JP3976892B2 - Thin film EL device - Google Patents

Thin film EL device Download PDF

Info

Publication number
JP3976892B2
JP3976892B2 JP16983498A JP16983498A JP3976892B2 JP 3976892 B2 JP3976892 B2 JP 3976892B2 JP 16983498 A JP16983498 A JP 16983498A JP 16983498 A JP16983498 A JP 16983498A JP 3976892 B2 JP3976892 B2 JP 3976892B2
Authority
JP
Japan
Prior art keywords
thin film
light emitting
emitting layer
srs
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16983498A
Other languages
Japanese (ja)
Other versions
JP2000012231A (en
Inventor
克 田中
陽司 井上
信治 岡本
佳孝 和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Broadcasting Corp filed Critical Japan Broadcasting Corp
Priority to JP16983498A priority Critical patent/JP3976892B2/en
Publication of JP2000012231A publication Critical patent/JP2000012231A/en
Application granted granted Critical
Publication of JP3976892B2 publication Critical patent/JP3976892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は薄型、平面、長寿命、高コントラストなどを特徴とする薄膜ELディスプレイに使用される青色用薄膜EL素子に関するものである。
【0002】
【従来の技術】
発光現象の一つであるエレクトロルネッセンスを応用したEL素子は、平面型ディスプレイに用いられている。このディスプレイのフルカラー化のためには、赤、緑、青の三原色を呈する発光層が必要である。青色発光層については、セリウム(Ce)を付活したSrS(SrS:Ce)等が用いられてきた。しかし、この発光層の発光ピーク波長は480nm程度よりも短波長にならないため純粋な青色とならず色再現範囲を狭くしている。そこで最近では特開平5−65478号公報「青色光発光リン光体を有する交流薄膜エレクトロルミネッセンス装置」、特開平8−162273号公報「薄膜EL素子」あるいは特開平8−83685号公報「白色EL素子」に開示されているように青色発光材料としてチオガレートが検討されている。
【0003】
【発明が解決しようとする課題】
薄膜ELディスプレイでフルカラー表示を実現するには、高輝度で純粋な色調をもつ青色発光素子が必要であるが、特開平5−65478号公報では薄膜作成時に高温の熱処理が必要であったり、特開平8−162273号公報では青色の色純度が劣る欠点や複雑な構造を必要としたり、また、特開平8−83685号公報における白色発光に用いるチオガレートの発光成分である青色成分は弱く、カラーフィルタと組み合わせた時の青色発光が不足するため十分広い色再現範囲にならないなどの欠点があった。
【0004】
そこで本発明の目的は、高輝度で純粋な青色発光を有し、薄膜ELディスプレイでフルカラー表示に適する青色発光用薄膜EL素子を提供せんとするものである。
【0005】
【課題を解決するための手段】
この目的を達成するため、本発明薄膜EL素子は、いずれか1方が透光性を有する1対の電極間に、発光層としてのCeを付活したSr2 Ga2 5 薄膜とこれと接するようSr2 Ga2 5 薄膜の少なくとも基板側に接合されたSrS薄膜とが配設されるとともに、これら配設された複合薄膜と前記1対の電極のそれぞれとの間にさらに絶縁層がそれぞれ配設され、前記Ceを付活したSr 2 Ga 2 5 発光層が〔100〕軸方向に配向されたSrS薄膜上に〔001〕軸方向に配向されて接合されることを特徴とするものである。
【0007】
またさらに、本発明薄膜EL素子は、前記発光層が480nm以下に第1ピーク発光波長を有し、前記発光層の発光色がCIE色度座標上0.1≦x≦0.2、0.05≦y≦0.2の青色領域に位置することを特徴とするものである。
【0008】
【発明の実施の形態】
本発明によれば第1に、Ceを付活したSr2 Ga2 5 発光層がその少なくとも基板側に配設されたSrS薄膜と接合されるので、Sr2 Ga2 5 薄膜多結晶粒子の配向性が良好となり、発光のためのキャリア注入効率が上昇して発光輝度が向上し、前記特開平8−162273号記載の素子のように発光層を複数積層する必要がなく複雑な構造を排除することができる。
【0009】
第2に、〔100〕軸方向に配向されたSrS薄膜上に接合されたSr2 Ga2 5 :Ce発光層は〔001〕軸方向にかなり良好に配向されるので、結晶性が改善され発光層中の多結晶粒子の配向性の単一化がはかられて、多結晶内の電子散乱を低減でき発光輝度がさらに向上する。
またさらに第3に、セリウムイオンは前記Sr2 Ga2 5 発光層の単一配向と結晶性改善によって均一分散した青色発光する発光中心を形成しやすくなり、セリウムイオン濃度を工夫するなどして、発光層の第1ピーク発光波長を480nm以下、CIE色度座標上0.1≦x≦0.2,0.05≦y≦0.2の青色領域に選定することにより、色純度のよい青色発光が得られディスプレイの色再現範囲を広くとることができるようになる。
【0010】
以下添附図面を参照し実施例により本発明の実施の形態をより詳細に説明する。
図1は本発明の一実施例における薄膜EL素子の断面図である。
ガラス基板1上にITO(インジウム、錫の酸化物)透明電極2を電子線蒸着法により約200nm程度の厚さになるよう形成する。複合薄膜7上下の絶縁層3,8は高周波マグネトロンスパッタ法により形成した約100nmのSiO2 膜と約500nmのTa2 5 膜を積層した複合絶縁層とする。
【0011】
複合薄膜7の形成要素SrS薄膜4,6(この実施例ではSr2 Ga2 5 :Ce発光層5を挟む形に形成されているが、SrS薄膜は勿論基板側のみでもよい)は電子線蒸着法やスパッタ法あるいはCVD法などでも形成できるが、この実施例では共蒸着法によって形成した。詳細には、Sr金属とH2 Sガスを500℃から600℃に保った基板上で化学反応させて約100nm〜200nmの厚みに形成した。またSr金属とGa2 3 化合物を基板温度600℃以上で共蒸着することによっても形成した。この場合化学反応式は
2Sr+Ga2 3 →2SrS+Ga2 S(蒸発)
となる。
【0012】
基板側のSrS薄膜4形成後にSr2 Ga2 5 :Ce発光層5を形成させるが、この時注意すべきことは形成されたSrS薄膜表面を空気に曝すことなく、すなわち汚染させることなく連続して発光層Sr2 Ga2 5 :Ceを形成し、下側にできている配向性のよい多結晶SrS粒子を利用して配向性のよいSr2 Ga2 5 :Ce多結晶粒子を形成させることである(エピタキシャル生成に近いといえるかもしれない)。本実施例では、SrS薄膜形成後連続して基板温度を570℃に保ち、Sr金属、Ga2 3 化合物およびドーパント形成用CeCl3 化合物を同時に真空中蒸発させ、SrS薄膜上で化学反応させて膜厚約400nmに形成した。この場合の化学反応式は
2Sr+2Ga2 3 →Sr2 Ga2 5 +Ga2 S(蒸発)
となる。
【0013】
Ceイオン濃度は10原子%以下が好ましく、これ以上の濃度になると発光層Sr2 Ga2 5 :Ceの輝度が低下する。本実施例では薄膜形成後の熱処理は行なわれず、最終的に上部電極9は真空蒸着法による金属Al蒸着膜で膜厚は約200nmである。
【0014】
本発明実施例で作成されたSr2 Ga2 5 :Ce発光層およびその下に配置されたSrS薄膜のX線回折パターンを図2に示す。図の横軸はブラッグ角θの2倍を表わし、縦軸はX線回折強度(任意単位)、図のピーク11,12,13および14はそれぞれ(004)Sr2 Ga2 5 ,(200)SrS,(111)SrSおよび(220)SrSによる回折線である。2θが約29°付近のピーク11がSr2 Ga2 5 結晶の(004)配向に対応している。他のいくつかのピーク12,13および14はSr2 Ga2 5 :Ce発光層の下に配置したSrS薄膜からのものであり、SrS結晶の(200)が主配向となっている。Sr2 Ga2 5 :Ce発光層が良好な単一性配向を示しており、層内の高電界で加速された電子は配向面境界による散乱を回避でき、輝度や効率を向上させる効果がある。
【0015】
(200)配向したSrS薄膜と(004)配向したSr2 Ga2 5 :Ce発光層の格子位置を図3(a),(b)に示す。図で白ヌキ丸印はS原子の、斜線のはいった丸印はSr原子の、黒丸印はGa原子の位置を示す。わずかなずれはあるが、c軸に垂直な面内にSrとSの格子位置がSrSの格子位置の整数倍になるSr2 Ga2 5 結晶面があり格子整合する。図3に示した硫黄(S)の格子位置についてみると、x軸方向に3.8%、y軸方向に0.03%と格子不整合はわずかである。これによってSr2 Ga2 5 は〔001〕に単一配向し、しかもSr2 Ga2 5 :Ce発光層へのキャリヤ注入が効率よく起こる。
【0016】
図4に本発明によるSrS薄膜を配置したEL素子の輝度−印加電圧特性21と配置しないEL素子の輝度−印加電圧特性22を示す。この発光輝度−印加電圧特性は電極間に1kHz交流電圧を印加したときに得られる発光輝度を測定したものである。SrS薄膜の配置によって発光輝度が向上することがわかる。
【0017】
本発明によって作成したEL発光層の発光スペクトルを図5に示す。Ce3+イオンの5d−4f電子遷移による発光である。第一ピーク波長23が443nm付近にあるため、青色成分を十分にもった発光である。
【0018】
本発明によるSr2 Ga2 5 :Ce発光層24、特開平8−162273号公報によるSr2 Ga2 5 :Ce発光層25、SrS:Ce発光層26それぞれの色度座標を示した色度図を図6に示す。本発明によるSr2 Ga2 5 :Ce発光層は(x,y)=(0.15,0.12)付近に位置し、CRT蛍光体と同じ色純度の優れた青色発光であり、ディスプレイに使用した場合色再現が広くなる。
【0019】
以上本発明一実施例の構成とそれが諸特性について従来技術と比較して説明してきたが、本発明はこの実施例に限定されることなく、発明の要旨内で各種の変形変更の可能なことは当業者に自明であろう。
【0020】
【発明の効果】
本発明によれば高輝度で純粋な青色発光を有し、薄膜ELディスプレイでフルカラー表示に適する青色発光用薄膜EL素子が提供できる。
【図面の簡単な説明】
【図1】本発明一実施例薄膜EL素子の断面図。
【図2】本発明によるSr2 Ga2 5 :Ce発光層とその下に配設されたSrS薄膜のX線回折パターン。
【図3】本発明による(004)単一配向Sr2 Ga2 5 :Ce発光層(b)とSrS薄膜(a)との格子位置を表す結晶構造図。
【図4】本発明によるSrS薄膜を配設した薄膜EL素子(21)と配設しない薄膜EL素子(22)の輝度−印加電圧特性を示すグラフ。
【図5】本発明によるSr2 Ga2 5 :Ce発光層の発光スペクトル(443nm付近に第1ピーク23を有する)。
【図6】本発明によるSr2 Ga2 5 :Ce発光層(24)、特開平8−162273号公報によるSr2 Ga2 5 :Ce発光層(25)および同SrS:Ce発光層(26)それぞれの色度座標を示した色度図。
【符号の説明】
1 ガラス基板
2 透明電極
3,8 複合絶縁層
4,6 SrS薄膜
5 発光層
7 複合薄膜
9 上部電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a blue thin film EL element used in a thin film EL display characterized by thinness, flatness, long life, high contrast, and the like.
[0002]
[Prior art]
An EL element using electroluminescence, which is one of light emission phenomena, is used in a flat display. In order to achieve full color display, a light emitting layer exhibiting three primary colors of red, green and blue is necessary. For the blue light emitting layer, SrS (SrS: Ce) activated with cerium (Ce) has been used. However, since the emission peak wavelength of the light emitting layer does not become shorter than about 480 nm, it does not become pure blue and the color reproduction range is narrowed. Therefore, recently, Japanese Patent Application Laid-Open No. 5-65478, “AC thin film electroluminescence device having a blue light emitting phosphor”, Japanese Patent Application Laid-Open No. 8-162273, “Thin film EL device”, or Japanese Patent Application Laid-Open No. 8-8385, “White EL device”. As a blue light emitting material, thiogallate has been studied.
[0003]
[Problems to be solved by the invention]
In order to realize full color display on a thin film EL display, a blue light emitting element having high brightness and pure color tone is required. However, in Japanese Patent Application Laid-Open No. 5-65478, high temperature heat treatment is required when forming a thin film. In Kaihei 8-162273, the blue color purity is inferior, and a complicated structure is required. In addition, the blue component which is a light emitting component of thiogallate used for white light emission in Japanese Patent Laid-Open No. 8-83585 is weak, and the color filter When combined with the above, there is a disadvantage that the color reproduction range is not sufficiently wide because blue light emission is insufficient.
[0004]
Accordingly, an object of the present invention is to provide a thin film EL element for blue light emission which has high luminance and pure blue light emission and is suitable for full color display on a thin film EL display.
[0005]
[Means for Solving the Problems]
In order to achieve this object, the thin film EL device of the present invention comprises a Sr 2 Ga 2 S 5 thin film in which Ce as a light emitting layer is activated between a pair of electrodes, one of which is translucent, An SrS thin film bonded to at least the substrate side of the Sr 2 Ga 2 S 5 thin film is disposed so as to be in contact, and an insulating layer is further provided between each of the disposed composite thin film and the pair of electrodes. Each of the Sr 2 Ga 2 S 5 light emitting layers disposed and activated by Ce is bonded to the [100] axially oriented SrS thin film and oriented in the [001] axial direction. Is.
[0007]
Furthermore, in the thin film EL device of the present invention, the light emitting layer has a first peak light emission wavelength of 480 nm or less, and the light emission color of the light emitting layer is 0.1 ≦ x ≦ 0.2, 0. It is located in the blue region of 05 ≦ y ≦ 0.2.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention, first, since the Sr 2 Ga 2 S 5 light emitting layer activated with Ce is joined to the SrS thin film disposed at least on the substrate side, the Sr 2 Ga 2 S 5 thin film polycrystalline particles The orientation of the substrate is improved, the carrier injection efficiency for light emission is increased, the light emission luminance is improved, and there is no need to stack a plurality of light emitting layers as in the element described in JP-A-8-162273. Can be eliminated.
[0009]
Second, the Sr 2 Ga 2 S 5 : Ce light emitting layer bonded on the [100] axially oriented SrS thin film is oriented fairly well in the [001] axial direction, thus improving the crystallinity. Uniformity of the orientation of the polycrystalline particles in the light emitting layer is achieved, so that electron scattering in the polycrystal can be reduced and the light emission luminance is further improved.
Thirdly, cerium ions can easily form blue light emitting centers that are uniformly dispersed by improving the single orientation and crystallinity of the Sr 2 Ga 2 S 5 light emitting layer, and devising the cerium ion concentration. By selecting the first peak emission wavelength of the light emitting layer to be 480 nm or less and the blue region of 0.1 ≦ x ≦ 0.2 and 0.05 ≦ y ≦ 0.2 on the CIE chromaticity coordinates, the color purity is good. Blue light emission is obtained, and the color reproduction range of the display can be widened.
[0010]
Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.
FIG. 1 is a cross-sectional view of a thin film EL element in one embodiment of the present invention.
An ITO (indium, tin oxide) transparent electrode 2 is formed on a glass substrate 1 to have a thickness of about 200 nm by electron beam evaporation. The insulating layers 3 and 8 above and below the composite thin film 7 are composite insulating layers formed by laminating about 100 nm of SiO 2 film and about 500 nm of Ta 2 O 5 film formed by high frequency magnetron sputtering.
[0011]
Forming element of the composite thin film 7 SrS thin films 4 and 6 (in this embodiment, the Sr 2 Ga 2 S 5 : Ce light emitting layer 5 is sandwiched between them, but the SrS thin film may of course only be on the substrate side) Although it can be formed by a vapor deposition method, a sputtering method, a CVD method, or the like, in this embodiment, it is formed by a co-evaporation method. Specifically, Sr metal and H 2 S gas were chemically reacted on a substrate maintained at 500 ° C. to 600 ° C. to form a thickness of about 100 nm to 200 nm. It was also formed by co-evaporation of Sr metal and Ga 2 S 3 compound at a substrate temperature of 600 ° C. or higher. In this case, the chemical reaction formula is 2Sr + Ga 2 S 3 → 2SrS + Ga 2 S (evaporation).
It becomes.
[0012]
The Sr 2 Ga 2 S 5 : Ce light emitting layer 5 is formed after the formation of the SrS thin film 4 on the substrate side. However, it should be noted that the formed SrS thin film surface is continuously exposed without being exposed to air, that is, without being contaminated. Then, the light emitting layer Sr 2 Ga 2 S 5 : Ce is formed, and the Sr 2 Ga 2 S 5 : Ce polycrystalline particles having good orientation are formed using the polycrystalline SrS particles having good orientation formed on the lower side. (It may be said that it is close to epitaxial formation). In this example, the substrate temperature was continuously maintained at 570 ° C. after the formation of the SrS thin film, and the Sr metal, Ga 2 S 3 compound and CeCl 3 compound for dopant formation were simultaneously evaporated in vacuum and chemically reacted on the SrS thin film. The film thickness was about 400 nm. In this case, the chemical reaction formula is 2Sr + 2Ga 2 S 3 → Sr 2 Ga 2 S 5 + Ga 2 S (evaporation).
It becomes.
[0013]
The Ce ion concentration is preferably 10 atomic% or less, and when the concentration is higher than this, the luminance of the light emitting layer Sr 2 Ga 2 S 5 : Ce decreases. In this embodiment, the heat treatment after the thin film formation is not performed, and finally the upper electrode 9 is a metal Al vapor deposition film formed by a vacuum vapor deposition method and has a film thickness of about 200 nm.
[0014]
FIG. 2 shows an X-ray diffraction pattern of the Sr 2 Ga 2 S 5 : Ce light emitting layer prepared in the example of the present invention and the SrS thin film disposed thereunder. The horizontal axis of the figure represents twice the Bragg angle θ, the vertical axis represents the X-ray diffraction intensity (arbitrary unit), and the peaks 11, 12, 13 and 14 in the figure are (004) Sr 2 Ga 2 S 5 , (200 ) SrS, (111) SrS and (220) SrS diffraction lines. The peak 11 with 2θ around 29 ° corresponds to the (004) orientation of the Sr 2 Ga 2 S 5 crystal. Some other peaks 12, 13 and 14 are from a SrS thin film placed under the Sr 2 Ga 2 S 5 : Ce light emitting layer, with (200) of the SrS crystal being the main orientation. The Sr 2 Ga 2 S 5 : Ce light emitting layer exhibits good unity orientation, and electrons accelerated by a high electric field in the layer can avoid scattering due to the boundary of the orientation plane, and have the effect of improving luminance and efficiency. is there.
[0015]
The lattice positions of the (200) -oriented SrS thin film and the (004) -oriented Sr 2 Ga 2 S 5 : Ce light emitting layer are shown in FIGS. In the figure, white circles indicate the positions of S atoms, circles with diagonal lines indicate the positions of Sr atoms, and black circles indicate the positions of Ga atoms. Although there is a slight deviation, there is an Sr 2 Ga 2 S 5 crystal plane in which the lattice position of Sr and S is an integral multiple of the lattice position of SrS in a plane perpendicular to the c-axis, and lattice matching is achieved. Looking at the lattice position of sulfur (S) shown in FIG. 3, the lattice mismatch is slight: 3.8% in the x-axis direction and 0.03% in the y-axis direction. As a result, Sr 2 Ga 2 S 5 is unidirectionally oriented to [001] and carrier injection into the Sr 2 Ga 2 S 5 : Ce light emitting layer occurs efficiently.
[0016]
FIG. 4 shows the luminance-applied voltage characteristic 21 of the EL element in which the SrS thin film according to the present invention is arranged and the luminance-applied voltage characteristic 22 of the EL element not arranged. This light emission luminance-applied voltage characteristic is obtained by measuring the light emission luminance obtained when a 1 kHz AC voltage is applied between the electrodes. It can be seen that the emission luminance is improved by the arrangement of the SrS thin film.
[0017]
An emission spectrum of the EL light emitting layer prepared according to the present invention is shown in FIG. It is light emission by 5d-4f electronic transition of Ce 3+ ion. Since the first peak wavelength 23 is in the vicinity of 443 nm, light is emitted with a sufficient blue component.
[0018]
Sr 2 Ga 2 S 5 according to the invention: Ce luminescent layer 24, Sr by JP-8-162273 discloses 2 Ga 2 S 5: Ce luminescent layer 25, SrS: Ce luminescent layer 26 colors showing the respective chromaticity coordinates A degree diagram is shown in FIG. The Sr 2 Ga 2 S 5 : Ce light emitting layer according to the present invention is located in the vicinity of (x, y) = (0.15, 0.12) and has excellent blue light emission with the same color purity as the CRT phosphor. When used for the color reproduction is wide.
[0019]
The configuration of the embodiment of the present invention and its characteristics have been described in comparison with the prior art. However, the present invention is not limited to this embodiment, and various modifications can be made within the scope of the invention. This will be obvious to those skilled in the art.
[0020]
【The invention's effect】
According to the present invention, it is possible to provide a blue light-emitting thin-film EL element that has high-luminance and pure blue light emission and is suitable for full-color display on a thin-film EL display.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a thin film EL device according to an embodiment of the present invention.
FIG. 2 is an X-ray diffraction pattern of a Sr 2 Ga 2 S 5 : Ce light emitting layer according to the present invention and an SrS thin film disposed thereunder.
FIG. 3 is a crystal structure diagram showing lattice positions of a (004) single-oriented Sr 2 Ga 2 S 5 : Ce light emitting layer (b) and an SrS thin film (a) according to the present invention.
FIG. 4 is a graph showing luminance-applied voltage characteristics of a thin film EL element (21) provided with an SrS thin film and a thin film EL element (22) not provided according to the present invention.
FIG. 5 shows an emission spectrum of the Sr 2 Ga 2 S 5 : Ce light emitting layer according to the present invention (having a first peak 23 in the vicinity of 443 nm).
[6] The present invention according to Sr 2 Ga 2 S 5: Ce luminescent layer (24), Sr 2 Ga 2 S 5 by JP-A 8-162273 discloses: Ce luminescent layer (25) and the SrS: Ce luminescent layer ( 26) A chromaticity diagram showing each chromaticity coordinate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Transparent electrode 3, 8 Composite insulating layer 4, 6 SrS thin film 5 Light emitting layer 7 Composite thin film 9 Upper electrode

Claims (2)

いずれか1方が透光性を有する1対の電極間に、発光層としてのCeを付活したSr2 Ga2 5 薄膜とこれと接するようSr2 Ga2 5薄膜の少なくとも基板側に接合されたSrS薄膜とが配設されるとともに、これら配設された複合薄膜と前記1対の電極のそれぞれとの間にさらに絶縁層がそれぞれ配設され、前記Ceを付活したSr 2 Ga 2 5 発光層が〔100〕軸方向に配向されたSrS薄膜上に〔001〕軸方向に配向されて接合されることを特徴とする薄膜EL素子。At least the substrate side of the Sr 2 Ga 2 S 5 thin film is in contact with a Sr 2 Ga 2 S 5 thin film activated with Ce as a light emitting layer between a pair of electrodes, one of which has translucency. The bonded SrS thin film is disposed, and an insulating layer is further disposed between the disposed composite thin film and each of the pair of electrodes, and the Ce-activated Sr 2 Ga. 2 S 5-emitting layer (100) thin film EL element characterized on SrS thin film oriented in the axial direction [001] to be joined are axially oriented. 前記発光層が480nm以下に第1ピーク発光波長を有し、前記発光層の発光色がCIE色度座標上0.1≦x≦0.2、0.05≦y≦0.2の青色領域に位置することを特徴とする請求項記載の薄膜EL素子。The light emitting layer has a first peak emission wavelength at 480 nm or less, and the emission color of the light emitting layer is 0.1 ≦ x ≦ 0.2, 0.05 ≦ y ≦ 0.2 on the CIE chromaticity coordinates The thin film EL device according to claim 1, wherein
JP16983498A 1998-06-17 1998-06-17 Thin film EL device Expired - Fee Related JP3976892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16983498A JP3976892B2 (en) 1998-06-17 1998-06-17 Thin film EL device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16983498A JP3976892B2 (en) 1998-06-17 1998-06-17 Thin film EL device

Publications (2)

Publication Number Publication Date
JP2000012231A JP2000012231A (en) 2000-01-14
JP3976892B2 true JP3976892B2 (en) 2007-09-19

Family

ID=15893792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16983498A Expired - Fee Related JP3976892B2 (en) 1998-06-17 1998-06-17 Thin film EL device

Country Status (1)

Country Link
JP (1) JP3976892B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4711588B2 (en) * 2000-03-16 2011-06-29 プレイナー システムス インコーポレーテッド Thin film electroluminescence emitter

Also Published As

Publication number Publication date
JP2000012231A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
JPH0547473A (en) Electroluminescence display device and manufacture thereof
JP3976892B2 (en) Thin film EL device
US5029320A (en) Thin film electroluminescence device with Zn concentration gradient
US6819043B2 (en) Electroluminescent device and method of manufacturing the same
US7538483B2 (en) Inorganic electroluminescent device and method of fabricating the same
JP2848277B2 (en) EL element manufacturing method
JPH1092580A (en) Thin film electroluminescent element and manufacture thereof
JPH08162273A (en) Thin film el element
JP2529296B2 (en) Color EL display device
JP2532506B2 (en) Color EL display device
JP3569625B2 (en) Manufacturing method of thin film EL element
JPH0883685A (en) White el element
CA2470247A1 (en) Electroluminescence element and production method therefor
JPH0265094A (en) Thin film el element and manufacture thereof
JPH046279B2 (en)
JPH0831571A (en) Thin film electroluminescent element and multi-color thin film electroluminescent panel
JPH07282978A (en) Thin film electroluminescence(el) element
JPH04366593A (en) Thin film el element and manufacture thereof
JPH0878162A (en) Thin film electroluminescent element
JPS60172196A (en) Electroluminescent element and method of producing same
JPH10308282A (en) Thin film electroluminescence element and its manufacture
JPH07240278A (en) Thin film el element
JPS6320000B2 (en)
JPH0562778A (en) Thin film electroluminescence element
JPH02162685A (en) Manufacture of thin film el element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees