JPS6343880B2 - - Google Patents

Info

Publication number
JPS6343880B2
JPS6343880B2 JP59095595A JP9559584A JPS6343880B2 JP S6343880 B2 JPS6343880 B2 JP S6343880B2 JP 59095595 A JP59095595 A JP 59095595A JP 9559584 A JP9559584 A JP 9559584A JP S6343880 B2 JPS6343880 B2 JP S6343880B2
Authority
JP
Japan
Prior art keywords
gas
film
insulating layer
sio
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59095595A
Other languages
Japanese (ja)
Other versions
JPS60240097A (en
Inventor
Mutsuhiro Sekido
Naoji Hayashi
Mitsuro Mita
Masataka Koizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP59095595A priority Critical patent/JPS60240097A/en
Publication of JPS60240097A publication Critical patent/JPS60240097A/en
Publication of JPS6343880B2 publication Critical patent/JPS6343880B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の目的〕 ―産業上の利用分野― 本発明はマトリクス駆動型で二重絶縁膜構造の
薄膜ELパネル、およびその製造方法において有
益に利用することができる。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] - Industrial Application Field - The present invention can be advantageously utilized in a matrix-driven thin film EL panel having a double insulating film structure and a method for manufacturing the same.

―従来の技術― 第3図は従来の製造方法によるELパネルの側
断面図であり、1は透明なガラス基板、2は該ガ
ラス基板1上に形成した例えばIn2O2などから成
るストライプ状の透明電極であり、このガラス基
板1の基板面1aにSiをターゲツトとして反応性
スパツタ法によりArガスと豊富なO2ガスの混合
ガス中でSiO2膜3aを形成する。
-Prior art- Fig. 3 is a side cross-sectional view of an EL panel manufactured by a conventional manufacturing method, in which 1 is a transparent glass substrate, 2 is a stripe-like structure made of, for example, In 2 O 2 formed on the glass substrate 1. A SiO 2 film 3a is formed on the substrate surface 1a of the glass substrate 1 by reactive sputtering using Si as a target in a mixed gas of Ar gas and abundant O 2 gas.

次いで、O2ガスを徐々に減じると同時にN2
スを注入しSiとNとOの化合物薄膜4aを形成す
る。
Next, while the O 2 gas is gradually reduced, N 2 gas is injected to form a Si, N, and O compound thin film 4a.

続いて、O2ガスを全て排気しArガスと豊富な
N2ガス中で絶縁性の優れたSi3N4膜5aを形成す
る。
Next, all O 2 gas is exhausted and Ar gas and abundant
A Si 3 N 4 film 5a with excellent insulation properties is formed in N 2 gas.

このようにして順次積層したSiO2膜3a、化
合物薄膜4a、Si3N4膜5aが第1絶縁層であ
る。
The SiO 2 film 3a, the compound thin film 4a, and the Si 3 N 4 film 5a, which are thus sequentially laminated, constitute a first insulating layer.

この第1絶縁層上、即ちSi3N4膜5a上にZnS
を母体としMnを発光中心とした発光層6を形成
する。
ZnS is deposited on this first insulating layer, that is, on the Si 3 N 4 film 5a.
A light-emitting layer 6 is formed using Mn as a matrix and Mn as a light-emitting center.

次に、該発光層6上に前述の各膜の形成順とは
逆の順序で絶縁性の優れたSi3N4膜5b、化合物
薄膜4b及びSiO2膜3bを順次形成する。この
3層が第2絶縁層である。
Next, the Si 3 N 4 film 5b, the compound thin film 4b, and the SiO 2 film 3b having excellent insulating properties are sequentially formed on the light emitting layer 6 in the reverse order of the formation of the films described above. These three layers are the second insulating layer.

そして、この第2絶縁層上、即ちSiO2膜3b
上にAlより成るストライプ状の背面電極7を前
記透明電極2と直角に交差するように形成して配
置させている。
Then, on this second insulating layer, that is, the SiO 2 film 3b
A striped back electrode 7 made of Al is formed on the transparent electrode 2 and arranged so as to intersect with the transparent electrode 2 at right angles.

この種のELパネルにおいては、例えば複数本
の背面電極7を順次ライン走査してマトリクス表
示を行なう時、小さな電圧変化に対する発光輝度
の変化を大きくしなければ、換言すると、発光輝
度―印加電圧特性(以下B―V特性と称する)曲
線の勾配が急勾配でなければ、印加電圧を下げて
いつても過度現象により印加電圧はゆるやかに下
がり、その間ELパネルも発光するためにいわゆ
るクロストークが生じてしまう。このために、走
査電極数を多く、即ち表示画素数を多く取れない
ということが知られている。
In this type of EL panel, for example, when performing a matrix display by sequentially scanning multiple back electrodes 7, the change in luminance due to small voltage changes must be made large. In other words, the luminance vs. applied voltage characteristic (hereinafter referred to as the BV characteristic) If the slope of the curve is not steep, even if the applied voltage is lowered, the applied voltage will gradually decrease due to a transient phenomenon, during which time the EL panel will also emit light, causing so-called crosstalk. Put it away. It is known that for this reason, it is not possible to increase the number of scanning electrodes, that is, to increase the number of display pixels.

―発明が解決しようとする問題点― しかし、前記したような従来の方法で製造され
たELパネルでは発光層6の両側を絶縁性に優れ
たSi3N4膜5a,5bで挟持した構造となつてい
るため、発光層6のSi3N4膜5a,5bとの界面
に浅いエネルギーレベルの界面状態を形成するた
めSi3N4膜5aあるいは5bからの電子の注入が
少なく、緩やかなアバランシエ現象を示し、B―
V特性曲線の勾配の急峻化が図れないという欠点
があつた。
-Problems to be Solved by the Invention- However, the EL panel manufactured by the conventional method as described above has a structure in which the light emitting layer 6 is sandwiched between Si 3 N 4 films 5a and 5b with excellent insulation properties. Because of this, an interface state with a shallow energy level is formed at the interface with the Si 3 N 4 films 5a and 5b of the light-emitting layer 6, so that fewer electrons are injected from the Si 3 N 4 film 5a or 5b, resulting in gradual avalanche. Showing the phenomenon, B-
There was a drawback that the slope of the V characteristic curve could not be made steeper.

第2図はELパネルのB―V特性を示すが、従
来の構造のELパネルは同図曲線Iの如く印加電
圧Vaより発光を開始し、印加電圧Vの増加と共
に輝度Bも緩やかに増し、電圧Vbで輝度はほぼ
飽和する。このように、従来のもののB―V曲線
は曲線Iのように勾配が緩やかになつている。
Figure 2 shows the B-V characteristics of an EL panel, and an EL panel with a conventional structure starts emitting light at an applied voltage Va, as shown by curve I in the figure, and as the applied voltage V increases, the brightness B gradually increases. The brightness is almost saturated at voltage Vb. In this way, the conventional BV curve has a gentle slope like curve I.

この種の表示パネルの表示方法は表示時には電
圧Vbを印加し、非表示時は電圧をゼロにするの
ではなく印加時間を短かくし表示画素数を増す目
的で電圧をVaまでしか下げない。
In the display method of this type of display panel, a voltage Vb is applied when displaying, and when not displaying, the voltage is lowered only to Va in order to shorten the application time and increase the number of display pixels instead of reducing the voltage to zero.

所が、従来のELパネルは前記したようにB―
V曲線が緩やかであるため、すなわちVaとVbの
差が大きいためVaからVbまで昇圧するのに時間
がかかり走査電極数を増せないという欠点があつ
た。
However, as mentioned above, conventional EL panels have B-
Since the V curve is gentle, that is, the difference between Va and Vb is large, it takes time to boost the voltage from Va to Vb, and the number of scanning electrodes cannot be increased.

〔発明の構成〕[Structure of the invention]

―問題を解決するための手段― 前記の問題を解決するために、本発明は発光層
の両側と絶縁性に優れたSi3N4膜との間に発光層
と絶縁層との界面に深いエネルギーレベルの界面
状態を形成する窒素欠損状態のSi3N4膜(以下
Si3N4-x膜と称する)を追加した構造とし、
Si3N4-x膜と絶縁性に優れたSi3N4膜とIn2O3など
より成る透明電極およびAlなどより成る背面電
極の夫れぞれに対する密着性を良くするための
SiO2膜とを反応性スパツタ法により同一真空槽
内で、しかも供給ガスの量を変えるのみで大気に
触れさせず連続して形成することとしている。
-Means for Solving the Problem- In order to solve the above problem, the present invention provides a method of forming a deep layer at the interface between the light emitting layer and the insulating layer between both sides of the light emitting layer and the Si 3 N 4 film having excellent insulating properties. A Si 3 N 4 film in a nitrogen-deficient state (hereinafter referred to as
Si 3 N 4-x film) is added to the structure.
In order to improve the adhesion to each of the Si 3 N 4-x film, the Si 3 N 4 film with excellent insulating properties, the transparent electrode made of In 2 O 3 , etc., and the back electrode made of Al, etc.
The SiO 2 film is formed continuously in the same vacuum chamber by the reactive sputtering method without exposing it to the atmosphere by simply changing the amount of gas supplied.

―作用― 前記手段でも述べたが、Si3N4-x膜の介在によ
つて発光層と絶縁層との界面に深いエネルギーレ
ベルを形成することができるので、B―V特性曲
線が急勾配のELパネルを製造でき、しかもその
第1絶縁層、第2絶縁層はそれぞれにおいての同
一真空槽内で連続して形成できる。
- Effect - As mentioned in the above means, a deep energy level can be formed at the interface between the light-emitting layer and the insulating layer due to the presence of the Si 3 N 4-x film, so that the BV characteristic curve has a steep slope. EL panels can be manufactured, and the first insulating layer and the second insulating layer can be formed continuously in the same vacuum chamber.

―実施例― 以下に、本発明の一実施例を図面に基づいて説
明する。
-Example- Hereinafter, an example of the present invention will be described based on the drawings.

尚、前記従来例と同じ構成成分に対しては同一
の符号を用いた。
Note that the same reference numerals are used for the same components as in the conventional example.

第1図は本発明による方法で製造したELパネ
ルの側断面図であり、透明なガラス基板1上に複
数本のストライプ状の例えばIn2O3などより成る
透明電極2を形成した後、この透明電極2を有す
る基板面1a上にSiをターゲツトとして反応性ス
パツタ法により、先ず第1絶縁層9aを構成する
各膜を同一真空槽内で連続して形成する。
FIG. 1 is a side cross-sectional view of an EL panel manufactured by the method according to the present invention, in which a plurality of striped transparent electrodes 2 made of, for example, In 2 O 3 are formed on a transparent glass substrate 1. First, each film constituting the first insulating layer 9a is successively formed in the same vacuum chamber on the substrate surface 1a having the transparent electrode 2 by reactive sputtering using Si as a target.

その方法は、基板面1a上にArガスと豊富な
O2ガスの混合ガス雰囲気でSiO2膜3aを形成す
る。この、SiO2膜3aは前述の透明電極2及び
その後に形成される絶縁性に優れたSi3N4膜5a
との密着性を高めるためのものであるから、その
膜厚は1000Å以下でよい。
In this method, Ar gas and abundant
The SiO 2 film 3a is formed in a mixed gas atmosphere of O 2 gas. This SiO 2 film 3a is the above-mentioned transparent electrode 2 and the Si 3 N 4 film 5a with excellent insulating properties formed afterwards.
The film thickness may be 1000 Å or less since it is intended to improve adhesion with the film.

次に、このSiO2膜3a上に除々にO2ガス量を
減少させ、かつ同時にN2ガスを注入増加させな
がらSiとOとNの化合物薄膜4aを形成する。こ
の場合、SiO2膜3a上に直接Si3N4膜5aを形成
するとSi3N4膜5aが剥離する虞れがあるため、
これら膜組成の急激な変化を緩和するために、こ
の化合物薄膜4aを設けるものであるからその膜
厚は1000Å以下であつて良いことは勿論であり、
場合によつてはこの化合物薄膜4aを実質的に取
除いても良い。
Next, a compound thin film 4a of Si, O, and N is formed on this SiO 2 film 3a while gradually decreasing the amount of O 2 gas and simultaneously increasing the injection of N 2 gas. In this case, if the Si 3 N 4 film 5a is formed directly on the SiO 2 film 3a, there is a risk that the Si 3 N 4 film 5a will peel off.
Since the compound thin film 4a is provided to alleviate these rapid changes in film composition, it goes without saying that the film thickness may be 1000 Å or less.
In some cases, this thin compound film 4a may be substantially removed.

続いて、ついにはO2ガスを完全に排除しArガ
スと豊富なN2ガスの混合ガス雰囲気中で、この
化合物薄膜4a上に絶縁性に優れたSi3N4膜8a
を形成する。この、Si3N4膜5aはELパネルの絶
縁を行なう機能を有し、これがため1000〜3000Å
程合の膜厚とするのが好適である。
Subsequently, O 2 gas is completely eliminated and a Si 3 N 4 film 8a with excellent insulation properties is formed on this compound thin film 4a in a mixed gas atmosphere of Ar gas and abundant N 2 gas.
form. This Si 3 N 4 film 5a has the function of insulating the EL panel, and therefore has a thickness of 1000 to 3000 Å.
It is preferable to set the film thickness to an appropriate level.

更に続いて、N2ガスを大量に排気し真空槽内
をArガスと少量のN2ガスの混合ガス雰囲気と
し、窒素欠損状態のSi3N4-x膜8aを形成する。
この、Si3N4-x膜8aは化学量論的に安定な
Si3N4の窒素が不足した状態であつて、電子の発
生が多くなるようにし、このSi3N4-x膜8aの上
に続いて形成される発光層6へ電子をより多く注
入させるためのものであり、その膜厚は500〜
3000Å程度とするのが好適である。
Further, a large amount of N 2 gas is evacuated to create a mixed gas atmosphere of Ar gas and a small amount of N 2 gas in the vacuum chamber, thereby forming a nitrogen-deficient Si 3 N 4-x film 8a.
This Si 3 N 4-x film 8a is stoichiometrically stable.
In a state where Si 3 N 4 is deficient in nitrogen, more electrons are generated, and more electrons are injected into the light emitting layer 6 that is subsequently formed on this Si 3 N 4-x film 8a. The film thickness is 500~
The thickness is preferably about 3000 Å.

以上、順次積層形成したSiO2膜3a、化合物
薄膜4a、Si3N4膜5a、Si3N4-x膜8aが第1
絶縁層9aである。
As described above, the SiO 2 film 3a, the compound thin film 4a, the Si 3 N 4 film 5a, and the Si 3 N 4-x film 8a, which are laminated in sequence, are the first
This is an insulating layer 9a.

この第1絶縁層9aを構成する各膜の形成に当
り、Arガス、N2ガス及びO2ガスの量を変える方
法は、反応性スパツタ装置の排気装置により真空
槽内を常に連続して排気しつつ、別個に設けたガ
ス混合器によりArガス、N2ガス及びO2ガスの混
合比を変えながら所要のガスをこの真空槽内へ注
入する方法としている。従つて、ガラス基板1側
のSiO2膜3a、SiとNとOの化合物薄膜4a、
Si3N4膜5a及びSi3N4-x膜8aを同一真空槽内
で大気に触れること無く連続して順次形成するこ
とができる。
The method of changing the amounts of Ar gas, N 2 gas, and O 2 gas in forming each film constituting the first insulating layer 9a is to constantly evacuate the inside of the vacuum chamber using the exhaust device of the reactive sputtering device. However, the required gas is injected into the vacuum chamber while changing the mixing ratio of Ar gas, N 2 gas, and O 2 gas using a separately provided gas mixer. Therefore, the SiO 2 film 3a on the glass substrate 1 side, the compound thin film 4a of Si, N, and O,
The Si 3 N 4 film 5a and the Si 3 N 4-x film 8a can be successively formed in the same vacuum chamber without being exposed to the atmosphere.

この様にして、第1絶縁層9aが形成された試
料を真空槽から取出して窒素欠損状態のSi3N4-x
膜8a上に別の真空槽内での電子ビーム蒸着法で
発光層6を形成する。この発光層6は例えばZnS
を母体とし0.3〜0.7重量%のMnを発光中心とし
てドープしたもので、106V/cm以上の電界が印
加されると横橙色を発光するが、これに限定され
ず他の色を発光するものであつても良い。
The sample on which the first insulating layer 9a was formed in this way was taken out from the vacuum chamber and Si 3 N 4-x in a nitrogen-deficient state was removed.
A light emitting layer 6 is formed on the film 8a by electron beam evaporation in a separate vacuum chamber. This light emitting layer 6 is made of, for example, ZnS.
doped with 0.3 to 0.7% by weight of Mn as the luminescent center, and when an electric field of 10 6 V/cm or more is applied, it emits horizontal orange, but is not limited to this, and can emit other colors. It's okay if it's something.

次に、この発光層6上に第2絶縁層を前記と同
じスパツタ法により同一真空槽内で連続して形成
する。
Next, a second insulating layer is continuously formed on this light emitting layer 6 in the same vacuum chamber by the same sputtering method as described above.

その方法は、前記した第1絶縁層9aの各膜と
対称的配置となるように、前述とは逆の順序で形
成する。
In this method, the first insulating layer 9a is formed in the reverse order so as to be arranged symmetrically with each film of the first insulating layer 9a.

先ず、発光層6上にArガスと少量のN2ガスの
混合ガス雰囲気中で化学定量的に窒素欠損状態の
Si3N4-x膜8bを形成する。
First, a nitrogen-deficient state is chemically quantitatively formed on the light-emitting layer 6 in a mixed gas atmosphere of Ar gas and a small amount of N2 gas.
A Si 3 N 4-x film 8b is formed.

次に、N2ガスの量を増しArガスと豊富なN2
スの混合ガス雰囲気中で、このSi3N4-x膜8b上
に絶縁性に優れたSi3N4膜5bを形成する。
Next, the amount of N 2 gas is increased to form a Si 3 N 4 film 5b with excellent insulation properties on this Si 3 N 4-x film 8b in a mixed gas atmosphere of Ar gas and rich N 2 gas. .

更に引続き、除々にN2ガスを減じると同時に
O2ガスを注入し、このSi3N4膜5b上に所要に応
じSiとNとOの化合物薄膜4bを形成する。
Furthermore, while gradually reducing N2 gas,
O 2 gas is injected to form a compound thin film 4b of Si, N, and O on this Si 3 N 4 film 5b as required.

そして、最終的にArガスと豊富なO2ガスの雰
囲気中で、この化合物薄膜4b上に、またはこの
化合物薄膜4bが形成されていない場合には
Si3N4膜5b上に背面電極側のSiO2膜3bを形成
する。
Finally, in an atmosphere of Ar gas and rich O 2 gas, on this compound thin film 4b, or when this compound thin film 4b is not formed,
A SiO 2 film 3b on the back electrode side is formed on the Si 3 N 4 film 5b.

この、順次積層形成したSi3N4-x膜8b、
Si3N4-x膜8b、Si3N4膜5b、化合物薄膜4b、
SiO2膜3bが第2絶縁層9bであり、その各膜
の形成は前記第1絶縁層9aの形成と同じように
スパツタ法により同一真空槽内で形成するので同
一条件のものが形成できる。ただし、前記したよ
うに方法の手順を逆にして発光層6を介して各膜
が対称に配置されている。
This Si 3 N 4-x film 8b formed in a sequential manner,
Si 3 N 4-x film 8b, Si 3 N 4 film 5b, compound thin film 4b,
The SiO 2 film 3b is the second insulating layer 9b, and each film is formed in the same vacuum chamber by sputtering in the same manner as the first insulating layer 9a, so that they can be formed under the same conditions. However, as described above, the steps of the method are reversed and the films are arranged symmetrically with the light emitting layer 6 in between.

このようにして得た試料を、真空槽から取出し
てSiO2膜3b上に例えばAlなどより成る複数本
のストライプ状の背面電極7を前記透明電極2と
直角に交差するように被着形成し、その後、所要
に応じて必要な処理を行なつて第1図に示す様な
構造のELパネルを得ている。
The sample thus obtained is taken out of the vacuum chamber, and a plurality of striped back electrodes 7 made of, for example, Al are deposited on the SiO 2 film 3b so as to cross the transparent electrode 2 at right angles. Thereafter, necessary processing is performed as required to obtain an EL panel having a structure as shown in FIG.

また、背面電極7の材料であるAlとSiO2膜3
bとの密着性を更に増したい場合はSiO2膜3b
上にAl2O3膜を更に形成するか、SiO2膜3bの代
りにAl2O3膜を用いても良い。
In addition, Al, which is the material of the back electrode 7, and the SiO 2 film 3
If you want to further increase the adhesion with b, use SiO 2 film 3b
An Al 2 O 3 film may be further formed thereon, or an Al 2 O 3 film may be used in place of the SiO 2 film 3b.

以上の方法で得た構成のELパネルは、発光層
6の両側に窒素欠損のSi3N4-x膜8a,8b、即
ち優れた絶縁性をもつSi3N4膜から窒素が欠損し
た状態のものを設けてあり、このSi3N4-x膜8a,
8bは伝導電子を供給するいわゆるドナー準位を
形成するので、Si3N4-x膜8a,8bと発光層6
との界面に深いレベルでエネルギーレベルの界面
状態が形成され、Si3N4-x膜8a又は8bから発
光層6への電子の注入がSi3N4-x膜8aと8bと
の間の電位差がある値に達すると急激に増す、い
わゆるアバランシエ現象を示し、B―V曲線の勾
配も急勾配となる。
The EL panel having the structure obtained by the above method has nitrogen-deficient Si 3 N 4-x films 8a and 8b on both sides of the light-emitting layer 6, that is, a state in which nitrogen is deficient from the Si 3 N 4 film having excellent insulating properties. This Si 3 N 4-x film 8a,
Since the layer 8b forms a so-called donor level that supplies conduction electrons, the Si 3 N 4-x films 8a, 8b and the light emitting layer 6
An interface state with a deep energy level is formed at the interface between the Si 3 N 4-x films 8a and 8b, and electron injection from the Si 3 N 4-x film 8a or 8b into the light-emitting layer 6 occurs between the Si 3 N 4-x films 8a and 8b. When the potential difference reaches a certain value, it shows a so-called avalanche phenomenon in which it increases rapidly, and the slope of the BV curve also becomes steep.

次に、ELパネルのB―V特性を示す第2図を
加えて説明していく。尚、曲線Iは従来のB―V
特性を示し、曲線は本発明のB―V特性を示す
ものである。
Next, we will explain with reference to Figure 2, which shows the BV characteristics of the EL panel. In addition, curve I is the conventional B-V
The curve shows the BV characteristics of the present invention.

図に示すように、本発明によるB―V特性の曲
線は印加電圧V1で発光を開始し電圧V2で飽和
輝度に達しており、いわゆるB―V曲線の勾配は
急勾配となり電圧V1とV2の差が小さくなるので、
走査電極数、即ち表示画素数を増すことができク
ロストークも生じないという利点がある。
As shown in the figure, the BV characteristic curve according to the present invention starts emitting light at an applied voltage of V 1 and reaches saturation brightness at a voltage of V 2 , and the slope of the so-called BV curve becomes steep and the voltage V 1 Since the difference between and V 2 becomes smaller,
This has the advantage that the number of scanning electrodes, that is, the number of display pixels can be increased, and crosstalk does not occur.

また、低電圧域においても電子の発光層への注
入が多いため第2図に示す如く従来のELパネル
の発光開始電圧Vaより低い電圧で発光する。も
ちろん、飽和輝度電圧V2も従来のELパネルに比
べ非常に低電圧化が図れる。
Further, even in the low voltage range, many electrons are injected into the light emitting layer, so as shown in FIG. 2, light is emitted at a voltage lower than the light emission starting voltage Va of the conventional EL panel. Of course, the saturation brightness voltage V2 can also be much lower than that of conventional EL panels.

これらの電圧は発光層6、第1絶縁層9a、第
2絶縁層9b、の膜厚によつて異なるが、発光層
6の膜厚を6000Å、第1絶縁層9a及び第2絶縁
層9bの膜厚を3000Åとした時、従来よりおおよ
そ50Vの低減が図れた。
These voltages differ depending on the film thickness of the light emitting layer 6, the first insulating layer 9a, and the second insulating layer 9b. When the film thickness was set to 3000 Å, a reduction of approximately 50 V was achieved compared to the conventional method.

そして、Si3N4-x膜8a,8bの外側には絶縁
性に優れたSi3N4膜5a,5bが形成されている
ので、駆動回路からの電流が流れ込むことがない
から、即ち直流成分はカツトされるからELパネ
ルのジユール熱による破損という不都合は生せ
ず、長寿命のELパネルが得られる。
Since the Si 3 N 4 films 5a and 5b with excellent insulation properties are formed on the outside of the Si 3 N 4 -x films 8a and 8b, no current from the drive circuit flows, that is, no direct current flows. Since the components are cut out, there is no problem of damage to the EL panel due to Joule heat, and an EL panel with a long life can be obtained.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように、第1,第2絶
縁層に窒素欠損のSi3N4-x膜を設けて、発光層を
該Si3N4-x膜で挟むように第1,第2絶縁層を設
けたので発光層における界面レベルが従来のもの
より深いレベルにでき、急勾配のB―V特性曲線
を有するELパネルを得ることができるので、表
示画素数の増加が図れ、かつELパネルの長寿命
化も行なえる等の効果を有するものである。
As explained above, this invention provides nitrogen-deficient Si 3 N 4-x films for the first and second insulating layers, and the first and second insulating layers are sandwiched between the Si 3 N 4-x films so that the light emitting layer is sandwiched between them. Since two insulating layers are provided, the interface level in the light-emitting layer can be made deeper than that of conventional ones, making it possible to obtain an EL panel with a steep BV characteristic curve, thereby increasing the number of display pixels, and This has the effect of extending the life of the EL panel.

また、反応性スパツタ法により混合ガスの混合
比を変えることにより第1,第2絶縁層を形成し
ているので、それぞれ別個の同一真空槽内で各膜
を連続して形成できる効果もあり、第1,第2絶
縁層の各層は容易に同一条件に形成することがで
きる。
In addition, since the first and second insulating layers are formed by changing the mixing ratio of the mixed gas using the reactive sputtering method, each film can be formed successively in the same separate vacuum chamber. Each of the first and second insulating layers can be easily formed under the same conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による方法で製造したELパネ
ルの側断面図、第2図はELパネルのB―V特性
を示すグラフ、第3図は従来の製造方法による
ELパネルの側断面図である。 1…ガラス基板、2…透明電極、3a,3b…
SiO2膜、4a,4b…化合物薄膜、5a,5b
…Si3N4膜、6…発光層、7…背面電極、8a,
8b…Si3N4-x膜。
Fig. 1 is a side sectional view of an EL panel manufactured by the method according to the present invention, Fig. 2 is a graph showing the BV characteristics of the EL panel, and Fig. 3 is a graph showing the EL panel manufactured by the conventional manufacturing method.
FIG. 3 is a side sectional view of the EL panel. 1...Glass substrate, 2...Transparent electrode, 3a, 3b...
SiO 2 film, 4a, 4b... Compound thin film, 5a, 5b
... Si3N4 film , 6...light emitting layer, 7...back electrode, 8a,
8b...Si 3 N 4-x film.

Claims (1)

【特許請求の範囲】 1 ガラス基板上に透明電極、第1絶縁層、発光
層、第2絶縁層、背面電極を順次積層して形成し
たELパネルにおいて 前記第1絶縁層が、少なくとも、Si3N4膜と、
窒素欠損状態のSi3N4-x膜とを順次積層して成り、 前記第2絶縁層が、少なくとも、窒素欠損状態
のSi3N4-x膜と、Si3N4膜とを順次積層して成る
ことを特徴とするELパネル。 2 透明電極を形成した透明基板を真空槽内に配
置して、該透明基板上のSiをターゲツトとして反
応性スパツタ法によりArガスと豊富なO2の混合
ガス中でSiO2膜を形成し、 徐々にO2ガスの量を減じ同時にN2ガスを増加
して所要に応じてSiとOとNの化合物薄膜を形成
し、 ついにはArガスと豊富なN2ガスのみの混合ガ
ス中でSi3N4膜を形成し、 さらに大量のN2ガスを急激に排気し窒素欠損
状態のSi3N4-x膜を形成して、 前記真空槽から取り出し、窒素欠損状態の
Si3N4-x膜面に発光層を形成し、 その後他の真空槽内で発光層面にArガスと少
量のN2ガスの混合ガス中で窒素欠損状態の
Si3N4-x膜を形成し、 急激にN2ガスを増してArガスと豊富なN2ガス
の混合ガス中でSi3N4膜を形成し、 次にN2ガスを徐々に減じると同時にO2ガスを
増加しつつArガスとN2ガスとO2ガスの混合ガス
中でSiとOとNの化合物薄膜を形成し、 ついにはArガスとO2ガスのみの混合ガス中で
SiO2膜を形成し、該SiO2膜面に背面電極を形成
することを特徴とするELパネルの製造方法。
[Claims] 1. In an EL panel formed by sequentially laminating a transparent electrode, a first insulating layer, a light emitting layer, a second insulating layer, and a back electrode on a glass substrate, the first insulating layer is made of at least Si 3 . N4 membrane,
A nitrogen-deficient Si 3 N 4-x film is sequentially laminated, and the second insulating layer is formed by sequentially laminating at least a nitrogen-deficient Si 3 N 4-x film and a Si 3 N 4 film. An EL panel characterized by: 2. A transparent substrate with a transparent electrode formed thereon is placed in a vacuum chamber, and a SiO 2 film is formed in a mixed gas of Ar gas and abundant O 2 by reactive sputtering using Si on the transparent substrate as a target. Gradually reduce the amount of O 2 gas and increase N 2 gas at the same time to form a compound thin film of Si, O, and N as required, and finally Si in a mixed gas of only Ar gas and abundant N 2 gas. 3 N 4 film is formed, and a large amount of N 2 gas is rapidly exhausted to form a nitrogen-deficient Si 3 N 4-x film, which is taken out of the vacuum chamber and nitrogen-deficient
A light-emitting layer is formed on the surface of the Si 3 N 4-x film, and then a nitrogen-deficient state is formed on the surface of the light-emitting layer in a mixed gas of Ar gas and a small amount of N 2 gas in another vacuum chamber.
Form a Si 3 N 4-x film, then rapidly increase N 2 gas to form a Si 3 N 4 film in a mixed gas of Ar gas and rich N 2 gas, then gradually reduce N 2 gas. At the same time, while increasing O 2 gas, a thin compound film of Si, O, and N is formed in a mixed gas of Ar gas, N 2 gas, and O 2 gas, and finally in a mixed gas of Ar gas and O 2 gas only.
1. A method for manufacturing an EL panel, comprising forming a SiO 2 film and forming a back electrode on the surface of the SiO 2 film.
JP59095595A 1984-05-15 1984-05-15 El panel and method of producing same Granted JPS60240097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59095595A JPS60240097A (en) 1984-05-15 1984-05-15 El panel and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59095595A JPS60240097A (en) 1984-05-15 1984-05-15 El panel and method of producing same

Publications (2)

Publication Number Publication Date
JPS60240097A JPS60240097A (en) 1985-11-28
JPS6343880B2 true JPS6343880B2 (en) 1988-09-01

Family

ID=14141917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59095595A Granted JPS60240097A (en) 1984-05-15 1984-05-15 El panel and method of producing same

Country Status (1)

Country Link
JP (1) JPS60240097A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63994A (en) * 1986-06-18 1988-01-05 松下電器産業株式会社 Manufacture of thin film electric field light emission device
JPH0740515B2 (en) * 1986-08-13 1995-05-01 株式会社日立製作所 Thin film light emitting device
JPS63250090A (en) * 1987-04-07 1988-10-17 シャープ株式会社 Thin film el panel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124883A (en) * 1981-01-26 1982-08-03 Sharp Kk Thin film el element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124883A (en) * 1981-01-26 1982-08-03 Sharp Kk Thin film el element

Also Published As

Publication number Publication date
JPS60240097A (en) 1985-11-28

Similar Documents

Publication Publication Date Title
US5721562A (en) Electroluminescent display device including a columnar crystal structure insulating film
JPH0794278A (en) Organic thin film light emitting element
JPS6343880B2 (en)
JPS60134277A (en) Manufacture of el panel
JPH08162273A (en) Thin film el element
JPS631439Y2 (en)
KR0164456B1 (en) Blue color lighting electro-luminescense element and its manufacturing method
KR970006081B1 (en) Manufacturing method of thin-film el display element
JPS5829880A (en) Electric field luminescent element
JPH0824071B2 (en) Thin film electroluminescent device
JPH0433120B2 (en)
JPH04341797A (en) Blue-emitting thin film el element
JPS59154794A (en) Thin film el element
JPH04190588A (en) Thin film el element
JPS62115691A (en) Manufacture of electroluminescence panel
JPH11102785A (en) El element
JPH088147B2 (en) Thin film EL device
JPS6147096A (en) Method of producing thin film el element
JPS598040B2 (en) Thin film EL element
JPH01206596A (en) Film type electroluminescence element
JPH0666154B2 (en) Thin film electroluminescent device
JPH05182767A (en) Thin film el element
JPH03280394A (en) Thin film type electroluminescence element
JPH01146288A (en) Multicolor thin film electroluminescent element
JPH0324756B2 (en)