JPS6155237B2 - - Google Patents

Info

Publication number
JPS6155237B2
JPS6155237B2 JP57042069A JP4206982A JPS6155237B2 JP S6155237 B2 JPS6155237 B2 JP S6155237B2 JP 57042069 A JP57042069 A JP 57042069A JP 4206982 A JP4206982 A JP 4206982A JP S6155237 B2 JPS6155237 B2 JP S6155237B2
Authority
JP
Japan
Prior art keywords
thin film
zinc sulfide
sintered body
active substance
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57042069A
Other languages
Japanese (ja)
Other versions
JPS58157886A (en
Inventor
Takao Toda
Yosuke Fujita
Tomizo Matsuoka
Koji Nitsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57042069A priority Critical patent/JPS58157886A/en
Publication of JPS58157886A publication Critical patent/JPS58157886A/en
Publication of JPS6155237B2 publication Critical patent/JPS6155237B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Description

【発明の詳細な説明】 本発明は、エレクトロルミネセンス(EL)素
子などに用いられる螢光体薄膜の製造方法に関
し、とりわけ硫化亜鉛薄膜中での活性物質分布を
均一化し、表面の凹凸の少ない高品質の硫化亜鉛
系螢光体薄膜の製造方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a phosphor thin film used in electroluminescence (EL) devices, etc., and in particular, a method for making the distribution of active substances in a zinc sulfide thin film uniform and reducing surface irregularities. The present invention provides a method for producing a high quality zinc sulfide-based phosphor thin film.

従来、Mn,Cu,Ag,Tb,Sm、などの活性物
質を含む硫化亜鉛螢光体薄膜は、これらの活性物
質を含む硫化亜鉛焼結体に電子ビームを照射し、
焼結体を電子ビーム加熱蒸発させる電子ビーム蒸
着法や、硫化亜鉛と活性物質を、それぞれ別の抵
抗加熱るつぼに入れ、加熱蒸発させる抵抗加熱2
源蒸着法が用いられていた。
Conventionally, zinc sulfide phosphor thin films containing active substances such as Mn, Cu, Ag, Tb, and Sm have been produced by irradiating a zinc sulfide sintered body containing these active substances with an electron beam.
There is an electron beam evaporation method in which a sintered body is heated and evaporated with an electron beam, and a resistance heating method 2 in which zinc sulfide and an active substance are placed in separate resistance heating crucibles and heated and evaporated.
A source evaporation method was used.

しかし、電子ビーム蒸着法においては、硫化亜
鉛と活性物質との蒸気圧の差により、焼結体中の
活性物質濃度と形成した薄膜の活性物質濃度が同
一でなく、また活性物質濃度の再現性に乏しかつ
た。さらに、硫化亜鉛は実質的に絶縁性であるた
め、電子ビームを照射すると帯電する。そのた
め、焼結体表面に析出した活性物質たとえば硫化
マンガンなどの硫化亜鉛よりも蒸気圧の低い活性
物質が静電的に反発飛散し、薄膜中に混入して、
ピンホールを生じたり、凹凸を生じたりするとい
う欠点があつた。
However, in the electron beam evaporation method, due to the difference in vapor pressure between zinc sulfide and the active material, the active material concentration in the sintered body and the active material concentration in the formed thin film are not the same, and the reproducibility of the active material concentration is There was a shortage of food. Furthermore, since zinc sulfide is substantially insulating, it becomes electrically charged when irradiated with an electron beam. Therefore, active substances precipitated on the surface of the sintered body, such as manganese sulfide, which has a lower vapor pressure than zinc sulfide, are electrostatically repelled and scattered and mixed into the thin film.
There were drawbacks such as pinholes and unevenness.

また、抵抗加熱2源蒸着法においては、蒸発源
の温度を正確に制御することにより、活性物質濃
度分布および膜質が均一な薄膜を形成することが
できるという利点があるが、ホトルミネセンスの
測定や、EL発光強度の測定から、このような方
法で形成した螢光体薄膜の発光効率が低いという
ことが判明した。
In addition, the resistance heating two-source evaporation method has the advantage that by accurately controlling the temperature of the evaporation source, a thin film with a uniform active substance concentration distribution and film quality can be formed. Also, measurements of EL emission intensity revealed that the luminous efficiency of the phosphor thin film formed by this method was low.

本発明はこれらの欠点を解決した硫化亜鉛系螢
光体薄膜の製造方法を提供するものであり、本発
明によれば、発光効率、輝度が高く、表面の凹凸
がきわめて少ない均質な硫化亜鉛系螢光体薄膜を
得ることができる。つまり、活性物質を含まない
硫化亜鉛系焼結体を電子ビーム蒸発させ、同時に
活性物質を抵抗加熱法またはイオンビームスパツ
タ法により蒸発させ、基板上に活性物質を含む硫
化亜鉛系薄膜を付着させることにより、優れた特
性の硫化亜鉛系螢光体薄膜を形成するものであ
る。
The present invention provides a method for producing a zinc sulfide-based phosphor thin film that solves these drawbacks. A phosphor thin film can be obtained. In other words, a zinc sulfide-based sintered body containing no active substance is evaporated with an electron beam, and at the same time, the active substance is evaporated using a resistance heating method or an ion beam sputtering method, and a zinc sulfide-based thin film containing the active substance is deposited on the substrate. As a result, a zinc sulfide-based phosphor thin film with excellent properties is formed.

活性物質の蒸着法としては、抵抗加熱法または
イオンビームスパツタ法のどちらでもよいが、活
性物質濃度が0.5モル%以下の場合には、後者の
方法の方が再現性よく螢光体薄膜を形成すること
ができた。
The active substance can be deposited by either resistance heating or ion beam sputtering, but when the active substance concentration is less than 0.5 mol%, the latter method is more reproducible for forming phosphor thin films. was able to form.

本発明の方法によれば、従来の抵抗加熱2源蒸
着法より20〜100%発光効率の高い螢光体薄膜を
形成することができた。その理由については十分
に解明されていないが、電子ビーム蒸着法では、
蒸発分子または原子の一部分がイオン化している
ため、結晶性のよい硫化亜鉛系薄膜が形成され、
発光効率が高くなつたものと考えられる。
According to the method of the present invention, it was possible to form a phosphor thin film with a luminous efficiency of 20 to 100% higher than that of the conventional resistance heating two-source vapor deposition method. The reason for this is not fully understood, but with electron beam evaporation,
Because some of the evaporated molecules or atoms are ionized, a zinc sulfide thin film with good crystallinity is formed.
This is thought to be due to the increased luminous efficiency.

活性物質としては、Mn,Cu,Ag,Al,Tb,
Dy,Er,Pr,Sm,Ho,Tm、これらの酸化物、
またはこれらのハロゲン化物の内、少なくとも1
種類以上を用いることにより、本発明の目的を達
成することができた。
Active substances include Mn, Cu, Ag, Al, Tb,
Dy, Er, Pr, Sm, Ho, Tm, oxides of these,
or at least one of these halides
By using more than one type, the object of the present invention could be achieved.

また、電子ビーム加熱蒸発させる硫化亜鉛系焼
結体としては、ZnS,(Zn,Cd)S,Zn(Se,
S)、または(Zn,Cd)(Se,S)の焼結体を用
いて、本発明の目的を達成することができた。
Zinc sulfide-based sintered bodies evaporated by electron beam heating include ZnS, (Zn, Cd)S, Zn(Se,
The object of the present invention could be achieved using a sintered body of S) or (Zn, Cd) (Se, S).

以下、本発明を一実施例により詳細に説明す
る。まず高純度の硫化亜鉛粉末を500Kg/cm2の圧
力で適当大きさのペレツトに成形し、その成形体
を硫化亜鉛粉末でマツフルし、アルゴンガス中に
おいて1300℃の温度で2時間焼成し、硫化亜鉛焼
結体を作製した。次に、この焼結体とマンガン
を、第1図に示すような、抵抗加熱蒸着と、電子
ビーム加熱蒸着が同時に行える蒸着装置にセツト
した。このとき、硫化亜鉛焼結体を電子銃1の試
料台2に置き、マンガンを抵抗加熱るつぼ6に入
れた。これらの蒸発源と基板8の距離を25cmと
し、基板8を背面の基板加熱ヒータ9により220
℃に加熱した。硫化亜鉛は毎分0.13μmの成長速
度にし、抵抗加熱るつぼ6の温度を905℃に保
ち、シヤツター7を3分間開けることにより、約
0.4μmの厚さの約0.5モル%のマンガンを含む硫
化亜鉛螢光体膜を形成した。
Hereinafter, the present invention will be explained in detail by way of an example. First, high-purity zinc sulfide powder is molded into pellets of an appropriate size under a pressure of 500 kg/cm 2 , the molded body is muffled with zinc sulfide powder, and fired at a temperature of 1300°C for 2 hours in argon gas to form a sulfurized pellet. A zinc sintered body was produced. Next, this sintered body and manganese were set in a vapor deposition apparatus capable of simultaneously performing resistance heating vapor deposition and electron beam heating vapor deposition as shown in FIG. At this time, the zinc sulfide sintered body was placed on the sample stage 2 of the electron gun 1, and manganese was placed in the resistance heating crucible 6. The distance between these evaporation sources and the substrate 8 is set to 25 cm, and the substrate 8 is heated at 220 cm by the substrate heater 9 on the back side.
heated to ℃. Zinc sulfide grows at a growth rate of 0.13 μm per minute, by keeping the temperature of the resistance heating crucible 6 at 905°C and opening the shutter 7 for 3 minutes.
A zinc sulfide phosphor film containing about 0.5 mole percent manganese was formed with a thickness of 0.4 μm.

この状態でも紫外線(365mm)照射により明る
く発光したが、さらに真空中で500℃、2時間の
熱処理を施すことにより、発光輝度を向上させる
ことができた。また、第2図に示すような構造の
EL素子を、本発明の方法により形成した螢光体
薄膜を用いて構成したところ、きわめて安定に、
高輝度で発光することが判明した。なお、図にお
いて、11はガラス基板、12は透明電極、13
は螢光体薄膜、14は誘電体薄膜、15はアルミ
ニウム電極である。
Even in this state, it emitted bright light when irradiated with ultraviolet light (365 mm), but the luminance could be improved by further heat treatment at 500°C for 2 hours in a vacuum. In addition, the structure shown in Figure 2
When an EL element was constructed using a phosphor thin film formed by the method of the present invention, it was extremely stable.
It was found that it emits light at high brightness. In the figure, 11 is a glass substrate, 12 is a transparent electrode, and 13 is a glass substrate.
14 is a phosphor thin film, 14 is a dielectric thin film, and 15 is an aluminum electrode.

次に、第3図を用いて本発明の他の実施例を説
明する。市販の硫化亜鉛ペレツトを電子銃21の
試料台22に置き、活生物質として用いるTbF3
の焼結体26は、イオン源27からのイオンビー
ム28が照射される位置に置いた。イオン源27
にアルゴンを導入し圧力を2×10-5Torrとし、
1kVの加速電圧で、10maのアルゴンイオンを
TbF3焼結体26に照射し、同時に毎分0.13μm
の成長速度で硫化亜鉛を電子ビーム蒸着し、基板
30上に、TbF3付活硫化亜鉛螢光体膜を形成し
た。このように形成した螢光体膜は、TbF3添加
硫化亜鉛焼結体を電子ビーム蒸着することにより
得られるTbF3付活硫化亜鉛螢光体膜と比較し
て、ピンホールや、微小付着物がきわめて少な
く、均質で高品質であつた。
Next, another embodiment of the present invention will be described using FIG. Commercially available zinc sulfide pellets were placed on the sample stage 22 of the electron gun 21, and TbF 3 used as the active material was placed on the sample stage 22 of the electron gun 21.
The sintered body 26 was placed at a position where it was irradiated with the ion beam 28 from the ion source 27. Ion source 27
Argon was introduced into the tank and the pressure was set to 2×10 -5 Torr.
Argon ions of 10ma with 1kV accelerating voltage
Irradiate the TbF 3 sintered body 26 at a rate of 0.13 μm per minute at the same time.
Zinc sulfide was electron-beam evaporated at a growth rate of , to form a TbF 3 -activated zinc sulfide phosphor film on the substrate 30. The phosphor film formed in this way has fewer pinholes and minute deposits than a TbF 3 -activated zinc sulfide phosphor film obtained by electron beam evaporation of a TbF 3 -doped zinc sulfide sintered body. It was homogeneous and of high quality with very little amount of carbon.

この方法では、アルゴンイオン電流や加速電圧
を制御することにより、活性物質濃度を4桁にわ
たる広い範囲で再現性よく変化させることができ
た。
In this method, by controlling the argon ion current and accelerating voltage, it was possible to change the active substance concentration over a wide range of four orders of magnitude with good reproducibility.

また、第2図に示されているような構造のEL
素子の螢光体層を、本発明の方法により作製し、
EL素子の特性を調べたところ、明るい緑色で、
長時間にわたり安定に発光することが判明した。
In addition, an EL with the structure shown in Figure 2
A phosphor layer of the device is produced by the method of the present invention,
When we investigated the characteristics of the EL element, we found that it was bright green.
It was found that it emits light stably over a long period of time.

以上のように、本発明の螢光体薄膜の製造方法
によれば、ピンホールや凹凸、微小付着物がきわ
めて少なく、発光効率の高い螢光体薄膜が再現性
よく形成できる。したがつて、本発明の方法によ
る螢光体薄膜をEL素子などに応用した場合、発
光効率や安定性の優れた素子を形成することがで
き、きわめて実用価値の大きいものとなる。
As described above, according to the method for producing a phosphor thin film of the present invention, a phosphor thin film with extremely few pinholes, irregularities, and minute deposits and high luminous efficiency can be formed with good reproducibility. Therefore, when the phosphor thin film produced by the method of the present invention is applied to an EL device or the like, it is possible to form a device with excellent luminous efficiency and stability, which has extremely high practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の一実施例を説明するた
めの蒸着装置の構成図、第2図はこの方法により
形成されたEL素子の一例を示す断面図、第3図
は同じく他の実施例を説明するための蒸着装置の
構成図である。 1,21……電子銃、2,22……試料台、
3,23……フイラメント、4,24……電子ビ
ーム、5,25……付着防御壁、6……抵抗加熱
るつぼ、7,29……シヤツター、8,30……
基板、9,31……基板加熱ヒータ、11……ガ
ラス基板、12……透明電極、13……螢光体薄
膜、14……誘電体膜、15……アルミニウム電
極、26……TbF3焼結体、27……イオン源、
28……イオンビーム。
FIG. 1 is a configuration diagram of a vapor deposition apparatus for explaining one embodiment of the method of the present invention, FIG. 2 is a cross-sectional view showing an example of an EL element formed by this method, and FIG. 3 is a diagram showing another example of the method. FIG. 2 is a configuration diagram of a vapor deposition apparatus for explaining an example. 1, 21... Electron gun, 2, 22... Sample stage,
3,23...Filament, 4,24...Electron beam, 5,25...Adhesion protection wall, 6...Resistance heating crucible, 7,29...Shutter, 8,30...
Substrate, 9, 31... Substrate heater, 11... Glass substrate, 12... Transparent electrode, 13... Fluorescent thin film, 14... Dielectric film, 15... Aluminum electrode, 26... TbF 3 baking Consolidation, 27...Ion source,
28...Ion beam.

Claims (1)

【特許請求の範囲】 1 活性物質を含まない硫化亜鉛系焼結体に電子
ビームを照射し、前記硫化亜鉛系焼結体を電子ビ
ーム加熱蒸発させると同時に、活性物質を蒸発さ
せ、基板上に前記活性物質を含む硫化亜鉛系薄膜
を形成することを特徴とする螢光体薄膜の製造方
法。 2 活性物質の蒸発にイオンビーム照射によるス
パツタ蒸発法または抵抗加熱法を使用することを
特徴とする特許請求の範囲第1項に記載の螢光体
薄膜の製造方法。 3 活性物質がMn,Cu,Ag,Al,Tb,Dy,
Er,Pr,Sm,Ho,Tm、これらの酸化物、また
はこれらのハロゲン化物のうち、少なくとも1種
類以上であることを特徴とする特許請求の範囲第
1項または第2項に記載の螢光体薄膜の製造方
法。 4 硫化亜鉛系焼結体が、ZnS,(Zn,Cd)S,
Zn(Se,S)、または(Zn,Cd)(Se,S)から
なることを特徴とする特許請求の範囲第1項また
は第2項に記載の螢光体薄膜の製造方法。
[Claims] 1. A zinc sulfide-based sintered body that does not contain an active substance is irradiated with an electron beam, and the zinc sulfide-based sintered body is heated and evaporated with the electron beam, and at the same time, the active substance is evaporated and deposited on a substrate. A method for producing a phosphor thin film, comprising forming a zinc sulfide-based thin film containing the active substance. 2. The method for producing a phosphor thin film according to claim 1, wherein a sputter evaporation method using ion beam irradiation or a resistance heating method is used to evaporate the active substance. 3 Active substances include Mn, Cu, Ag, Al, Tb, Dy,
The fluorescent light according to claim 1 or 2, which is at least one of Er, Pr, Sm, Ho, Tm, oxides thereof, or halides thereof. Method for producing body thin film. 4 The zinc sulfide-based sintered body contains ZnS, (Zn, Cd)S,
The method for producing a phosphor thin film according to claim 1 or 2, characterized in that it is made of Zn (Se, S) or (Zn, Cd) (Se, S).
JP57042069A 1982-03-16 1982-03-16 Preparation of thin film from fluorescent substance Granted JPS58157886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57042069A JPS58157886A (en) 1982-03-16 1982-03-16 Preparation of thin film from fluorescent substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57042069A JPS58157886A (en) 1982-03-16 1982-03-16 Preparation of thin film from fluorescent substance

Publications (2)

Publication Number Publication Date
JPS58157886A JPS58157886A (en) 1983-09-20
JPS6155237B2 true JPS6155237B2 (en) 1986-11-26

Family

ID=12625789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57042069A Granted JPS58157886A (en) 1982-03-16 1982-03-16 Preparation of thin film from fluorescent substance

Country Status (1)

Country Link
JP (1) JPS58157886A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6180792A (en) * 1984-09-28 1986-04-24 宮田 直之 Manufacture of electroluminescence element
US4976988A (en) * 1987-02-03 1990-12-11 Nissan Motor Co., Ltd. Vacuum evaporation method for zinc sulfide
JPS63202889A (en) * 1987-02-17 1988-08-22 クラリオン株式会社 Method and apparatus for manufacture of thin film of fluorescent material
FI83721C (en) * 1989-09-26 1993-11-22 Episystems Oy Ltd DOPNINGSFOERFARANDE
KR100558080B1 (en) * 2002-10-09 2006-03-07 서울반도체 주식회사 Fluorescent material, white light emitting diode using the same material and method for making the same diode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56106390A (en) * 1980-01-29 1981-08-24 Fujitsu Ltd Method of forming el film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56106390A (en) * 1980-01-29 1981-08-24 Fujitsu Ltd Method of forming el film

Also Published As

Publication number Publication date
JPS58157886A (en) 1983-09-20

Similar Documents

Publication Publication Date Title
FI83013C (en) Thin film type electroluminescence device and method of counting its front
US2867541A (en) Method of preparing transparent luminescent screens
US4279726A (en) Process for making electroluminescent films and devices
US6090434A (en) Method for fabricating electroluminescent device
JPH05315075A (en) Forming method for electroluminescence light emitting film
EP0239120A2 (en) Method of producing thin film electroluminescent structures
JPS6155237B2 (en)
US3700575A (en) Method of forming transparent films of zno
JPS6134890A (en) Method of forming electric field light emitting thin film
US2819420A (en) Electroluminescent cell
JPH0812970A (en) Production of el element
JPH0256897A (en) Manufacture of phosphor thin film and thin film el element
JPH06101252B2 (en) Method for forming transparent conductive metal oxide film
JP2529220B2 (en) Method for producing sulfide phosphor film
US2903378A (en) Process of forming luminescent screens
JPS6047718B2 (en) Manufacturing method of thin film light emitting device
JPH0598421A (en) Formation of electroluminescence light emitting film
JPH01263188A (en) Calcium tungstate luminescent thin layer and its production
JPS628409A (en) Formation of transparent conducting metal oxide film
JPS62234892A (en) Formation of thin film type electroluminescence fluorescent film
US3047416A (en) Method for making luminescent articles
JPS63202889A (en) Method and apparatus for manufacture of thin film of fluorescent material
JPS6346793B2 (en)
JP3446542B2 (en) Thin film EL element
JPS6329396B2 (en)