JPH01206596A - Film type electroluminescence element - Google Patents

Film type electroluminescence element

Info

Publication number
JPH01206596A
JPH01206596A JP63029694A JP2969488A JPH01206596A JP H01206596 A JPH01206596 A JP H01206596A JP 63029694 A JP63029694 A JP 63029694A JP 2969488 A JP2969488 A JP 2969488A JP H01206596 A JPH01206596 A JP H01206596A
Authority
JP
Japan
Prior art keywords
thin film
insulating layer
layer
titanium oxide
electroluminescent device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63029694A
Other languages
Japanese (ja)
Inventor
Tsunemi Oiwa
大岩 恒美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP63029694A priority Critical patent/JPH01206596A/en
Publication of JPH01206596A publication Critical patent/JPH01206596A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To have an EL element with a low light emission start voltage, lesser leak current, large margin, excellent stability, and high durability by including titanium nitride in the insulation layer together with titanium oxide. CONSTITUTION:A base plate 1 consisting of non-alkali glass is used, whereon a clear electrode 2 consisting of In-Sn composite oxide film is formed previously, and on this electrode 2, an insulation layer 5 containing chiefly titanium oxide and further titanium nitride is formed in a specific area by ion beam sputtering method under certain conditions, and on this layer 5 a light emitting layer 4 consisting of ZnS:TbF3 is formed, and further thereupon a similar insulation layer 6 is formed by ion beam sputtering method in a similar. On this layer 6, in turn, a back face electrode 3 consisting of Al film is formed by resistance heating evaporation method, to prepare a film EL element of double insulation type as illustrated. In this element, the whole insulation layer is in electrically stable crystal structure, and it exerts excellent characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はデイスプレィ装置などに用いられる薄膜形エ
レクトロルミネッセンス(以下、ELという)素子に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film electroluminescent (hereinafter referred to as EL) element used in display devices and the like.

〔従来の技術〕[Conventional technology]

この種の薄膜形EL素子は、少なくとも一方が透明であ
りかつ通常どちらか一方がパターン化された対向する一
対の電極間に、発光体層とこれに隣接する絶縁層とを介
在させた構造を有している。
This type of thin film EL element has a structure in which a light emitting layer and an adjacent insulating layer are interposed between a pair of opposing electrodes, at least one of which is transparent and one of which is usually patterned. have.

なお、上記の絶縁層は発光体層の片面側にのみ設けられ
る場合(卓絶縁構造)と両面側に設けられる場合(二重
絶縁構造)とがある。このようなEL素子の駆動は、一
対の電極間に発光体層の発光開始電圧以上の交流電界を
印加して発光させ、その発光色を透明電極側の基板表面
に表出させることにより、所定のパターン表示を行わせ
るものである。
In addition, the above-mentioned insulating layer may be provided only on one side of the light emitting layer (table insulation structure), or may be provided on both sides (double insulation structure). Such an EL element is driven by applying an alternating current electric field higher than the light emission starting voltage of the light emitting layer between a pair of electrodes to cause it to emit light, and by making the emitted light appear on the surface of the substrate on the transparent electrode side. The pattern is displayed.

ところで、上記の如きEL素子の絶縁層としては、その
絶縁耐圧の大きいものであることが望まれるほか、素子
に印加された電圧が発光体層と絶縁層とにこれらの静電
容量に反比例して分圧されることから、発光体層に有効
に電圧を印加するために、また素子全体にかかる電圧を
低減するためにも、比誘電率が大きくてかつ誘電損失の
小さい誘電特性に非常にすぐれたものであることが望ま
れる。
By the way, it is desirable that the insulating layer of the above-mentioned EL element has a high dielectric strength voltage, and also that the voltage applied to the element is inversely proportional to the capacitance of the luminescent layer and the insulating layer. Therefore, in order to effectively apply voltage to the light emitter layer and to reduce the voltage applied to the entire device, it is necessary to use dielectric properties that have a high relative dielectric constant and low dielectric loss. It is hoped that it will be of excellent quality.

このような要求特性を比較的溝たしうる絶縁層の代表的
なものとして、とくにスパッタリング法などで形成され
る酸化チタン(Tie、)薄膜がある(文献不祥)。
A typical insulating layer that can relatively meet these required characteristics is a titanium oxide (Tie) thin film formed by sputtering or the like (unsatisfactory literature).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記酸化チタン薄膜からなる絶縁層を用
いた従来のEL素子では、発光開始電圧がたとえば二重
絶縁型のもので200V程度と高く、かつリーク電流が
大きくてマージンつまり発光開始から絶縁破壊に至るま
での電圧幅が狭く安定性に欠け、とくに表示面積が大き
くなるほど耐久性に劣り、また発光輝度も不充分である
という問題点があった。     ″ この発明は、上記問題点を解決すべくなされたもので、
酸化チタンを主体とする絶縁層を備えるものにおいて、
発光開始電圧が低いうえに、リーク電流が少なくてマー
ジンが大きく、すぐれた安定性を有して高耐久性であり
、しかも高輝度であるEL素子を提供することを目的と
して、いる。
However, in conventional EL devices using an insulating layer made of the titanium oxide thin film described above, the emission starting voltage is high, for example, about 200 V in a double insulation type, and the leakage current is large, leading to a margin, that is, dielectric breakdown from the start of emission. There have been problems in that the voltage range is narrow and stability is lacking, durability is poor especially as the display area becomes larger, and luminance is insufficient. ``This invention was made to solve the above problems,
In those equipped with an insulating layer mainly made of titanium oxide,
The object of the present invention is to provide an EL element that has a low emission starting voltage, a small leakage current, a large margin, excellent stability, high durability, and high brightness.

〔課題を解決するための手段〕[Means to solve the problem]

この発明者らは、上記の目的を達成するための鋭意検討
の過程で、まず、従来の酸化チタン薄膜からなる絶縁層
を備えたEL素子では上記薄膜中に必然的に酸素欠損部
が形成され、この欠損部がリーク電流を増大させて素子
の安定性を損なう主因になることを見い出した。そこで
、この知見をもとにさらに検討を重ねた結果、絶縁層が
酸化チタンを主体としてこれ以外の特定成分を含有する
ものである場合、この特定成分によって上記欠損部が補
完されて電気的に安定した結晶構造が形成され、素子の
安定性ひいては耐久性が著しく向上し、しかも発光開始
電圧が大幅に低下し、加えて発光輝度も著しく増大する
ことを究明し、この発明をなすに至った。
In the process of intensive study to achieve the above object, the inventors first discovered that in an EL element equipped with an insulating layer made of a conventional titanium oxide thin film, oxygen vacancies are inevitably formed in the thin film. It was discovered that this defect is the main cause of increasing leakage current and impairing the stability of the device. Therefore, as a result of further investigation based on this knowledge, we found that if the insulating layer contains titanium oxide as its main component and other specific components, this specific component will supplement the above-mentioned defective parts and improve electrical performance. The inventors discovered that a stable crystal structure is formed, which significantly improves the stability and durability of the device, and also significantly reduces the emission starting voltage and significantly increases the luminance, leading to the creation of this invention. .

すなわち、この発明は、少なくとも一方が透明である対
向する一対の電極間に発光体層とこれに隣接する酸化チ
タンを主体とする絶縁層が介在されてなる薄膜形EL素
子において、上記絶縁層が酸化チタンとともに窒化チタ
ンを含有することを特徴とする薄膜形EL素子に係るも
のである。
That is, the present invention provides a thin film EL element in which a luminescent layer and an adjacent insulating layer mainly made of titanium oxide are interposed between a pair of opposing electrodes, at least one of which is transparent, in which the insulating layer is This invention relates to a thin film type EL element characterized by containing titanium nitride as well as titanium oxide.

〔発明の構成・作用〕[Structure and operation of the invention]

図面は、この発明を適用した二重絶縁構造の薄膜形EL
素子の一例を示すものである。
The drawing shows a thin film type EL with double insulation structure to which this invention is applied.
An example of the element is shown.

図中、lはガラス板などからなる透明基板、2は厚みが
100〜300nm程度のrn2’off −5nO2
薄膜つまりITO薄膜などからなる透明電極、3はAN
薄膜やITO薄膜などからなる厚みが100〜500n
m程度の背面電極で、表示パターンに応じた形状にパタ
ーン化されている。
In the figure, l is a transparent substrate made of a glass plate or the like, and 2 is rn2'off -5nO2 with a thickness of about 100 to 300 nm.
Transparent electrode made of thin film, such as ITO thin film, 3 is AN
The thickness of thin film or ITO thin film is 100 to 500n.
The back electrode has a thickness of approximately m and is patterned into a shape corresponding to the display pattern.

4は硫化亜鉛(Z n S)などからなる母体中に少量
の希土類フッ化物やマンガンなどの発光付活剤を含有さ
せたもの、たとえばZnS:TbF3(緑色発光) 、
ZnS : SmFs(赤色発光)、Zns:Mn(黄
橙色発光) 、ZnS :TmF3(青色発光) 、Z
ns : PrF+(白色発光) 、Z n S:Dy
Fs(黄色発光)などからなる厚みが300〜1.00
0nm程度の発光体層である。
4 contains a small amount of luminescence activator such as rare earth fluoride or manganese in a matrix made of zinc sulfide (ZnS), for example, ZnS:TbF3 (green luminescence),
ZnS: SmFs (red emission), Zns: Mn (yellow-orange emission), ZnS: TmF3 (blue emission), Z
ns: PrF+ (white light emission), ZnS:Dy
Thickness of Fs (yellow luminescence) etc. is 300 to 1.00
This is a light emitting layer with a thickness of about 0 nm.

5.6は上記発光体層4の表面および背面に隣接する絶
縁層で、酸化チタン(TiO□)を主体としてさらに窒
化チタン(TiN)を含有するものからなる通常厚さが
200〜500nm程度の薄膜にて形成され、背面側の
絶縁層6は発光体層4の側面にも延出されて、これと表
面側の絶縁層5とによって発光体層4を外部雰囲気から
完全にしゃ断する構成となっている。
Reference numeral 5.6 denotes an insulating layer adjacent to the front and rear surfaces of the light emitting layer 4, which is composed mainly of titanium oxide (TiO□) and further contains titanium nitride (TiN), and has a normal thickness of about 200 to 500 nm. Formed of a thin film, the insulating layer 6 on the back side also extends to the side surface of the light emitting layer 4, and this and the insulating layer 5 on the front side completely isolate the light emitting layer 4 from the external atmosphere. It has become.

上記構成のEL素子では、上記のとおり、′4t!A縁
層5,6が酸化チタンを主体としてさらに窒化チタンを
含有する薄膜からなるため、後述の実施例に示される如
く発光開始電圧が約160V前後と低く、かつマージン
が80V以上と大きく安定性にすぐれて高耐久性を示し
、しかも非常に高い発光輝度が得られる。
In the EL element with the above configuration, as described above, '4t! Since the A-edge layers 5 and 6 are made of thin films mainly composed of titanium oxide and further containing titanium nitride, the emission starting voltage is low at around 160V, and the margin is large and stable at 80V or more, as shown in the examples below. It exhibits excellent durability and extremely high luminance.

すなわち、両絶縁層がスパッタリング法などで形成され
る単なる酸化チタン薄膜からなる従来構成のEL素子で
は、この酸化チタン薄膜中にある程度の酸素欠損部を生
じることが避けられないため、この欠損部に起因してリ
ーク電流が大きくなり、後述の比較例の如く、発光開始
電圧が約200V程度と高くなるとともにマージンも6
0V程度と狭くなって安定性に欠け、また発光輝度も低
くなる。これに対して、この発明のEL素子では、絶縁
層の主体をなす酸化チタン中の元来は酸素欠損部となる
部分が窒素原子の導入により窒化チタンとなっているこ
とから、絶縁層全体が電気的に安定した結晶構造をとり
、上述のようなすぐれた性能を発揮するのである。
In other words, in an EL element with a conventional structure in which both insulating layers are simply titanium oxide thin films formed by sputtering or the like, it is inevitable that some oxygen vacancies will occur in the titanium oxide thin film. As a result, the leakage current increases, and as in the comparative example described later, the emission starting voltage increases to about 200V and the margin also increases to 6.
The voltage becomes narrow at around 0V, resulting in lack of stability and low luminance. On the other hand, in the EL device of the present invention, the portions of the titanium oxide that form the main part of the insulating layer, which would originally be oxygen-deficient portions, become titanium nitride through the introduction of nitrogen atoms, so that the entire insulating layer is It has an electrically stable crystal structure and exhibits the excellent performance described above.

このような絶縁層5.6の形成には、従来より薄膜形E
L素子の各層の形成に利用されている各種の真空中薄膜
形成手段をいずれも採用可能であるが、とくに誘電特性
や絶縁耐性の向上という点から、ターゲットとして酸化
チタンを使用し、かつ反応ガスとして酸素ガスとともに
窒素ガスを用いるイオンビームスパッタリング法が好適
である。
Conventionally, a thin film type E is used to form such an insulating layer 5.6.
Although it is possible to adopt any of the various vacuum thin film formation methods used to form each layer of the L element, from the viewpoint of improving dielectric properties and insulation resistance, titanium oxide is used as the target and reactive gas An ion beam sputtering method using nitrogen gas together with oxygen gas is preferable.

なお、一般に、イオンビームスパッタリング法は、アル
ゴンなどの希ガスをイオン化し、これを加速、収束して
真空槽内のターゲットに衝突させてターゲット材料をス
パッタし、同真空槽内におかれた基板の表面に目的物質
を析出付着させて薄膜を形成するものである。そして、
酸化物の薄膜を形成する場合には、ターゲットには同じ
酸化物材料を使用し、かつ酸素欠損部の生成を防ぐため
に上記希ガスとともに反応ガスとして酸素ガスを用いる
のが普通である。しかるに、酸化チタン薄膜では、上述
のように反応ガスとして酸素ガスを用いても、やはり、
ある程度の酸素欠損部の生成を回避できず、この欠損部
により前記の如き問題点を生じることになる。
Generally, the ion beam sputtering method ionizes a rare gas such as argon, accelerates and focuses the ion, and collides with a target in a vacuum chamber to sputter target material. A thin film is formed by depositing a target substance on the surface of the substrate. and,
When forming an oxide thin film, it is common to use the same oxide material for the target, and to use oxygen gas as a reactive gas together with the above-mentioned rare gas in order to prevent the formation of oxygen vacancies. However, in titanium oxide thin films, even if oxygen gas is used as the reactive gas as described above,
The generation of oxygen vacancies to some extent cannot be avoided, and these vacancies cause the above-mentioned problems.

これに対して、上述のように反応ガスとして酸素ガスと
ともに窒素ガスを用いた場合は、酸素ガスのみの使用で
は酸素欠損部となる部分に窒素ガス中から窒素原子が導
入されて窒化チタンを構成するため、絶縁層全体として
欠陥のない電気的に安定な結晶構造が形成され、前述の
効果を充分に発揮しうる絶縁層が得られる。
On the other hand, when nitrogen gas is used together with oxygen gas as the reaction gas as described above, when only oxygen gas is used, nitrogen atoms from the nitrogen gas are introduced into the oxygen-deficient parts to form titanium nitride. Therefore, an electrically stable crystal structure free from defects is formed as a whole of the insulating layer, and an insulating layer that can sufficiently exhibit the above-mentioned effects can be obtained.

上記窒素ガスの使用割合は、全雰囲気ガスつまりアルゴ
ンなどの希ガスと酸素ガスおよび窒素ガスの合計量中の
20〜60容量%(Nz / (A r+0□+Nz)
X100)程度とするのがよく、少なすぎては酸素欠損
構造が残留して前述の効果が充分に発揮されなくなり、
逆に多すぎては窒化チタンの比率が過多になって絶縁層
としての特性が却って低下することになる。
The usage ratio of the above nitrogen gas is 20 to 60% by volume (Nz / (Ar+0□+Nz) of the total atmospheric gas, that is, the total amount of rare gas such as argon, oxygen gas, and nitrogen gas.
If it is too small, oxygen-deficient structures will remain and the above-mentioned effect will not be fully exhibited.
On the other hand, if the amount is too large, the ratio of titanium nitride becomes too large, and the properties of the insulating layer are deteriorated.

このようなイオンビームスパッタリング法における他の
条件としては、真空度lXl0−’〜5×10−’To
 r r程度、基板温度20〜300℃程度、成膜速度
1〜10nm/分程度とするのがよい。
Other conditions for such ion beam sputtering method include vacuum degree lXl0-' to 5x10-'To
It is preferable to set the deposition rate to about rr, the substrate temperature to about 20 to 300° C., and the film formation rate to about 1 to 10 nm/min.

なお、ターゲット材料としては、通常は既述のように酸
化チタンが使用されるが、場合によっては金属チタンを
用いることも可能である。
Note that as the target material, titanium oxide is usually used as described above, but it is also possible to use metallic titanium in some cases.

かくして形成される絶縁層5,6は、好ましくは酸化チ
タン:窒化チタンの重量比が1:0.OO5〜0.05
程度の範囲にある組成とするのがよい。
The insulating layers 5 and 6 thus formed preferably have a titanium oxide:titanium nitride weight ratio of 1:0. OO5~0.05
It is preferable that the composition be within a certain range.

EL素子の他の各層つまり透明電極2、発光体層4およ
び背面電極3はそれぞれに適した真空中薄膜形成手段、
たとえば電子ビーム蒸着や抵抗加熱蒸着の如き各種真空
蒸着法、イオンブレーティング法、高周波スパッタリン
グやイオンビームスパッタリングの如き各種スパッタリ
ング法、プラグ7CVDや光CVDの如き各種CV D
 (Chemical Vapor Depositi
on)法などにより形成される。
The other layers of the EL element, that is, the transparent electrode 2, the luminescent layer 4, and the back electrode 3, are formed using suitable vacuum thin film forming means,
For example, various vacuum evaporation methods such as electron beam evaporation and resistance heating evaporation, ion blating methods, various sputtering methods such as high frequency sputtering and ion beam sputtering, and various CVD methods such as plug 7 CVD and optical CVD.
(Chemical Vapor Deposit
on) method.

なお、この発明は、図示した発光体層の両側に絶縁層を
有する二重絶縁型の薄膜形EL素子のほか、絶縁層が発
光体層の片側のみにある卓絶縁型、発光体層または/お
よび片方の電極が各層の間に絶縁層を挟んで積層した2
層以上の多層に構成された素子などにも同様に適用可能
である。
In addition to the illustrated double insulation type thin film EL device having insulating layers on both sides of the light emitting layer, the present invention also applies to a double insulation type thin film EL device having an insulating layer on both sides of the light emitting layer, a table insulating type in which the insulating layer is only on one side of the light emitting layer, a light emitting layer or a light emitting layer. and one electrode is laminated with an insulating layer between each layer.
The present invention is similarly applicable to elements configured in multiple layers or more.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の薄膜形EL素子は、絶縁層が
酸化チタンを主体としてさらに窒化チタンを含有するも
のからなるため、該絶縁層が酸化チタンのみからなる従
来構成の薄膜形EL素子に比較して、発光開始電圧が低
く、しかもリーク電流が少なくてマージンが大きく、す
ぐれた安定性を有して高耐久性であり、かつ非常に高い
発光輝度が得られる。
As described above, in the thin film EL device of the present invention, the insulating layer is mainly composed of titanium oxide and further contains titanium nitride. In comparison, the light emission starting voltage is low, the leakage current is small, the margin is large, the material has excellent stability, high durability, and extremely high light emission brightness can be obtained.

〔実施例〕〔Example〕

以下に、この発明の実施例を比較例と対比して具体的に
説明する。
Examples of the present invention will be specifically described below in comparison with comparative examples.

実施例1〜3 予め片面に厚さ250nmのITO膜からなる透明電極
(比抵抗10Ω/cd)が形成された厚さ200鶴の無
アルカリガラスからなる基板を使用し、この基板の上記
透明電極上に後記第1表で示す条件のイオンビームスパ
ッタリング法によって酸化チタンを主体としてさらに窒
化チタンを含有する厚さ400nmの絶縁層を面積10
X10c1)の範囲で形成し、この絶縁層上に電子ビー
ム蒸着法によってZnS :TbF3  (TbF3含
有量3重量%)からなる厚さ500nmの発光体層を形
成し、さらにこの発光体層上に上記同様のイオンビーム
スパッタリング法によって上記同様の絶縁層を形成し、
最後に抵抗加熱蒸着法によって厚さ200nmのAI膜
からなる背面電極゛を形成して、図面に示す構成の二重
絶縁型の薄膜形EL素子を作製した。
Examples 1 to 3 A substrate made of alkali-free glass with a thickness of 200 nm on which a transparent electrode (specific resistance 10 Ω/cd) made of an ITO film with a thickness of 250 nm was previously formed on one side was used, and the transparent electrode of this substrate was An insulating layer with a thickness of 400 nm mainly composed of titanium oxide and further containing titanium nitride was formed on an area of 10 by the ion beam sputtering method under the conditions shown in Table 1 below.
A 500 nm thick phosphor layer made of ZnS:TbF3 (TbF3 content: 3% by weight) is formed on this insulating layer by electron beam evaporation, and the above phosphor layer is further formed on this phosphor layer. An insulating layer similar to the above is formed by a similar ion beam sputtering method,
Finally, a back electrode made of an AI film with a thickness of 200 nm was formed by resistance heating vapor deposition to produce a double-insulated thin film EL device having the configuration shown in the drawing.

比較例 発光体層を挟む両側の絶縁層を、下記第1表で示す条件
のイオンビームスパッタリング法によって形成した厚さ
400nmの酸化チタン薄膜とした以外は、実施例1〜
3と同様にして二重絶縁型の薄膜形EL素子を作製した
Comparative Example Examples 1 to 3 are the same except that the insulating layers on both sides of the light emitter layer are titanium oxide thin films with a thickness of 400 nm formed by ion beam sputtering under the conditions shown in Table 1 below.
A double-insulated thin film EL device was fabricated in the same manner as in Example 3.

第1表 上記の実施例および比較例の各EL素子について、5K
Hzの交流パルス電圧を印加し、発光開始電圧、マージ
ン(発光開始電圧と破壊電圧との差)および最大輝度を
測定した。その結果を、各EL素子の絶縁層組成ととも
に下記第2表に示す。
Table 1: 5K for each EL element of the above examples and comparative examples.
An alternating current pulse voltage of Hz was applied, and the emission starting voltage, margin (difference between the emission starting voltage and breakdown voltage), and maximum brightness were measured. The results are shown in Table 2 below along with the insulating layer composition of each EL element.

第2表 上記第2表の結果から、この発明に係るEL素子(実施
例1〜3)は、絶縁層が酸化チタンのみからなる従来構
成のEL素子(比較例)に比し、発光開始電圧が大幅に
低い上にマージンが広く、安定性ひいては耐久性にすぐ
れ、しかも非常に高い発光輝度が得られることが明らか
である。
Table 2 From the results in Table 2 above, it is clear that the EL devices according to the present invention (Examples 1 to 3) have a lower luminescence starting voltage than the EL devices with the conventional structure (comparative example) in which the insulating layer is made only of titanium oxide. It is clear that the luminance is significantly low, the margin is wide, the stability and durability are excellent, and very high luminance can be obtained.

なお、この発明のEL素子において、絶縁層を二層構造
としてそのうちの一層を上記の如き酸化チタンおよび窒
化チタンを含有する薄膜とし、他の層をAlz O+−
、S 10z −Y203− Ta2O、、Si、N4
などの他の薄膜とするような変更も可能であり、これに
よってマージンをさらに広くすることもできる。
In the EL device of the present invention, the insulating layer has a two-layer structure, one of which is a thin film containing titanium oxide and titanium nitride as described above, and the other layer is a thin film containing titanium oxide and titanium nitride as described above.
, S 10z -Y203- Ta2O, , Si, N4
It is also possible to make changes such as using other thin films such as , and thereby the margin can be further widened.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明に係る薄膜形エレクトロルミネッセンス
素子の一例を示す断面図である。 2・・・透明電極、3・・・背面電極、4・・・発光体
層、5.6・・・絶縁層 特許出願人  日立マクセル株式会社
The drawing is a sectional view showing an example of a thin film electroluminescent device according to the present invention. 2...Transparent electrode, 3...Back electrode, 4...Light emitter layer, 5.6...Insulating layer Patent applicant Hitachi Maxell, Ltd.

Claims (5)

【特許請求の範囲】[Claims] (1) 少なくとも一方が透明である対向する一対の電
極間に発光体層とこれに隣接する酸化チタンを主体とし
た絶縁層が介在されてなる薄膜形エレクトロルミネツセ
ンス素子において、上記絶縁層が酸化チタンとともに窒
化チタンを含有することを特徴とする薄膜形エレクトロ
ルミネツセンス素子。
(1) In a thin film electroluminescent device in which a luminescent layer and an adjacent insulating layer mainly made of titanium oxide are interposed between a pair of opposing electrodes, at least one of which is transparent, the insulating layer is A thin film electroluminescent element characterized by containing titanium nitride as well as titanium oxide.
(2) 絶縁層が発光体層の上下両側に設けられてなる
請求項(1)に記載の薄膜形エレクトロルミネツセンス
素子。
(2) The thin film electroluminescent device according to claim 1, wherein the insulating layer is provided on both upper and lower sides of the light emitting layer.
(3) 絶縁層の酸化チタン:窒化チタンの重量比が1
:0.005〜0.05の範囲にある請求項(1)また
は(2)に記載の薄膜形エレクトロルミネツセンス素子
(3) The weight ratio of titanium oxide to titanium nitride in the insulating layer is 1.
: The thin film type electroluminescent device according to claim 1 or 2, which is in the range of 0.005 to 0.05.
(4) 絶縁層が、ターゲツトとして酸化チタンを使用
し、かつ反応ガスとして酸素ガスとともに窒素ガスを用
いるイオンビームスパツタリング法にて形成されたもの
である請求項(1)〜(3)のいずれかに記載の薄膜形
エレクトロルミネツセンス素子。
(4) Any one of claims (1) to (3), wherein the insulating layer is formed by an ion beam sputtering method using titanium oxide as a target and nitrogen gas together with oxygen gas as a reactive gas. A thin film electroluminescent device according to claim 1.
(5) 窒素ガスが希ガスを含む全雰囲気ガス中の20
〜60容量%を占める請求項(4)に記載の薄膜形エレ
クトロルミネツセンス素子。
(5) Nitrogen gas is 20% of the total atmospheric gas including rare gases.
5. The thin film electroluminescent device according to claim 4, wherein the thin film electroluminescent device occupies 60% by volume.
JP63029694A 1988-02-10 1988-02-10 Film type electroluminescence element Pending JPH01206596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63029694A JPH01206596A (en) 1988-02-10 1988-02-10 Film type electroluminescence element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63029694A JPH01206596A (en) 1988-02-10 1988-02-10 Film type electroluminescence element

Publications (1)

Publication Number Publication Date
JPH01206596A true JPH01206596A (en) 1989-08-18

Family

ID=12283213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63029694A Pending JPH01206596A (en) 1988-02-10 1988-02-10 Film type electroluminescence element

Country Status (1)

Country Link
JP (1) JPH01206596A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911857A (en) * 1996-06-27 1999-06-15 Hyundai Electronics Industries Co., Ltd. Method for forming metal wiring of semiconductor devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911857A (en) * 1996-06-27 1999-06-15 Hyundai Electronics Industries Co., Ltd. Method for forming metal wiring of semiconductor devices

Similar Documents

Publication Publication Date Title
JP3428152B2 (en) Manufacturing method of organic EL element
JPH0230155B2 (en)
JPH07211460A (en) Manufacture of electro luminescence element
JPH01206596A (en) Film type electroluminescence element
JPH08162273A (en) Thin film el element
JPH1092580A (en) Thin film electroluminescent element and manufacture thereof
JPS6141112B2 (en)
KR970006081B1 (en) Manufacturing method of thin-film el display element
JPH03112089A (en) Thin film el element
JPH0541286A (en) Electroluminecence element
JPH02306591A (en) Manufacture of thin film electroluminescence element
JP3308308B2 (en) Thin film EL display element and method of manufacturing the same
JPH03236195A (en) Double-insulated thin film electroluminescence device
JPS6343880B2 (en)
JPS6321788A (en) Thin film electroluminescence device
JPH01213991A (en) Transparent electrode substrate and electroluminescence element utilizing same
KR970072511A (en) Electroluminescent display device for white light emission and manufacturing method thereof
JPH088147B2 (en) Thin film EL device
JPS60202687A (en) Thin film electroluminescent element
JPH02306585A (en) Manufacture of thin film electroluminescence element
JPH01204394A (en) Thin film el element
JPH02213090A (en) Thin film el panel and manufacture thereof
JPS6321786A (en) Manufacture of thin film electroluminescence device
JPH0124358B2 (en)
JPH0294289A (en) Manufacture of thin film type electroluminescence element