JPH02306591A - Manufacture of thin film electroluminescence element - Google Patents

Manufacture of thin film electroluminescence element

Info

Publication number
JPH02306591A
JPH02306591A JP1128417A JP12841789A JPH02306591A JP H02306591 A JPH02306591 A JP H02306591A JP 1128417 A JP1128417 A JP 1128417A JP 12841789 A JP12841789 A JP 12841789A JP H02306591 A JPH02306591 A JP H02306591A
Authority
JP
Japan
Prior art keywords
emitting layer
thin film
base material
oxygen
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1128417A
Other languages
Japanese (ja)
Inventor
Kenzo Takemura
賢三 竹村
Takeshi Yoshida
健 吉田
Akio Yamazaki
聡夫 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP1128417A priority Critical patent/JPH02306591A/en
Publication of JPH02306591A publication Critical patent/JPH02306591A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance luminance of a thin film electroluminescence element by forming a light emitting layer by the electron beam deposition method or resistance heating deposition method using a target which contains a compound comprising IIA or IIB group elements as base materials and VIB group elements (excepting oxygen), and a target which contains oxygen. CONSTITUTION:A light emitting layer is formed of a fluorescent material consisting of a base material comprising ZnS, CaS, SrS, ZnSe and the like which contains radiation providing elements such as transition metals, rare earth elements comprising Mn, Tb, Eu, Ce and the like, and the light emitting layer contains oxygen. The electron beam deposition method or resistance heating deposition method is employed for forming the layer. In those methods, at least two targets i.e. that formed from a base material or a base material doped with luminescence center and that containing oxygen are used simultaneously as an evaporation source.

Description

【発明の詳細な説明】 (産業上の利用分野〕 、本発明は、薄膜EL素子の製造法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for manufacturing a thin film EL device.

〔従来の技術〕  。[Conventional technology].

従来、透明導電膜、−必要に応じ第1の絶縁層。Conventionally, a transparent conductive film - an optional first insulating layer.

発光層、第2の絶縁層及び導電膜を順次積層してなる薄
膜EL素子において該薄膜E L素子の発光輝度を向上
させるために通常、その製造工程にお、いて、一般的に
は発光層の形成後基板を真空下、500〜600℃で1
〜2時間程度加熱する熱処理が行われている(日経エレ
クトロニクス1979年4月号)。
In order to improve the luminance of a thin film EL device in which a light emitting layer, a second insulating layer and a conductive film are sequentially laminated, the light emitting layer is generally added in the manufacturing process. After the formation of
Heat treatment is performed by heating for about 2 hours (Nikkei Electronics April 1979 issue).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記従来の薄膜E L素子において発光層としてMnを
少量添加したZnS発光層を用いたものであって第1及
び第2の絶縁層を有するものが、現在、最も高い発光輝
度を示すものとされている。
Among the conventional thin film EL devices, those using a ZnS light emitting layer to which a small amount of Mn is added as a light emitting layer and having first and second insulating layers are currently considered to exhibit the highest luminance. ing.

しかし、この薄膜EL素子においても、フレーム周波数
が数十Hzである線順次走査による発光時の輝度は20
−730フートランバートであり、CRT(カソード・
レイ・チューブ)などと比べると実用的なディスプレイ
パネルとするには、未だ、発光輝度が不充分である。
However, even in this thin film EL element, the luminance when emitting light by line sequential scanning with a frame frequency of several tens of Hz is 20
-730 Foot Lambert, CRT (cathode)
Compared to other devices such as ray tubes, the luminance is still insufficient for use as a practical display panel.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、透光性基村上に、透明導電膜、発光層及び導
電膜を順次積層し、これらの層間のうち少なくとも一つ
の層間にN縁膜を形成する薄膜EL素子の製造法におい
て、上記発光層を母材物質であるnA族又はIIB族の
元素とVTR族元素(ただし、酸素は除く)とから構成
される化合物を含むターゲット及び酸素を含むターゲラ
i・を用いて電子ビーム蒸着法又は抵抗加熱蒸着法によ
り形成することを特徴とする薄膜EL素子の製造法に関
する。、 上記発光層は、Mn、Tb、Eu、Ce等の遷移金属、
希土類などの発光性付活元素(発光中心)を含むZ n
 S 、 Ca S 、 S r S 、 7. n 
S a等の母材物質からなる螢光体からなり酸素を含む
ものである。形成力法としては、電子ビーム蒸着法又は
抵抗加熱蒸着法が用いられる。これらの方法において、
ターゲットとしては、上記の母材物質又は上記の発光中
心を添加(ドープ)した上記母材物質からなるターゲッ
トと酸素を含むターゲットの少なくとも二つのターゲッ
トが同時に蒸発源として使用される。発光中心を添加(
ドープ)していない母材物質をターゲラl−として用い
るときは。
The present invention provides a method for manufacturing a thin film EL device, in which a transparent conductive film, a light-emitting layer, and a conductive film are sequentially laminated on a transparent substrate, and an N edge film is formed between at least one of these layers. The light-emitting layer is formed by electron beam evaporation using a target containing a compound consisting of an nA group or IIB group element and a VTR group element (excluding oxygen) as a base material, and a target laser containing oxygen. The present invention relates to a method for manufacturing a thin film EL device, characterized in that it is formed by a resistance heating vapor deposition method. , the light emitting layer is made of a transition metal such as Mn, Tb, Eu, Ce,
Zn containing luminescent activating elements (luminescent centers) such as rare earth elements
S, Ca S, S r S, 7. n
It is made of a phosphor made of a base material such as S a and contains oxygen. As the forming force method, an electron beam evaporation method or a resistance heating evaporation method is used. In these methods,
At least two targets are simultaneously used as evaporation sources: a target made of the above-mentioned base material material or the above-mentioned base material doped with the above-mentioned luminescent center, and a target containing oxygen. Adding a luminescent center (
When using an undoped base material as targetera l-.

Mn5.MnCO2等の発光性付活元素の化合物を上記
ターゲットとは別に使用するか、上記酸素を含む化合物
としてMn S04 、MnO。
Mn5. A compound of a luminescent activating element such as MnCO2 may be used separately from the target, or Mn SO4 or MnO may be used as the oxygen-containing compound.

Ce2O3等の発光性付活元素及び酸素を含む化合物が
使用される。発光中心を添加(ドープ)した母材物質を
用いるとき発光中心は母材物質に対して0.001〜1
0重量%添加されているのが好ましい。上記の酸素を含
む化合物としては、上記したMnSO4,MnO等の発
光性付活元素及び酸素を含む化合物以外に、ZnO,Z
nSO4゜ZnC01,CaSO4,SrCO3等の母
材物質を構成するIIA族又はIIB族元素及び酸素を
含む化合物がある。借物質材としては、硫化物が特に好
ましい。
A compound containing a luminescent activating element such as Ce2O3 and oxygen is used. When using a base material doped with a luminescent center, the luminescent center is 0.001 to 1% of the base material.
Preferably, it is added in an amount of 0% by weight. Examples of the above-mentioned oxygen-containing compounds include ZnO, Z
There are compounds containing Group IIA or Group IIB elements and oxygen that constitute the base material, such as nSO4°ZnC01, CaSO4, and SrCO3. Sulfides are particularly preferred as the borrowing material.

電子ビーム蒸着法又は抵抗加熱蒸着法により得られる発
光層は結晶性に優れ、また、蒸着時の真空度をlXl0
−”〜lXl0−’と高くできるため、不純物の混入を
防ぐことができ、高輝度の薄膜EL素子が得やすい。ま
た、成膜速度を速くすることができるので短時間で発売
層を形成することができる。
The light-emitting layer obtained by electron beam evaporation method or resistance heating evaporation method has excellent crystallinity, and the degree of vacuum during evaporation is
-'' to lXl0-', it is possible to prevent the incorporation of impurities and it is easy to obtain high-brightness thin film EL elements.Also, the film formation speed can be increased, so the release layer can be formed in a short time. be able to.

このようにして作成される発光層には、M素が導入され
ており、この酸素が発光層のVTR族元素の欠陥を埋め
る役目を果たすためと考えられるが、結果として発光輝
度が向上する。
The light-emitting layer created in this way has M elements introduced therein, and this oxygen is thought to play a role in filling the defects of the VTR group elements in the light-emitting layer, resulting in improved luminance.

本発明における透光性基材としてはガラス板等が使用さ
れる。
A glass plate or the like is used as the translucent base material in the present invention.

透明導電膜は、SnO2,In2O3、インジウムスズ
オキサイド(ITO)等からなり、電子ビーム蒸着法、
真空蒸着法、スパッタリング法、CV D (Chem
ical Vapor Deposj、tion)法、
プラズマCVD法等によって形成される。
The transparent conductive film is made of SnO2, In2O3, indium tin oxide (ITO), etc., and is made by electron beam evaporation,
Vacuum deposition method, sputtering method, CVD (Chem
ical vapor deposj, tion) method,
It is formed by a plasma CVD method or the like.

もう一つの導電膜は、透明導電膜と同様のものでもよく
、アルミニウム、クロム、金等の金属からなるものであ
ってもよい。
The other conductive film may be the same as the transparent conductive film, or may be made of a metal such as aluminum, chromium, or gold.

前記絶縁層は、Ta205.Y2O3,Si、02゜A
Q203.Si、N、、AnN、5rTiOJ等からな
り、これらの層を2周基」二積層して絶縁層としてもよ
い。これらの層の形成力法は、透明導電膜の形成方法と
同様である。
The insulating layer is made of Ta205. Y2O3,Si,02゜A
Q203. The insulating layer may be made of Si, N, AnN, 5rTiOJ, etc., and two of these layers may be laminated in two circles. The method for forming these layers is the same as the method for forming a transparent conductive film.

本発明において、M縁周は、前記透明導電膜と前記発光
層の間に及び/又は前記発光層と前記導電膜の間に積層
される。以下、前記透明導電膜と前記発光層の間の絶縁
層を第1の絶縁層と及び前記発光層と前記導電膜の間を
第2の絶縁層と言う。
In the present invention, the M edge is laminated between the transparent conductive film and the light emitting layer and/or between the light emitting layer and the conductive film. Hereinafter, the insulating layer between the transparent conductive film and the light emitting layer will be referred to as a first insulating layer, and the layer between the light emitting layer and the conductive film will be referred to as a second insulating layer.

本発明において、透明導電膜、第1の絶縁層。In the present invention, a transparent conductive film and a first insulating layer.

発光層、第2の絶縁層及び導電膜(背面電極)が、この
順序で、基材上に順次形成される。ただし、第1及び第
2の絶縁層のうちどちらか一つはなくてもよい。また1
発光層を形成後前記と同様の絶縁層を積層し、さらに発
光層を形成してもよい。
A light emitting layer, a second insulating layer, and a conductive film (back electrode) are sequentially formed on the base material in this order. However, one of the first and second insulating layers may be omitted. Also 1
After forming the light-emitting layer, an insulating layer similar to that described above may be laminated to further form a light-emitting layer.

本発明においては、これらの工程中発光層の形成後に、
真空下又はAr、N2等の不活性ガス雰囲気下に200
〜650℃で加熱処理をしてもよい。
In the present invention, after forming the light emitting layer during these steps,
200℃ under vacuum or inert gas atmosphere such as Ar, N2, etc.
Heat treatment may be performed at ~650°C.

本発明を図面を用いて説明する。第1図は本発明により
得られる薄膜EL素子の一例を示す断面図であり、基板
1の上に透明導電膜(透明電極)2、第1の絶縁[3,
発光層4.第2の絶縁層5及びもう一つの導電膜(背面
電極)6をこの順に積層して作製したものである。
The present invention will be explained using the drawings. FIG. 1 is a cross-sectional view showing an example of a thin film EL element obtained by the present invention, in which a transparent conductive film (transparent electrode) 2, a first insulator [3,
Luminous layer 4. It is manufactured by laminating a second insulating layer 5 and another conductive film (back electrode) 6 in this order.

実施例1 第1図に示すような構造の薄膜EL素子を作成した。Example 1 A thin film EL device having a structure as shown in FIG. 1 was fabricated.

基材1としてのホウケイ酸ガラス上にITO膜をスパン
“クリング法で形成し、これをエツチングして透明導電
膜2としてのス1−ライブ状ITO透明電極(膜厚0.
2 μm + @0 、15 mm 、電極間隔0.1
mn)320本を形成した。この上に、第1の絶縁層3
としてSi3N、、膜プラズマCVD法で0.22μm
の厚さに形成した。
An ITO film is formed on borosilicate glass as a base material 1 by a spun-kling method, and this is etched to form a sliver-like ITO transparent electrode (film thickness: 0.5 mm) as a transparent conductive film 2.
2 μm + @0, 15 mm, electrode spacing 0.1
mn) 320 pieces were formed. On top of this, a first insulating layer 3
As Si3N, 0.22 μm by film plasma CVD method
It was formed to a thickness of .

次いで、発光層4として電子ビーム蒸着法によりマンガ
ン付活硫化亜鉛(ZnS:Mn)層を0.6μmの厚さ
に形成した。ターゲットとしてはMnをZnSに対して
0.25重量%添加したZnSペレット及びM n O
を使用し、それぞれのターゲットに電子ビームをあてた
。電子ビーム蒸着槽内は一旦lXl0−7下−ルまで減
圧し、この後、発光層を形成した。また、基板温度は2
00℃とし、成膜速度は60n、m/分で、M n O
の蒸発速度は膜中のMnが0.1重量%となるように制
御した。
Next, as the light-emitting layer 4, a manganese-activated zinc sulfide (ZnS:Mn) layer was formed to a thickness of 0.6 μm by electron beam evaporation. As targets, ZnS pellets containing 0.25% by weight of Mn relative to ZnS and MnO were used.
was used to direct an electron beam at each target. The pressure inside the electron beam evaporation tank was once reduced to below 1X10-7, and then a light-emitting layer was formed. Also, the substrate temperature is 2
00°C, the deposition rate was 60n, m/min, and MnO
The evaporation rate of was controlled so that the Mn content in the film was 0.1% by weight.

次いで、第2の絶縁層5としてSi3N、膜をスパッタ
リング法で0.22μmの厚さに形成した。
Next, a Si3N film was formed as the second insulating layer 5 by sputtering to a thickness of 0.22 μm.

最後に、電子ビーム蒸着法でAQ層を形成し、エツチン
グして導電膜6としてのス1〜ライブ状AQの背面電極
(膜厚0 、2 μm 、幅0.15+nm、電極間隔
0.1mm)を200本、ITO透明電極と直交するよ
うに形成した。得られた薄膜EL素子を試料Aとした。
Finally, an AQ layer is formed by electron beam evaporation and etched to form a conductive film 6 as a back electrode of strip-like AQ (film thickness 0.2 μm, width 0.15+nm, electrode spacing 0.1 mm). 200 electrodes were formed perpendicularly to the ITO transparent electrode. The obtained thin film EL device was designated as Sample A.

比較例1 実施例1において、発光層の形成時M n Oターゲッ
トの代わりにMnSを用いたこと以外は、実施例1に準
じて、薄膜EL素子を得た。得られた薄膜E L素子を
試料Bとした。
Comparative Example 1 A thin film EL device was obtained in the same manner as in Example 1, except that MnS was used instead of the M n O target when forming the light emitting layer. The obtained thin film EL device was designated as Sample B.

前記で得られた試料A及び試料Bを周波数150 H’
zの余弦波電圧を用いて駆動し、透明電極と背面電極の
間に印加する開動電圧(Vrms)と発光輝度の関係(
印加電圧−発光輝度特性)を求めた。
Sample A and sample B obtained above were heated at a frequency of 150 H'
The relationship between the opening voltage (Vrms) applied between the transparent electrode and the back electrode using a cosine wave voltage of z and the luminance brightness (
Applied voltage-emission brightness characteristics) were determined.

第2図はこの結果を示す。第2図中、グラフ7は試料A
についての及びグラフ8は試料Bについての結果である
Figure 2 shows this result. In Figure 2, graph 7 is sample A
Graph 8 is the result for sample B.

これらの結果から明らかであるように、発光開始電圧よ
り30V高い印加電圧において、発光輝度は試料Aでは
380 c d / rr? (176Vにおいて)及
ぜ試料Bでは230cd/rr?(174Vにおいて)
であった。
As is clear from these results, at an applied voltage 30 V higher than the emission starting voltage, the luminance of sample A was 380 c d / rr? (at 176V) and 230cd/rr for sample B? (at 174V)
Met.

実施例2 実施例1において発光層を、電子ビーム蒸着法の代わり
に抵抗加熱蒸着法によりマンガン付活硫化亜鉛(ZnS
:Mn)層を0.67zrn の厚さに形成した〔ただ
し、ターゲットとしては、ZnSペレット及びM n 
Oを使用し、これらを異なるタングステンるつぼヒータ
ーから同時に蒸発させた。
Example 2 In Example 1, the light-emitting layer was made of manganese-activated zinc sulfide (ZnS) using a resistance heating evaporation method instead of an electron beam evaporation method.
:Mn) layer was formed to a thickness of 0.67zrn [However, as targets, ZnS pellets and Mn
These were evaporated simultaneously from different tungsten crucible heaters.

蒸着槽内は一旦lXl0−7トールまで減圧した。The pressure inside the vapor deposition tank was once reduced to 1X10-7 torr.

基板温度は200℃とし、成膜速度は60nm/分で、
M n Oの蒸発速度は膜中のMnが0.3重量%及び
酸素が0.1重量%となるように制御した。〕こと以外
は、実施例1に準じて、薄膜E I。
The substrate temperature was 200°C, and the deposition rate was 60 nm/min.
The evaporation rate of MnO was controlled so that Mn and oxygen in the film were 0.3% by weight and 0.1% by weight, respectively. ] The thin film E I was prepared in the same manner as in Example 1 except for the above.

素子を得た。得られた薄膜EL素子を試料Cとした。I got the element. The obtained thin film EL device was designated as Sample C.

比較例2 実施例2において、ターゲットとしてのM n Oの代
わりにMnSを使用すること(膜中のMnが0.3重・
量%になるように調整)以外は、実施例2に準じて、薄
膜EL素子を得た。得られた薄膜EL素子を試料りとし
た。
Comparative Example 2 In Example 2, MnS is used instead of MnO as a target (Mn in the film is 0.3 times
A thin film EL device was obtained in accordance with Example 2, except for adjusting the amount (%). The obtained thin film EL device was used as a sample.

前記で得られた試料C及び試料りの印加電圧−発光輝度
特性を前記と同様にして求めた。この結果、発光開始電
圧より30V高い印加電圧において、試料Cは試料りの
1,6倍の発光輝度を示した。
The applied voltage-emission brightness characteristics of Sample C and Sample Sample 1 obtained above were determined in the same manner as above. As a result, at an applied voltage 30 V higher than the luminescence starting voltage, sample C exhibited luminance 1.6 times higher than that of the sample.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、発光輝度の優れた薄膜E L素子を容
易に製造することができる。
According to the present invention, a thin film EL element with excellent luminance can be easily manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る薄膜EL素子の断面図及び第2図
は実施例1及び比較例1で得られた薄膜EL素子の印加
電圧−発光輝度特性を示すグラフである。 1・・・基材、2・・・透明導電膜、3・・・第1の絶
縁層、4・・・発光層、5・・・第2の絶縁膜、6・・
・導電膜(背面電極)、7・・・実施例1の結果を示す
グラフ、8・・・比較例1の結果を示すグラフ。
FIG. 1 is a cross-sectional view of a thin film EL device according to the present invention, and FIG. 2 is a graph showing applied voltage-emission luminance characteristics of the thin film EL devices obtained in Example 1 and Comparative Example 1. DESCRIPTION OF SYMBOLS 1... Base material, 2... Transparent conductive film, 3... First insulating layer, 4... Light emitting layer, 5... Second insulating film, 6...
- Conductive film (back electrode), 7... Graph showing the results of Example 1, 8... Graph showing the results of Comparative Example 1.

Claims (1)

【特許請求の範囲】[Claims]  1.透光性基材上に、透明導電膜、発光層及び導電膜
を順次積層し、これらの層間のうち少なくとも一つの層
間に絶縁層を形成する薄膜EL素子の製造法において、
上記発光層を母材物質であるIIA族又はIIB族の元素と
VIB族元素(ただし、酸素は除く)とから構成される化
合物を含むターゲット及び酸素を含む化合物を含むター
ゲットを用いて電子ビーム蒸着法又は抵抗加熱蒸着法に
より形成することを特徴とする薄膜EL素子の製造法。
1. In a method for manufacturing a thin film EL element, a method for manufacturing a thin film EL device includes sequentially laminating a transparent conductive film, a light-emitting layer, and a conductive film on a light-transmitting base material, and forming an insulating layer between at least one of these layers,
The above-mentioned light-emitting layer is made of a group IIA or group IIB element as a base material.
A thin film EL element formed by an electron beam evaporation method or a resistance heating evaporation method using a target containing a compound composed of a group VIB element (excluding oxygen) and a target containing a compound containing oxygen. manufacturing method.
JP1128417A 1989-05-22 1989-05-22 Manufacture of thin film electroluminescence element Pending JPH02306591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1128417A JPH02306591A (en) 1989-05-22 1989-05-22 Manufacture of thin film electroluminescence element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1128417A JPH02306591A (en) 1989-05-22 1989-05-22 Manufacture of thin film electroluminescence element

Publications (1)

Publication Number Publication Date
JPH02306591A true JPH02306591A (en) 1990-12-19

Family

ID=14984245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1128417A Pending JPH02306591A (en) 1989-05-22 1989-05-22 Manufacture of thin film electroluminescence element

Country Status (1)

Country Link
JP (1) JPH02306591A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0972816A2 (en) * 1998-07-17 2000-01-19 Bruker AXS, Inc. High efficiency polycrystalline phosphors and method of making same
US6610352B2 (en) 2000-12-22 2003-08-26 Ifire Technology, Inc. Multiple source deposition process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0972816A2 (en) * 1998-07-17 2000-01-19 Bruker AXS, Inc. High efficiency polycrystalline phosphors and method of making same
EP0972816A3 (en) * 1998-07-17 2000-07-12 Bruker AXS, Inc. High efficiency polycrystalline phosphors and method of making same
US6254806B1 (en) * 1998-07-17 2001-07-03 Bruker Ax, Inc. High efficiency polycrystalline phosphors and method of making same
US6610352B2 (en) 2000-12-22 2003-08-26 Ifire Technology, Inc. Multiple source deposition process

Similar Documents

Publication Publication Date Title
JP3428152B2 (en) Manufacturing method of organic EL element
JPH02306591A (en) Manufacture of thin film electroluminescence element
JP3381292B2 (en) Method for forming electroluminescent element
JPH02306586A (en) Manufacture of thin film electroluminescence element
JPS6047718B2 (en) Manufacturing method of thin film light emitting device
JPH04169094A (en) Manufacture of thin film electroluminescence element
JP3446542B2 (en) Thin film EL element
JPS61211993A (en) Manufacture of el panel
JPH07122363A (en) Manufacture of electroluminescence element
JP3349221B2 (en) Electroluminescent device and method for manufacturing the same
JPH02306593A (en) Manufacture of thin film electroluminescence element
JP3599356B2 (en) Electroluminescence element
JPH02114490A (en) Sputtering target and its manufacture and fluorescent thin film formation using the target
JP3537468B2 (en) Method for manufacturing electroluminescence device
JPH02306585A (en) Manufacture of thin film electroluminescence element
JPH01206596A (en) Film type electroluminescence element
JPH02306594A (en) Thin film electroluminescence element
JPH0294289A (en) Manufacture of thin film type electroluminescence element
JPH0817574A (en) Manufacture of thin film electroluminecent element
JPH02306592A (en) Manufacture of thin film electroluminescence element
JPH01107493A (en) Manufacture of thin film electro-luminescence element
KR970072511A (en) Electroluminescent display device for white light emission and manufacturing method thereof
JPH097769A (en) Electroluminescent element and its manufacture
JPH06231884A (en) Manufacture of thin film electroluminescent element
JPH07240278A (en) Thin film el element