように、プラズマ放電のための高周波電
力を供給することにより、ある範囲内で<111>結晶
方位のピーク強度が増加し、<200>結晶方位のピー
ク強度が低下することで、全体として結晶方位<111
>に配向した酸化マグネシウム膜が得られる。ここで、
あまり高い密度の高周波電力を印加すると、膜全体の結
晶性が低下し、得られる酸化マグネシウム膜が非晶質の
膜となるおそれがある。従って、良好な<111>配向
の酸化マグネシウム膜を得るためには、高周波の供給電
力密度を50〜300mW/cm2の範囲とすることが好まし
い。
FIG. 3 is a graph showing the relationship between the RF power per substrate area, that is, the density of power supplied to the plasma discharge by the high frequency voltage, and the crystal orientation of the formed magnesium oxide film. In the figure, the vertical axis represents each crystal orientation <111> of the magnesium oxide film obtained by X-ray diffraction.
And the peak intensity at <200>. As can be easily understood from the figure, the peak intensity of the <111> crystal orientation increases and the peak intensity of the <200> crystal orientation decreases within a certain range by supplying high frequency power for plasma discharge. Therefore, the crystal orientation <111
A magnesium oxide film oriented in> is obtained. here,
If a high-frequency power having a too high density is applied, the crystallinity of the entire film is deteriorated, and the obtained magnesium oxide film may become an amorphous film. Therefore, in order to obtain a favorable <111> -oriented magnesium oxide film, it is preferable to set the high-frequency power supply density in the range of 50 to 300 mW / cm 2 .

【0022】以上、本発明をその好適な実施の形態に基
づいて説明をしたが、本発明のプラズマディスプレイパ
ネルの製造方法は、上記実施の形態の構成にのみ限定さ
れるものではなく、上記構成から種々の修正及び変更を
施したプラズマディスプレイパネルの製造方法も、本発
明の範囲に含まれる。
Although the present invention has been described based on its preferred embodiments, the method for manufacturing a plasma display panel of the present invention is not limited to the above-mentioned embodiments, and the above-mentioned embodiments are not limited thereto. A method of manufacturing a plasma display panel, which is variously modified and changed from the above, is also included in the scope of the present invention.

【0023】例えば、上記実施の形態では、酸化マグネ
シウム膜の蒸着時に基板表面で発生させるプラズマ放電
ガスとしてArガスを用いたAC−PDPの製造例を示
したが、酸素(O2)を放電ガスとして用いてもよい。
また、面放電型のAC−PDPを例示したが、本発明は
対向放電型のAC−PDPにも適用可能である。更に、
上記実施の形態において蒸発源の形式、チャンバの構
造、蒸発の制御条件等は、酸化マグネシウムの<111
>配向膜が得られる範囲で適宜変更することができる。
For example, in the above embodiment, an example of manufacturing an AC-PDP using Ar gas as a plasma discharge gas generated on the surface of a substrate during deposition of a magnesium oxide film has been described. However, oxygen (O 2 ) is used as the discharge gas. You may use as.
Further, although the surface discharge type AC-PDP is illustrated, the present invention is also applicable to the facing discharge type AC-PDP. Furthermore,
In the above-described embodiment, the type of evaporation source, the structure of the chamber, the conditions for controlling evaporation, etc.
> It can be appropriately changed within a range where an alignment film can be obtained.

【0024】[0024]

【発明の効果】本発明のプラズマディスプレイパネルの
製造方法によれば、誘電体層を保護し良好な放電特性を
得るための酸化マグネシウムの<111>配向膜を、比
較的低い温度で且つ成膜速度が高く形成できるので、良
好な膜室の保護膜をスループット高く形成できる。本発
明方法は、大面積のプラズマディスプレイパネル等の製
造に特に好適に用いることが出来る。
According to the method of manufacturing a plasma display panel of the present invention, a <111> orientation film of magnesium oxide for protecting a dielectric layer and obtaining good discharge characteristics is formed at a relatively low temperature. Since the film can be formed at high speed, a good protective film for the film chamber can be formed with high throughput. The method of the present invention can be particularly preferably used for manufacturing a large-area plasma display panel or the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施する酸化マグネシウムの成膜
装置の概略構成を示す模式的断面図。
FIG. 1 is a schematic cross-sectional view showing a schematic configuration of a magnesium oxide film forming apparatus for carrying out the method of the present invention.

【図2】本発明方法で製造できる一般的なAC−PDP
の構造を模式的に示す要部断面図。
FIG. 2 is a general AC-PDP manufactured by the method of the present invention.
Sectional drawing which shows the structure of FIG.

【図3】基板への高周波電圧印加による供給電力密度と
酸化マグネシウム膜の結晶配向性との関係を示すグラ
フ。
FIG. 3 is a graph showing the relationship between the power supply density by applying a high frequency voltage to the substrate and the crystal orientation of the magnesium oxide film.

【符号の説明】[Explanation of symbols]

1a、1b ガラス基板 2a、2b 表示電極 3 データ電極 4 隔壁 5 放電空間 6a、6b 誘電体層 7 保護層 8 蛍光体 9 蒸発源 10 ヒーター 11 電子線源 12 高周波電源 13 基板ホルダ 14 マスフローコントローラ 15 チャンバ 16 熱電子流 17 フィラメント 18 ルツボ 19 支持台 20 配管 1a, 1b Glass substrate 2a, 2b Display electrode 3 Data electrode 4 Partition 5 Discharge space 6a, 6b Dielectric layer 7 Protective layer 8 Fluorescent substance 9 Evaporation source 10 Heater 11 Electron beam source 12 High frequency power supply 13 Substrate holder 14 Mass flow controller 15 Chamber 16 Thermionic Flow 17 Filament 18 Crucible 19 Support 20 Pipe

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一対の絶縁性基板、該双方の絶縁性基板
上に夫々配置されて相互に対向する各電極部、該各電極
部を覆う誘電体層、及び、少なくとも一方の誘電体層を
覆う蒸着形成の酸化マグネシウム層を有し、放電ガス空
間の放電により表示を行なう形式の交流駆動型プラズマ
ディスプレイパネルを製造する方法において、 酸化マグネシウム層を形成する工程が、蒸着面上にプラ
ズマ放電を発生させる手順と、プラズマ放電を発生させ
た状態で蒸着を行なう手順とを含み、主として酸化マグ
ネシウムの<111>配向膜を形成することを特徴とす
るプラズマディスプレイパネルの製造方法。
1. A pair of insulative substrates, electrode parts arranged on both of the insulative substrates and facing each other, a dielectric layer covering the electrode parts, and at least one dielectric layer. In a method of manufacturing an AC-driven plasma display panel having a covering vapor deposition-formed magnesium oxide layer and performing display by discharge in a discharge gas space, the step of forming the magnesium oxide layer involves plasma discharge on the deposition surface. A method for manufacturing a plasma display panel, which comprises a step of generating and a step of performing vapor deposition in a state where a plasma discharge is generated, and mainly forming a <111> orientation film of magnesium oxide.
【請求項2】 前記蒸着は、電子ビームを照射して蒸着
材料を加熱蒸発させる電子ビーム蒸着法により行なわれ
ることを特徴とする、請求項1に記載のプラズマディス
プレイの製造方法。
2. The method for manufacturing a plasma display according to claim 1, wherein the vapor deposition is performed by an electron beam vapor deposition method in which an electron beam is irradiated to heat and vaporize a vapor deposition material.
【請求項3】 前記プラズマ放電は、蒸着室内に放電ガ
スを導入し、膜を形成する絶縁基板を支持する基板ホル
ダに高周波電圧を印加することにより発生させることを
特徴とする、請求項1に記載のプラズマディスプレイパ
ネルの製造方法。
3. The plasma discharge is generated by introducing a discharge gas into a deposition chamber and applying a high frequency voltage to a substrate holder that supports an insulating substrate on which a film is formed. A method for manufacturing the plasma display panel described.
【請求項4】 前記放電ガスが、アルゴンガス、酸素ガ
ス、又は、アルゴン及び酸素の混合ガスの何れかである
ことを特徴とする、請求項3に記載のプラズマディスプ
レイパネルの製造方法。
4. The method for manufacturing a plasma display panel according to claim 3, wherein the discharge gas is any one of an argon gas, an oxygen gas, and a mixed gas of argon and oxygen.
【請求項5】 前記高周波電圧を印加してプラズマ放電
に供給される電力密度が、50〜300mW/cm2の範囲で
あることを特徴とする、請求項3又は4に記載のプラズ
マディスプレイパネルの製造方法。
5. The plasma display panel according to claim 3, wherein the power density supplied to the plasma discharge by applying the high frequency voltage is in the range of 50 to 300 mW / cm 2 . Production method.
JP7273443A 1995-09-27 1995-09-27 Method for manufacturing plasma display panel Expired - Fee Related JP2793532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7273443A JP2793532B2 (en) 1995-09-27 1995-09-27 Method for manufacturing plasma display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7273443A JP2793532B2 (en) 1995-09-27 1995-09-27 Method for manufacturing plasma display panel

Publications (2)

Publication Number Publication Date
JPH0992133A true JPH0992133A (en) 1997-04-04
JP2793532B2 JP2793532B2 (en) 1998-09-03

Family

ID=17527988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7273443A Expired - Fee Related JP2793532B2 (en) 1995-09-27 1995-09-27 Method for manufacturing plasma display panel

Country Status (1)

Country Link
JP (1) JP2793532B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990034465A (en) * 1997-10-29 1999-05-15 엄길용 Method for forming protective layer of AC plasma display device
US6150030A (en) * 1997-11-20 2000-11-21 Balzers Hochvakuum Ag Substrate coated with an MgO-layer
JP2008144192A (en) * 2006-12-06 2008-06-26 Showa Shinku:Kk Vacuum vapor-deposition apparatus and method for controlling the same
KR100862948B1 (en) * 2006-09-12 2008-10-15 (주)인텍 THE APPARATUS AND THE METHODE FOR MgO COATING USING ION BEAM
US7501763B2 (en) 2004-04-08 2009-03-10 Panasonic Corporation Gas discharge display panel
EP2105942A2 (en) 2002-11-22 2009-09-30 Panasonic Corporation Plasma display panel and method for manufacturing same
CN109338126A (en) * 2018-10-12 2019-02-15 南昌大学 A kind of magnesium alloy bulk high throughput preparation method based on powderject melting

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299456A (en) * 1985-10-25 1987-05-08 Hitachi Ltd Formation of thin metallic fluoride film
JPH01156462A (en) * 1987-12-14 1989-06-20 Sharp Corp Production of thin film of ferroelectric substance
JPH05234519A (en) * 1992-02-25 1993-09-10 Fujitsu Ltd Ac type plasma display panel and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6299456A (en) * 1985-10-25 1987-05-08 Hitachi Ltd Formation of thin metallic fluoride film
JPH01156462A (en) * 1987-12-14 1989-06-20 Sharp Corp Production of thin film of ferroelectric substance
JPH05234519A (en) * 1992-02-25 1993-09-10 Fujitsu Ltd Ac type plasma display panel and manufacture thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990034465A (en) * 1997-10-29 1999-05-15 엄길용 Method for forming protective layer of AC plasma display device
US6150030A (en) * 1997-11-20 2000-11-21 Balzers Hochvakuum Ag Substrate coated with an MgO-layer
EP2105942A2 (en) 2002-11-22 2009-09-30 Panasonic Corporation Plasma display panel and method for manufacturing same
EP2333806A1 (en) 2002-11-22 2011-06-15 Panasonic Corporation Plasma display panel and method for manufacturing same
US7501763B2 (en) 2004-04-08 2009-03-10 Panasonic Corporation Gas discharge display panel
US7812534B2 (en) 2004-04-08 2010-10-12 Panasonic Corporation Gas discharge display panel
KR100862948B1 (en) * 2006-09-12 2008-10-15 (주)인텍 THE APPARATUS AND THE METHODE FOR MgO COATING USING ION BEAM
JP2008144192A (en) * 2006-12-06 2008-06-26 Showa Shinku:Kk Vacuum vapor-deposition apparatus and method for controlling the same
CN109338126A (en) * 2018-10-12 2019-02-15 南昌大学 A kind of magnesium alloy bulk high throughput preparation method based on powderject melting

Also Published As

Publication number Publication date
JP2793532B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
JP4569933B2 (en) Plasma display panel
WO1989008605A1 (en) Process for producing thin-film oxide superconductor
WO2006049121A1 (en) Plasma display panel-use protection film and production method for the protection film, plasma display panel and production method therefor
JP2663909B2 (en) Method for manufacturing plasma display panel
JPH05234519A (en) Ac type plasma display panel and manufacture thereof
JP3836184B2 (en) Method for manufacturing magnesium oxide film
JP2793532B2 (en) Method for manufacturing plasma display panel
JP2000001771A (en) Production of dielectric protective layer and apparatus for production thereof as well as plasma display panel and image display device using the same
JP2001332175A (en) Alternating plasma display panel and production method of the same
JP2008171751A (en) Plasma display panel
JP2001118518A (en) Plasma display panel and method for manufacturing therefor
JP4249330B2 (en) Method and apparatus for manufacturing plasma display panel
JP3044072B2 (en) Method for manufacturing plasma display panel
JP3015093B2 (en) Plasma display panel and method of manufacturing the same
JP3207842B2 (en) Method of manufacturing AC type plasma display panel
JP3874607B2 (en) Thin film formation method
JP3126976B2 (en) Method for manufacturing plasma display panel
JPH08255562A (en) Formation of protection film for dielectric substance of plasma display panel
JPH11135023A (en) Plasma display panel and its manufacture
JP3775851B2 (en) Vapor deposition apparatus and protective film manufacturing method
JP2002115048A (en) Vacuum film deposition apparatus, and operating method thereof
JP4835099B2 (en) Method for manufacturing plasma display panel
JP2000268714A (en) Manufacture of gas discharge panel
JP3452458B2 (en) Thin film forming equipment
JP2000215799A (en) Manufacture of ac type plasma display panel and characteristic improving method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees