JPH0487187A - Organic electroluminescence element - Google Patents

Organic electroluminescence element

Info

Publication number
JPH0487187A
JPH0487187A JP2197868A JP19786890A JPH0487187A JP H0487187 A JPH0487187 A JP H0487187A JP 2197868 A JP2197868 A JP 2197868A JP 19786890 A JP19786890 A JP 19786890A JP H0487187 A JPH0487187 A JP H0487187A
Authority
JP
Japan
Prior art keywords
organic
film electrode
emitting layer
thickness
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2197868A
Other languages
Japanese (ja)
Inventor
Yasushi Mori
寧 森
Yasushi Kawada
靖 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2197868A priority Critical patent/JPH0487187A/en
Publication of JPH0487187A publication Critical patent/JPH0487187A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To accomplish an organic EL element having a long lifetime by specifying the flatness of that surface of a transparent conductive film electrode which contacts light emission layers. CONSTITUTION:A transparent conductive film electrode 2, light emission layers 3, 4, and metal film electrode 5 are formed one over another upon a transparent base plate 1, wherein the flatness of that surface of the transparent conductive film electrode 2 which contacts the light emission layers 3, 4 shall range between 1/10 thru 1/100 of the film thickness of light emission layers 3, 4. The thickness of the light emission layers signifies the thickness of the layer of organic compound which intervenes in the emission of the light. In case a positive hole transport layer 3 and an electron transport layer 4 are laminated, it applies to the total thickness of the two. Thereby an organic EL element is accomplished, which is provided with a long lifetime.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は有機エレクトロルミネッセンス素子に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to an organic electroluminescent device.

(従来の技術) 電界発光を利用したエレクトロルミネッセンス(以下、
ELと略す)素子は、薄型平面デイスプレィ素子、液晶
デイスプレィの背面光源、平面光源などに用いられてい
る。現在、実用に供されているEL素子は、蛍光体を分
散させた発光層に交流電圧を印加して発光させる、いわ
ゆる分散型EL素子である。分散型EL素子では、数1
0V110kHz以上の交流電圧を印加する必要がある
ため、その駆動電源が、EL素子か組み込まれる小型ノ
く一ソナルコンピュータなどの電子回路の雑音源となり
、機器の本来の機能を阻害する原因となっている。
(Conventional technology) Electroluminescence (hereinafter referred to as
Elements (abbreviated as EL) are used in thin flat display elements, back light sources for liquid crystal displays, flat light sources, and the like. EL devices currently in practical use are so-called dispersed EL devices that emit light by applying an alternating current voltage to a light emitting layer in which phosphors are dispersed. In a distributed EL element, the formula 1
Since it is necessary to apply an AC voltage of 0 V, 110 kHz or more, the drive power source becomes a noise source in electronic circuits such as small digital computers in which EL elements are incorporated, causing interference with the original functions of the device. There is.

近年、発光層材料として有機化合物を用い、10V程度
の低い直流電圧で駆動でき、従来の分散型EL素子と同
等の輝度を有する有機EL素子か開発され、分散型EL
素子の欠点を克服できる新たな素子として注目を集めて
いる( C,W、Tang andS、A、 VanS
Iyke、 Appl 、Phys、Lett、 、 
vol 、 51 、 pp、 913−915(19
87);特開昭63−264629号公報)。有機EL
素子においては、発光層に用いる有機化合物を変化させ
ることにより、発光の色調を変化させることができる。
In recent years, an organic EL element has been developed that uses an organic compound as a light-emitting layer material, can be driven at a low DC voltage of about 10V, and has the same brightness as a conventional distributed EL element.
It is attracting attention as a new device that can overcome the drawbacks of conventional devices (C, W, Tang and S, A, VanS
Iyke, Appl, Phys, Lett,
vol, 51, pp, 913-915(19
87); JP-A-63-264629). organic EL
In the device, the color tone of emitted light can be changed by changing the organic compound used in the light emitting layer.

特に、分散型EL素子では困難であった、青色の発光を
得ることも容易である。このように種々の利点を有する
ため、有機EL素子はフルカラー平面デイスプレー素子
として非常に有望である。
In particular, it is easy to obtain blue light emission, which is difficult to achieve with distributed EL elements. Because of these various advantages, organic EL devices are very promising as full-color flat display devices.

しかし、有機EL素子は、寿命が短いという重大な欠点
を持っている。現在のところ、連続的に駆動させて初期
の輝度を維持できる時間は、数ioo時間が限度である
However, organic EL elements have a serious drawback of short lifespan. At present, the time that the initial brightness can be maintained by continuous driving is limited to several IO hours.

(発明が解決しようとする課題) 本発明の目的は、寿命の長い有機EL素子を提供するこ
とにある。
(Problems to be Solved by the Invention) An object of the present invention is to provide an organic EL element with a long life.

[発明の構成] (課題を解決するための手段と作用) 本発明の有機エレクトロルミネッセンス素子は、透明基
板上に形成された透明導電H電極と、金属膜電極と、こ
れらの電極間に挟持された有機化合物からなる発光層と
を有し、前記1対の電極間に電場を印加して前記発光層
を発光させるエレクトロルミネッセンス素子において、
前記透明導電膜電極の前記発光層と接触する面の平坦度
が、前記発光層の膜厚の1/10〜1/100の範囲で
あることを特徴とするものである。
[Structure of the Invention] (Means and Effects for Solving the Problems) The organic electroluminescent device of the present invention includes a transparent conductive H electrode formed on a transparent substrate, a metal film electrode, and a metal film electrode sandwiched between these electrodes. and a light-emitting layer made of an organic compound, the electroluminescent element causing the light-emitting layer to emit light by applying an electric field between the pair of electrodes,
The flatness of the surface of the transparent conductive film electrode in contact with the light emitting layer is in the range of 1/10 to 1/100 of the thickness of the light emitting layer.

本発明における有機EL素子は、透明基板上に、透明導
電膜電極、発光層、及び金属膜電極か順次形成された構
造を有している。透明基板としては例えばガラス基板が
用いられる。透明導電膜電極の材料としては例えばイン
ジウム・スズ酸化物(ITO)か用いられる。発光層の
材料としては各種有機化合物が用いられる。発光層の構
成は、正孔輸送層と電子輸送層(狭義の発光層)とを積
層したものか一般的である。本発明における発光層の厚
さとは、発光に関与する有機化合物の層の厚さを意味す
る。したがって、正孔輸送層と電子輸送層とを積層した
場合には、両者の合計の厚さである。金属膜電極の材料
としては各種の金属、合金が用いられる。透明導電膜電
極、発光層、及び金属膜電極は、スパッタリング法や真
空蒸着法(抵抗加熱方式、電子ビーム加熱方式)などの
製膜法により、形成される。
The organic EL device of the present invention has a structure in which a transparent conductive film electrode, a light emitting layer, and a metal film electrode are sequentially formed on a transparent substrate. For example, a glass substrate is used as the transparent substrate. For example, indium tin oxide (ITO) is used as the material for the transparent conductive film electrode. Various organic compounds are used as materials for the light emitting layer. The structure of the light emitting layer is generally one in which a hole transport layer and an electron transport layer (light emitting layer in a narrow sense) are laminated. The thickness of the light emitting layer in the present invention means the thickness of the layer of the organic compound involved in light emission. Therefore, when a hole transport layer and an electron transport layer are laminated, the thickness is the total thickness of both. Various metals and alloys are used as materials for the metal film electrode. The transparent conductive film electrode, the light emitting layer, and the metal film electrode are formed by a film forming method such as a sputtering method or a vacuum evaporation method (resistance heating method, electron beam heating method).

このような構造を有する有機EL素子は、1対の電極か
らそれぞれ注入された電子と正孔とが発光層で再結合す
ることによる発光現象を利用した素子であり、動作的に
は発光ダイオードと類似している。有機EL素子におい
ては、低電圧駆動を実現するために、発光層の膜厚を数
100nm以下にすることが要求される。
An organic EL element with such a structure is an element that utilizes a light-emitting phenomenon caused by the recombination of electrons and holes injected from a pair of electrodes in a light-emitting layer, and is similar in operation to a light-emitting diode. Similar. In organic EL elements, in order to realize low voltage driving, the thickness of the light emitting layer is required to be several hundred nanometers or less.

本発明において、透明導電膜電極の表面の平坦度は、基
準長さを0.25mmとして測定された十点平均粗さ(
JIS BO601)の値を意味する。透明導電膜電極
の発光層と接触する面の平坦度を、発光層の膜厚の1/
10〜1/100の範囲としたのは、以下のような理由
による。
In the present invention, the flatness of the surface of the transparent conductive film electrode is determined by the ten-point average roughness (
JIS BO601) value. The flatness of the surface of the transparent conductive film electrode that comes into contact with the light-emitting layer is set to 1/1 of the thickness of the light-emitting layer.
The reason why it is set in the range of 10 to 1/100 is as follows.

まず、本発明者らは、有機EL素子の劣化する原因につ
いて鋭意検討した結果、以下のような結論に達した。有
機EL素子では、電極から電子・正孔が注入された後に
、発光性再結合が生じるほかに、非発光性再結合が生じ
て発光層中に熱が発生ずる。この熱は、有機発光層材料
の結晶化を誘起する。このため、結晶粒の成長により、
発光層中で空孔など欠陥か発生したり、金属電極か破損
し、これらが有機EL素子を劣化させる原因となる。
First, the inventors of the present invention have intensively studied the causes of deterioration of organic EL elements, and have reached the following conclusion. In an organic EL element, after electrons and holes are injected from the electrodes, in addition to luminescent recombination, non-luminescent recombination occurs and heat is generated in the light emitting layer. This heat induces crystallization of the organic light emitting layer material. Therefore, due to the growth of crystal grains,
Defects such as holes may occur in the light emitting layer, or metal electrodes may be damaged, which may cause deterioration of the organic EL device.

有機EL素子を長寿命化するためには、有機発光層材料
として、結晶化に要する活性化エネルギーの高い材料を
選択することが考えられる。しかし、現在のところ、結
晶化に要する活性化エネルギーを定量化できる手段かな
いため、最適な材料を選択することは困難である。
In order to extend the life of an organic EL element, it is conceivable to select a material with high activation energy required for crystallization as the organic light emitting layer material. However, there is currently no means to quantify the activation energy required for crystallization, making it difficult to select the optimal material.

本発明者らは、更に結晶化の初期過程を詳細に検討した
結果、有機発光層と接する透明導電膜電極の凹凸部分が
結晶化の核になることを見出した。
The present inventors further investigated the initial process of crystallization in detail and found that the uneven portion of the transparent conductive film electrode in contact with the organic light-emitting layer becomes the nucleus of crystallization.

そして、この凹凸を平坦化することにより、結晶化の核
が減少し、結晶粒成長に伴う有機EL素子の劣化を抑制
できることを見出した。一方、−足表面積のEL素子か
らの発光強度を最大にするためには、電極からより多数
の電子・正孔を注入すればよい。そのためには、発光層
と電極との接触面積をより大きくすればよい。
They have also found that by flattening these irregularities, the number of crystallization nuclei can be reduced and the deterioration of the organic EL element due to crystal grain growth can be suppressed. On the other hand, in order to maximize the intensity of light emitted from an EL element with a negative surface area, a larger number of electrons and holes may be injected from the electrodes. For this purpose, the contact area between the light emitting layer and the electrode may be made larger.

電極の平坦化により結晶化の核を減少させることと、発
光層と電極との接触面積を増大させることとは、相反す
る素子構造を要求するものである。
Reducing crystallization nuclei by flattening the electrode and increasing the contact area between the light emitting layer and the electrode are contradictory requirements for a device structure.

本発明者らは、素子全体の性能を最適化する観点から種
々実験し、発光層の膜厚に対する、透明導電膜電極の発
光層と接触する面の平坦度の範囲を求めた。すなわち、
平坦度が発光層の膜厚の1/10を超えると素子の劣化
か進行して寿命か短くなり、1/100未満では大きな
発光強度を得ることができない。そして、透明導電膜電
極の発光層と接触する面の平坦度を、発光層の膜厚の1
/10〜1/100の範囲にすれば、長寿命及び発光強
度の両者を満足できる。透明導電膜電極の平坦度は、例
えば製膜後に研磨することにより調整することができる
The present inventors conducted various experiments from the viewpoint of optimizing the performance of the entire device, and determined the range of flatness of the surface of the transparent conductive film electrode in contact with the light emitting layer with respect to the film thickness of the light emitting layer. That is,
If the flatness exceeds 1/10 of the thickness of the light-emitting layer, the device will deteriorate and its life will be shortened, while if it is less than 1/100, it will not be possible to obtain a large luminous intensity. Then, the flatness of the surface of the transparent conductive film electrode that comes into contact with the light emitting layer is set to 1 of the thickness of the light emitting layer.
If it is in the range of /10 to 1/100, both long life and luminous intensity can be satisfied. The flatness of the transparent conductive film electrode can be adjusted, for example, by polishing after film formation.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図に本実施例で作製した直流駆動有機EL素子の構
造を示す。透明基板1上に、透明導電膜電極2、正孔輸
送層3、電子輸送層4、金属膜電極5が順次積層されて
ELナセル構成されている。
FIG. 1 shows the structure of the DC-driven organic EL device manufactured in this example. A transparent conductive film electrode 2, a hole transport layer 3, an electron transport layer 4, and a metal film electrode 5 are sequentially laminated on a transparent substrate 1 to form an EL nacelle.

本実施例においては、ELナセル以下のようにして作製
された。
In this example, the EL nacelle was manufactured as follows.

透明基板としてガラス基板を用い、このガラス基板を有
機溶剤により脱脂洗浄しておいた。透明導電膜電極材料
としてインジウム・スズ酸化物(ITO)を用いた。ガ
ラス基板上に、スパッタリング法により、平均膜厚30
0n+1のITO薄膜を形成した。
A glass substrate was used as the transparent substrate, and the glass substrate had been degreased and cleaned using an organic solvent. Indium tin oxide (ITO) was used as a transparent conductive film electrode material. An average film thickness of 30 mm was deposited on a glass substrate by sputtering.
A 0n+1 ITO thin film was formed.

ITO薄膜を製膜後、研磨粒子としてカーボランダムを
用い、表面粗さ計による一j定を行い、表面の平坦度が
2Or+m以下、2nm以上となるように研磨した(実
施例1〜5)。比較のために、研磨処理を行わなかった
もの(比較例1)、及び平坦度をlnm未満にしたもの
(比較例2)を作製した。
After the ITO thin film was formed, carborundum was used as the abrasive particles, and the surface roughness was determined using a surface roughness meter, and the surface was polished to a flatness of 2 Or+m or less and 2 nm or more (Examples 1 to 5). For comparison, a sample without polishing (Comparative Example 1) and a sample with a flatness of less than 1 nm (Comparative Example 2) were prepared.

表面の平坦度は、基準長さを0 、25 +amとして
測定した十点平均粗さの値である(JIS BO601
)。更に、ランプ加熱により、真空中、300°Cて、
30分間熱処理して、膜抵抗を50Ω/口に調整した。
The surface flatness is the ten-point average roughness value measured with the reference length as 0, 25 + am (JIS BO601
). Furthermore, by lamp heating at 300°C in vacuum,
The membrane resistance was adjusted to 50Ω/port by heat treatment for 30 minutes.

正孔輸送層材料としては、下記1式で表わされるヒドラ
ゾン化合物を用いた。ITO電極上に、抵抗加熱真空蒸
着法により、膜厚100nmのヒドラゾン化合物の薄膜
を形成した。蒸着時のホード温度は、予備実験により決
定された、ヒドラゾン化合物の熱分解が生じない値を採
用した。また、水晶振動子式膜厚モニターにより監視し
なから、蒸着ボートに通電する時間を調整することによ
り、ヒドラゾン化合物薄膜の膜厚を制御した。
As the material for the hole transport layer, a hydrazone compound represented by the following formula 1 was used. A thin film of a hydrazone compound having a thickness of 100 nm was formed on the ITO electrode by a resistance heating vacuum evaporation method. As the hoard temperature during vapor deposition, a value determined through preliminary experiments at which thermal decomposition of the hydrazone compound does not occur was adopted. Furthermore, the thickness of the hydrazone compound thin film was controlled by monitoring it with a crystal oscillator-type film thickness monitor and adjusting the time during which electricity was applied to the deposition boat.

電子輸送層材料としては、下記り式で表わされるトリス
(8−キノリツール)アルミニウム(以下、八ρ1.と
略す)を用いた。正孔輸送層上に、前記と同縁に、抵抗
加熱真空蒸着法により、膜厚100nmのAgq3の薄
膜を形成した。
As the material for the electron transport layer, tris(8-quinolitool)aluminum (hereinafter abbreviated as 8ρ1) represented by the following formula was used. On the hole transport layer, a thin film of Agq3 with a thickness of 100 nm was formed on the same edge as above by a resistance heating vacuum evaporation method.

金属膜電極材料としては、Mg−Ag合金(Mg/Ag
−1/10)を使用した。この合金のペレットを蒸発源
とし、所定形状のマスクを用いて電子ビーム蒸着法によ
り、膜厚300r+m、面積4×4關2の薄膜電極を形
成した。この際、蒸発源を収容したルツボには、アルミ
製のカバーを設け、電子源であるフィラメントからの輻
射熱か有機膜に達するのを防止した。
As the metal film electrode material, Mg-Ag alloy (Mg/Ag
-1/10) was used. Using the pellets of this alloy as an evaporation source, a thin film electrode having a film thickness of 300 r+m and an area of 4×4 square 2 was formed by electron beam evaporation using a mask of a predetermined shape. At this time, the crucible containing the evaporation source was provided with an aluminum cover to prevent radiant heat from the filament, which was the electron source, from reaching the organic film.

有機膜及び金属膜電極は、スパッタ槽、抵抗加熱蒸着槽
、電子ビーム蒸着槽を連結した製膜装置を用いて形成し
、一連の工程の間に、素子を外気に触れさせることなく
各真空槽を移動させた。このように素子を外気にさらさ
ないようにすれば、有機層の酸化、膜へのゴミの付着な
ど、素子特性を劣化させる要因を除去する点で有利であ
る。
Organic films and metal film electrodes are formed using a film forming apparatus that connects a sputtering tank, a resistance heating evaporation tank, and an electron beam evaporation tank. was moved. Preventing the element from being exposed to the outside air in this way is advantageous in terms of eliminating factors that degrade element characteristics, such as oxidation of the organic layer and adhesion of dust to the film.

以上のようにして作製された各ELセルについて、気温
25℃、相対湿度50%において、ITO電極側を正、
金属電極側を負として電圧を印加し、発光特性を測定し
た。測定内容は、IOVを印加した発光時の電流、輝度
計により測定した電圧印加直後の発光輝度、及び発光輝
度が通電開始時の半分になる時間で定義される寿命であ
る。これらの結果を表1に示す。
For each EL cell fabricated as described above, at a temperature of 25°C and a relative humidity of 50%, the ITO electrode side was placed in the positive direction,
A voltage was applied with the metal electrode side set as negative, and the luminescence characteristics were measured. The measurement details are the current during light emission when IOV is applied, the light emission brightness immediately after the voltage is applied as measured by a brightness meter, and the life span defined by the time when the light emission brightness becomes half of the time when the current was started. These results are shown in Table 1.

表     1 [発明の効果コ 以上詳述したように本発明によれば、輝度か高く、かつ
寿命の長い有機エレクトロルミt・ノセンス素子を得る
ことができる。
Table 1 [Effects of the Invention] As detailed above, according to the present invention, an organic electroluminescent element with high brightness and long life can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における有機エレクトロルミネ
ッセンス素子の構成を示す図である。 1・・・透明基板、2・・・透明導電膜電極、3・・正
孔輸送層、4・・・電子輸送層、5・・金属膜電極。 出願人代理人 弁理士 鈴江武彦
FIG. 1 is a diagram showing the structure of an organic electroluminescent device in an example of the present invention. DESCRIPTION OF SYMBOLS 1... Transparent substrate, 2... Transparent conductive film electrode, 3... Hole transport layer, 4... Electron transport layer, 5... Metal film electrode. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims]  透明基板上に形成された透明導電膜電極と、金属膜電
極と、これらの電極間に挟持された有機化合物からなる
発光層とを有し、前記1対の電極間に電場を印加して前
記発光層を発光させるエレクトロルミネッセンス素子に
おいて、前記透明導電膜電極の前記発光層と接触する面
の平坦度が、前記発光層の膜厚の1/10〜1/100
の範囲であることを特徴とする有機エレクトロルミネッ
センス素子。
It has a transparent conductive film electrode formed on a transparent substrate, a metal film electrode, and a light emitting layer made of an organic compound sandwiched between these electrodes, and an electric field is applied between the pair of electrodes. In an electroluminescent element that causes a light emitting layer to emit light, the flatness of the surface of the transparent conductive film electrode in contact with the light emitting layer is 1/10 to 1/100 of the thickness of the light emitting layer.
An organic electroluminescent device characterized in that it is within the range of
JP2197868A 1990-07-27 1990-07-27 Organic electroluminescence element Pending JPH0487187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2197868A JPH0487187A (en) 1990-07-27 1990-07-27 Organic electroluminescence element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2197868A JPH0487187A (en) 1990-07-27 1990-07-27 Organic electroluminescence element

Publications (1)

Publication Number Publication Date
JPH0487187A true JPH0487187A (en) 1992-03-19

Family

ID=16381668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2197868A Pending JPH0487187A (en) 1990-07-27 1990-07-27 Organic electroluminescence element

Country Status (1)

Country Link
JP (1) JPH0487187A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6188176B1 (en) 1997-07-15 2001-02-13 Tdk Corporation Organic electroluminescent device and preparation method with ITO electrode (111) orientation
US6280861B1 (en) 1996-05-29 2001-08-28 Idemitsu Kosan Co., Ltd. Organic EL device
JP2002289344A (en) * 2001-03-26 2002-10-04 Semiconductor Energy Lab Co Ltd Light-emitting device and its preparation method
JP2002319495A (en) * 2001-01-18 2002-10-31 Semiconductor Energy Lab Co Ltd Manufacturing method of light-emitting device
JP2002334790A (en) * 2001-02-19 2002-11-22 Semiconductor Energy Lab Co Ltd Light emitting device and its formation method
JP2002352956A (en) * 2001-03-23 2002-12-06 Mitsubishi Chemicals Corp Thin-film light emitting substance and manufacturing method therefor
JPWO2003045115A1 (en) * 2001-11-22 2005-04-07 日本曹達株式会社 EL element
US7423293B2 (en) 2001-02-19 2008-09-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7485478B2 (en) 2001-02-19 2009-02-03 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US7902740B2 (en) 2001-03-19 2011-03-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting apparatus
JP2017159257A (en) * 2016-03-10 2017-09-14 住友化学株式会社 Method for manufacturing substrate with electrode and method for manufacturing organic el element
WO2021117076A1 (en) * 2019-12-09 2021-06-17 シャープ株式会社 Light emitting device, and method for manufacturing light emitting device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6280861B1 (en) 1996-05-29 2001-08-28 Idemitsu Kosan Co., Ltd. Organic EL device
US6188176B1 (en) 1997-07-15 2001-02-13 Tdk Corporation Organic electroluminescent device and preparation method with ITO electrode (111) orientation
JP2002319495A (en) * 2001-01-18 2002-10-31 Semiconductor Energy Lab Co Ltd Manufacturing method of light-emitting device
US9768405B2 (en) 2001-02-19 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
JP2002334790A (en) * 2001-02-19 2002-11-22 Semiconductor Energy Lab Co Ltd Light emitting device and its formation method
US9954196B2 (en) 2001-02-19 2018-04-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US8866184B2 (en) 2001-02-19 2014-10-21 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US7423293B2 (en) 2001-02-19 2008-09-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7485478B2 (en) 2001-02-19 2009-02-03 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US7825419B2 (en) 2001-02-19 2010-11-02 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US9502679B2 (en) 2001-02-19 2016-11-22 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US8497525B2 (en) 2001-02-19 2013-07-30 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US8679875B2 (en) 2001-02-19 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US7902740B2 (en) 2001-03-19 2011-03-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting apparatus
US8651911B2 (en) 2001-03-19 2014-02-18 Semiconductor Energy Laboratory Co., Ltd. Light emitting apparatus and method of manufacturing the same
JP2002352956A (en) * 2001-03-23 2002-12-06 Mitsubishi Chemicals Corp Thin-film light emitting substance and manufacturing method therefor
JP4592989B2 (en) * 2001-03-26 2010-12-08 株式会社半導体エネルギー研究所 Method for manufacturing light emitting device
JP2002289344A (en) * 2001-03-26 2002-10-04 Semiconductor Energy Lab Co Ltd Light-emitting device and its preparation method
JPWO2003045115A1 (en) * 2001-11-22 2005-04-07 日本曹達株式会社 EL element
JP2017159257A (en) * 2016-03-10 2017-09-14 住友化学株式会社 Method for manufacturing substrate with electrode and method for manufacturing organic el element
WO2021117076A1 (en) * 2019-12-09 2021-06-17 シャープ株式会社 Light emitting device, and method for manufacturing light emitting device

Similar Documents

Publication Publication Date Title
JP3428152B2 (en) Manufacturing method of organic EL element
JPH06325871A (en) Organic electroluminescent element
JP2776040B2 (en) Organic thin film EL device
JPH1187068A (en) Organic el element and manufacture thereof
JPH04357694A (en) Thin organic film el element
JPH06290873A (en) Organic thin film type light emitting element
JP2003059644A (en) Electroluminescent element
JP2002208479A (en) Substrate with intermediate resistor for organic led element, and organic led element
JPH0487187A (en) Organic electroluminescence element
JPH09289081A (en) Organic electroluminous element
JPH0696858A (en) Organic thin film el element
JPH1140365A (en) Organic el element and its manufacture
JP3359073B2 (en) Organic thin film EL device
JP3284766B2 (en) Organic electroluminescent device
JP4310843B2 (en) Method for manufacturing organic electroluminescent device
JP2902745B2 (en) Organic electroluminescence device
JP3011277B2 (en) Manufacturing method of organic electroluminescence device
JPH0762526A (en) Production of organic electroluminescence element
JPH1012381A (en) Organic electroluminescent element
JPH077713B2 (en) Thin film EL device
JP3208833B2 (en) Organic electroluminescent device
JP3189376B2 (en) Organic electroluminescent device
JPWO2003101158A1 (en) Substrate with transparent conductive film and organic EL element
JP2004111201A (en) Substrate for light-emitting element, substrate with transparent conductive film for light-emitting element, and light-emitting element
JP3381292B2 (en) Method for forming electroluminescent element