JPH03236195A - Double-insulated thin film electroluminescence device - Google Patents

Double-insulated thin film electroluminescence device

Info

Publication number
JPH03236195A
JPH03236195A JP2033269A JP3326990A JPH03236195A JP H03236195 A JPH03236195 A JP H03236195A JP 2033269 A JP2033269 A JP 2033269A JP 3326990 A JP3326990 A JP 3326990A JP H03236195 A JPH03236195 A JP H03236195A
Authority
JP
Japan
Prior art keywords
dielectric layer
dielectric
thin film
double
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2033269A
Other languages
Japanese (ja)
Inventor
Tomoyuki Kawashima
河島 朋之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2033269A priority Critical patent/JPH03236195A/en
Publication of JPH03236195A publication Critical patent/JPH03236195A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To increase the withstand voltage and improve the yield by forming a reduction preventing dielectric layer and a high-withstand voltage dielectric layer on both face sides of laminated dielectric regions respectively by the preset method. CONSTITUTION:Transparent electrodes 2a-2c, the first dielectric region, a light emitting layer 5, the second dielectric layer 6, and a back electrode 7 are laminated on a glass substrate 1 to form a double-insulated thin film EL device. A reduction preventing dielectric layer 3 is formed on the electrodes 2a-2c side of the first dielectric region by the vacuum deposition method or spattering method, and a high-withstand voltage dielectric layer 4 cutting off the movement of hydrogen to the electrodes 2a-2c is formed on the layer 5 side by the plasma CVD method with good coating property and high accumulation speed. The double-insulated thin film EL device with high withstand voltage and an improved yield is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2重絶縁薄膜エレクトロルミネセンス装置に関
し、特に、素子の絶縁耐圧を高めるための誘電体領域の
構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to double-insulated thin film electroluminescent devices, and more particularly to the structure of dielectric regions to increase the dielectric strength of the device.

(従来の技術〕 交流電界の印加によりエレクトロルミネセンス(EL)
現象を呈する薄膜エレクトロルミネセンス素子は、高輝
度発光、高解像度及び大表示容量であることから、薄型
表示装置用のパネルとして注目されている。
(Conventional technology) Electroluminescence (EL) is produced by applying an alternating current electric field.
Thin film electroluminescent devices exhibiting this phenomenon are attracting attention as panels for thin display devices because of their high brightness, high resolution, and large display capacity.

従来の薄膜エレクトロルミネセンス素子としては、高輝
度、長寿命を期すために、高耐圧化を図った2重絶縁薄
膜EL素子が開発されている。この2重絶縁薄膜EL素
子は、例えば、第3図に示すような構造となっている。
As conventional thin film electroluminescent elements, double insulated thin film EL elements with high breakdown voltage have been developed in order to achieve high brightness and long life. This double insulation thin film EL element has a structure as shown in FIG. 3, for example.

すなわち、ガラス基板12の上にITOからなる透明電
極14、第1誘電体層16、硫化亜鉛(ZnS)などに
マンガン(Mn)などの発光中心となる遷移金属や希土
類を添加して形成した発光層18、第2誘電体層20、
背面電極22が順次積層された構造である。
That is, a transparent electrode 14 made of ITO on a glass substrate 12, a first dielectric layer 16, and a light emitting layer formed by adding a transition metal or rare earth element such as manganese (Mn), which is the center of luminescence, to zinc sulfide (ZnS) or the like. layer 18, second dielectric layer 20,
It has a structure in which back electrodes 22 are sequentially laminated.

ここで、透明電極14と背面電極22の間に交流電圧2
4を印加すると、電界で加速された電子の衝突に基づく
発光中心のイオン化と再結合の繰り返し過程によって発
光が生じ、この光がガラス基板1側に放出される。
Here, an AC voltage 2 is applied between the transparent electrode 14 and the back electrode 22.
When 4 is applied, light is generated by the repeated process of ionization and recombination of luminescent centers based on collisions of electrons accelerated by the electric field, and this light is emitted to the glass substrate 1 side.

この場合に、第1誘電体層16及び第2誘電体Ji20
としては、絶縁耐圧、誘電率、発光特性上の観点から、
SiO□、S ii Na 、Alz Ozなどが用い
られている。
In this case, the first dielectric layer 16 and the second dielectric layer Ji20
From the viewpoint of dielectric strength, dielectric constant, and luminescence characteristics,
SiO□, S ii Na, Alz Oz, etc. are used.

〔発明が解決しようとする課題] 従来、第1誘電体層16はスパッタリング法により形成
されていたが、このスパッタリング法による成膜には段
差被覆性が悪いという欠点があり、透明電極14やガラ
ス基板12上の段差部や凹凸の上に第1誘電体層16を
形成した場合、これら段差部や凹凸の部分にて絶縁破壊
が発生し、素子の歩留りが低下するという問題点があっ
た。また、スパッタリング法においては、成膜速度が小
さく、高真空を必要とすることなどが製造コストを引き
上げる要因きなっていた。
[Problems to be Solved by the Invention] Conventionally, the first dielectric layer 16 has been formed by a sputtering method, but film formation by this sputtering method has the disadvantage of poor step coverage, When the first dielectric layer 16 is formed on the stepped portions or uneven portions of the substrate 12, there is a problem in that dielectric breakdown occurs at these stepped portions or uneven portions, reducing the yield of the device. Further, in the sputtering method, the film formation rate is low and high vacuum is required, which are factors that increase manufacturing costs.

一方、プラズマCVD法は成膜の段差被覆性が良好であ
り、成膜速度も速いことから、第1誘電体層16のプラ
ズマCVD法による形成も検討された。ところが、第1
誘電体層16にプラズマCVD法により形成した誘電体
層を用いた場合、層内にはCVD反応時に混入した水素
が数%程度含まれており、後に行なわれる発光層18の
アニル熱処理において、その水素が放出され、隣接する
透明電極14(ITO(Inz 03 +5nOz)を
還元してしまう。還元された透明電極は黒化変質し、抵
抗率も増大する。このことは、素子の発光輝度を低下さ
せると共に、素子の絶縁耐圧を低下させる。したがって
、第1誘電体層16の形成には、プラズマCVD法を用
いることはできなかった。
On the other hand, since the plasma CVD method provides good step coverage in film formation and has a fast film formation speed, formation of the first dielectric layer 16 by the plasma CVD method has also been considered. However, the first
When a dielectric layer formed by the plasma CVD method is used as the dielectric layer 16, the layer contains about several percent of hydrogen mixed in during the CVD reaction, and in the annealing heat treatment of the light emitting layer 18 performed later, the hydrogen is removed. Hydrogen is released and reduces the adjacent transparent electrode 14 (ITO (Inz 03 +5nOz). The reduced transparent electrode turns black and its resistivity increases. This reduces the luminance of the device. At the same time, the dielectric breakdown voltage of the element is lowered.Therefore, the plasma CVD method could not be used to form the first dielectric layer 16.

そこで、本発明は上記問題点を解決するものであり、そ
の課題は、プラズマCVD法による誘電体層から透明電
極への水素の移動を遮断することにより、透明電極の変
質を防止すると共にプラズマCVD法の良好な被覆性、
高い堆積速度を利用して、絶縁耐圧が高く、歩留りの良
好な2重絶縁薄膜エレクトロルミネセンス装置を提供す
ることにある。
SUMMARY OF THE INVENTION The present invention aims to solve the above-mentioned problems, and its object is to prevent deterioration of the transparent electrode by blocking the movement of hydrogen from the dielectric layer to the transparent electrode by the plasma CVD method, and also to prevent the plasma CVD method from deteriorating the quality of the transparent electrode. Good coverage of the method,
It is an object of the present invention to provide a double-insulated thin film electroluminescent device that utilizes a high deposition rate, has a high dielectric strength voltage, and has a good yield.

〔課題を解決するための手段〕[Means to solve the problem]

上記の問題点を解決するために、少なくとも、透明電極
、第1の誘電体領域、発光領域、第2の誘電体領域及び
背面電極が順次積層された構造を有する2重絶縁薄膜エ
レクトロルミネセンス装置において、本発明が講じた手
段は、 第1の誘電体領域として、透明電極側には、真空蒸着法
又はスパッタリング法により還元防止誘電体層を形成し
、発光領域側には、プラズマCVD法により高耐圧誘電
体層を形成するものである。
In order to solve the above problems, a double insulating thin film electroluminescent device has a structure in which at least a transparent electrode, a first dielectric region, a light emitting region, a second dielectric region and a back electrode are sequentially laminated. The measures taken by the present invention are as follows: As the first dielectric region, a reduction preventing dielectric layer is formed on the transparent electrode side by vacuum evaporation or sputtering, and on the light emitting region side, a reduction preventing dielectric layer is formed by plasma CVD. This forms a high voltage dielectric layer.

〔作用〕[Effect]

第1の誘電体領域に還元防止誘電体層と高耐圧誘電体層
を形成したことによって、発光領域形成後に施すアニー
ル熱処理工程において、高耐圧誘電体層から放出され、
周囲に拡散する水素は、還元防止誘電体層に阻まれて透
明電極に到達し難くなり、透明電極における還元反応を
防止でき、IToの黒化による輝度低下や、電極の抵抗
率の上昇、絶縁耐圧の低下を防止できる。
By forming the reduction prevention dielectric layer and the high voltage dielectric layer in the first dielectric region, in the annealing heat treatment step performed after the formation of the light emitting region, emitted from the high voltage dielectric layer,
Hydrogen that diffuses into the surroundings is blocked by the anti-reduction dielectric layer and becomes difficult to reach the transparent electrode, which can prevent reduction reactions in the transparent electrode, resulting in lower brightness due to blackening of ITo, increased electrode resistivity, and insulation. Can prevent a drop in pressure resistance.

一方、還元防止誘電体層の段差被覆性の不良によるピン
ホール、クラック等が発生した場合であっても、段差被
覆性の良好なプラズマCVD法により形成された高耐圧
誘電体層に被覆されることから、スパッタリング法のみ
で第1の誘電体領域を形成していた従来の素子よりも更
に素子の絶縁耐圧が向上する。したがって、装置の歩留
りも向上する。
On the other hand, even if pinholes, cracks, etc. occur due to poor step coverage of the reduction prevention dielectric layer, the high voltage dielectric layer formed by the plasma CVD method, which has good step coverage, will cover the layer. Therefore, the dielectric strength of the device is further improved compared to the conventional device in which the first dielectric region was formed only by sputtering. Therefore, the yield of the device is also improved.

〔実施例〕〔Example〕

次に、添付図面に基づいて本発明の詳細な説明する。第
1図は、本発明の実施例に係る2重絶縁薄膜エレクトロ
ルミネセンス装置の構造を示す断面図である。透明なガ
ラス基板lの上に膜厚2000人のITO(夏nz 0
3 +5n02 )層をスパッタリング法によって被着
し、これをストライブ状にパターニングして、透明電極
2a、2b。
Next, the present invention will be described in detail based on the accompanying drawings. FIG. 1 is a cross-sectional view showing the structure of a double-insulated thin film electroluminescent device according to an embodiment of the present invention. ITO with a film thickness of 2000 on a transparent glass substrate (summer nz 0
3 +5n02 ) layer is deposited by sputtering and patterned into stripes to form transparent electrodes 2a, 2b.

2cを形成する。Form 2c.

次に、この透明電極2a、2b、2c及びガラス基板1
の上に、膜厚tooo人のA220.をスパッタリング
法にて被着し、還元防止誘電体層3を形成する。この還
元防止誘電体層3は、蒸着法によっても形成できる。こ
こで、材料としてはAl2O3以外に、Sin!、Si
N、Yz 03 。
Next, the transparent electrodes 2a, 2b, 2c and the glass substrate 1
On top of that, the film thickness is too much A220. is deposited by a sputtering method to form a reduction prevention dielectric layer 3. This anti-reduction dielectric layer 3 can also be formed by a vapor deposition method. Here, in addition to Al2O3, the material is Sin! , Si
N, Yz 03.

Ta、O,などが使用可能である。Ta, O, etc. can be used.

この後、プラズマCVD法により、膜厚3000人のS
iNからなる高耐圧誘電体層4を形成する。ここで、プ
ラズマCVD法においては、反応ガスとしてS i H
,/NH,/NZを用い、圧力は0.2〜1,0tor
r、基板温度は250°Cである。プラズマCVD法に
よる成膜では、SiO□層、5iON層なども形成でき
る。
After that, by plasma CVD method, S
A high voltage dielectric layer 4 made of iN is formed. Here, in the plasma CVD method, SiH is used as a reaction gas.
, /NH, /NZ at a pressure of 0.2 to 1,0 torr.
r, the substrate temperature is 250°C. In film formation using the plasma CVD method, a SiO□ layer, a 5iON layer, etc. can also be formed.

発光層5は、Mnを0.5wt%含むZnSを材料とし
て、電子ビーム蒸着法により、膜厚5000人となるよ
うに形成する。この発光層5の形成後、真空(10”’
t o r r)中において温度600°C11時間の
アニール熱処理を行なう。これは、ZnSの結晶性及び
発光中心たるMnの分散性の改善を図るために必要だか
らである。このアニール熱処理後、SiNからなる膜厚
4000人の第2誘電体層6をプラズマCVD法により
形成する。最後に、AI!、からなる膜厚5000人の
背面電極7を形成する。
The light-emitting layer 5 is made of ZnS containing 0.5 wt % Mn and is formed to a thickness of 5000 by electron beam evaporation. After forming the light emitting layer 5, vacuum (10"')
An annealing heat treatment is performed at a temperature of 600°C for 11 hours in a temperature of 600°C. This is because it is necessary to improve the crystallinity of ZnS and the dispersibility of Mn, which is the luminescent center. After this annealing heat treatment, a second dielectric layer 6 made of SiN and having a thickness of 4,000 layers is formed by plasma CVD. Finally, AI! A back electrode 7 having a film thickness of 5,000 layers is formed.

以上のようにして形成した2重絶縁薄膜エレクトロルミ
ネセンス装置においては、第1誘電体層が、還元防止誘
電体層3と高耐圧誘電体層4の複層構造となっており、
高耐圧誘電体層4との間に還元防止誘電体層3が形成さ
れているので、アニール熱処理中にプラズマCVD法に
より形成した高耐圧誘電体層4に含まれている水素が放
出された場合に、拡散して透明電極2a、2b、2cに
到達する水素の量が減少し、透明電極2a、2b。
In the double insulating thin film electroluminescent device formed as described above, the first dielectric layer has a multilayer structure of the reduction prevention dielectric layer 3 and the high voltage dielectric layer 4,
Since the reduction prevention dielectric layer 3 is formed between the high voltage dielectric layer 4, if hydrogen contained in the high voltage dielectric layer 4 formed by the plasma CVD method is released during annealing heat treatment, The amount of hydrogen that diffuses and reaches the transparent electrodes 2a, 2b, 2c decreases.

2Cにおける還元反応が発生せず、ITOの黒化による
輝度の低下、電極の抵抗率の上昇、絶縁性劣化を防止で
きる。
A reduction reaction in 2C does not occur, and it is possible to prevent a decrease in brightness due to blackening of ITO, an increase in electrode resistivity, and deterioration of insulation properties.

また、スパッタリング法による還元防止誘電体層3の段
差被覆性の不良、例えば、ピンホール、クラックなどが
、上層に形成されるプラズマCVD法による高耐圧誘電
体層4によって被覆されることによって、素子の耐圧が
確保され、絶縁破壊を防止していると考えられる。
In addition, defects in the step coverage of the anti-reduction dielectric layer 3 formed by sputtering, such as pinholes and cracks, are covered by the high-voltage dielectric layer 4 formed on the upper layer formed by plasma CVD. It is thought that this ensures the withstand voltage of 100% and prevents dielectric breakdown.

この2重絶縁薄膜エレクトロルミネセンス装置の発光輝
度の印加電圧に対する特性を測定した。
The characteristics of the luminance of this double-insulated thin film electroluminescent device with respect to the applied voltage were measured.

その結果を第2図に示す。曲線Aは、従来の第1誘電体
層をスパッタリング法のみで形成した場合における特性
、曲線Bは、第1誘電体層をプラズマCVD法のみで形
成した場合における特性、曲線Cは、本実施例の特性を
示す。第2図に見られるように、本実施例の絶縁破壊電
圧は、従来の装置よりも200V以上高くなっている。
The results are shown in FIG. Curve A is the characteristic when the conventional first dielectric layer is formed only by the sputtering method, curve B is the characteristic when the first dielectric layer is formed only by the plasma CVD method, and curve C is the characteristic when the first dielectric layer is formed only by the plasma CVD method. shows the characteristics of As seen in FIG. 2, the dielectric breakdown voltage of this example is 200 V or more higher than that of the conventional device.

〔発明の効果〕 以上説明したように、本発明は、第1誘電体領域に、透
明電極と接する還元防止誘電体層と発光領域に接する高
耐圧誘電体層を設け、還元防止誘電体部を蒸着法又はス
パッタリング法により、高耐圧誘電体部をプラズマCV
D法により、それぞれ形成したことを特徴とするので、
以下の効果を奏する。
[Effects of the Invention] As explained above, the present invention provides a reduction prevention dielectric layer in contact with the transparent electrode and a high voltage dielectric layer in contact with the light emitting region in the first dielectric region, and provides the reduction prevention dielectric portion in the first dielectric region. Plasma CV coating of high voltage dielectric material by vapor deposition or sputtering method
Since each is characterized by being formed by the D method,
It has the following effects.

■ 還元防止誘電体層によって、アニール熱処理による
高耐圧誘電体層からの水素の拡散を低減させることがで
きるので、透明電極の水素による還元を防止でき、透明
電極の黒化、抵抗率の上昇等の変質による素子の発光輝
度の低下、絶縁耐圧の不良を防止できる。
■ The anti-reduction dielectric layer can reduce the diffusion of hydrogen from the high-voltage dielectric layer due to annealing heat treatment, preventing reduction of the transparent electrode by hydrogen, resulting in blackening of the transparent electrode, increase in resistivity, etc. It is possible to prevent a decrease in the luminance of the device due to deterioration in quality and a defect in the dielectric strength.

■ 還元防止誘電体層の段差被覆性の不良は、高耐圧誘
電体層によって補償されるので、第1誘電体領域をスパ
ッタリング法のみで形成した従来の場合よりも更に絶縁
耐圧を向上させることができると共に装置の歩留りが向
上する。
■ Since the defective step coverage of the reduction prevention dielectric layer is compensated for by the high voltage dielectric layer, it is possible to further improve the dielectric strength voltage compared to the conventional case in which the first dielectric region was formed only by sputtering. This also improves the yield of the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る実施例の2重絶縁薄膜エレクトロ
ルミネッセンス装置の構造を示す断面図である。 第2図は同実施例の2重絶縁薄膜エレクトロルミネッセ
ンス装置における発光輝度の印加電圧に対する依存性を
、従来の2重絶縁薄膜エレクトロルミネッセンス装置の
依存性と共に示す特性グラフ図である。 第3図は従来の2重絶縁薄膜エレクトロルミネッセンス
装置の構造を示す概略図である。 〔符号の説明〕 l・・・ガラス基板 2 a、  2 b、  2 c−透明電極・・・還元
防止誘電体層 ・・・高耐圧誘電体層 ・・・発光層 ・・・第2誘電体層 ・・・背面電極。
FIG. 1 is a sectional view showing the structure of a double-insulated thin film electroluminescent device according to an embodiment of the present invention. FIG. 2 is a characteristic graph showing the dependence of luminescence luminance on applied voltage in the double-insulated thin-film electroluminescent device of the same embodiment, together with the dependence of the conventional double-insulated thin-film electroluminescent device. FIG. 3 is a schematic diagram showing the structure of a conventional double-insulated thin film electroluminescent device. [Explanation of symbols] l...Glass substrate 2a, 2b, 2c-Transparent electrode...Reduction prevention dielectric layer...High voltage dielectric layer...Light emitting layer...Second dielectric Layer: Back electrode.

Claims (1)

【特許請求の範囲】  少なくとも、透明電極、第1の誘電体領域、発光領域
、第2の誘電体領域及び背面電極が順次積層された構造
を有する2重絶縁薄膜エレクトロルミネセンス装置にお
いて、 前記第1の誘電体領域のうち、前記透明電極側には真空
蒸着法又はスパッタリング法により還元防止誘電体層が
形成されており、前記発光領域側にはプラズマCVD法
により高耐圧誘電体層が形成されていることを特徴とす
る2重絶縁薄膜エレクトロルミネセンス装置。
[Scope of Claims] A double insulating thin film electroluminescent device having a structure in which at least a transparent electrode, a first dielectric region, a light emitting region, a second dielectric region and a back electrode are sequentially laminated, comprising: Of the dielectric regions 1, a reduction prevention dielectric layer is formed on the transparent electrode side by a vacuum evaporation method or a sputtering method, and a high voltage dielectric layer is formed on the light emitting region side by a plasma CVD method. A double insulated thin film electroluminescent device characterized by:
JP2033269A 1990-02-14 1990-02-14 Double-insulated thin film electroluminescence device Pending JPH03236195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2033269A JPH03236195A (en) 1990-02-14 1990-02-14 Double-insulated thin film electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2033269A JPH03236195A (en) 1990-02-14 1990-02-14 Double-insulated thin film electroluminescence device

Publications (1)

Publication Number Publication Date
JPH03236195A true JPH03236195A (en) 1991-10-22

Family

ID=12381807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2033269A Pending JPH03236195A (en) 1990-02-14 1990-02-14 Double-insulated thin film electroluminescence device

Country Status (1)

Country Link
JP (1) JPH03236195A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158094A (en) * 2000-11-17 2002-05-31 Tdk Corp Thin film el element and its manufacturing method
CN106604482A (en) * 2016-11-25 2017-04-26 东莞市联洲知识产权运营管理有限公司 Preparation method for AC electroluminescence device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158094A (en) * 2000-11-17 2002-05-31 Tdk Corp Thin film el element and its manufacturing method
CN106604482A (en) * 2016-11-25 2017-04-26 东莞市联洲知识产权运营管理有限公司 Preparation method for AC electroluminescence device

Similar Documents

Publication Publication Date Title
US4686110A (en) Method for preparing a thin-film electroluminescent display panel comprising a thin metal oxide layer and thick dielectric layer
JPH09115671A (en) Dielectric thin film and thin film el element using dielectric thin film
JP2833282B2 (en) Electroluminescent display device and method of manufacturing the same
JP2002033186A (en) Organic light emitting element
JP2000173768A (en) Thin-film electroluminescent device and its manufacture
US4947081A (en) Dual insulation oxynitride blocking thin film electroluminescence display device
JPH03236195A (en) Double-insulated thin film electroluminescence device
JPH01186589A (en) Electroluminescence element
EP1467600A1 (en) Electroluminescence element and production method therefor
JP3873159B2 (en) Electroluminescent device
JP2000173775A (en) Ultraviolet emission electroluminescent element and its manufacture
JPH08102359A (en) Manufacture of electroluminescent element
JPS5947879B2 (en) Manufacturing method of EL element
JP2819804B2 (en) Electroluminescence device and method of manufacturing the same
JPS61121290A (en) Manufacture of thin film el element
KR100235832B1 (en) Membrane electric field luminescent element
JP3976892B2 (en) Thin film EL device
JPH05226075A (en) Electric element having transparent oxide conductive film
JPS6314833B2 (en)
JPH0817115B2 (en) EL display manufacturing method
JPH0124358B2 (en)
JPH01206596A (en) Film type electroluminescence element
JPH0878162A (en) Thin film electroluminescent element
JPH0294289A (en) Manufacture of thin film type electroluminescence element
JPH03192690A (en) El display element