JPH04357694A - Thin organic film el element - Google Patents

Thin organic film el element

Info

Publication number
JPH04357694A
JPH04357694A JP3157391A JP15739191A JPH04357694A JP H04357694 A JPH04357694 A JP H04357694A JP 3157391 A JP3157391 A JP 3157391A JP 15739191 A JP15739191 A JP 15739191A JP H04357694 A JPH04357694 A JP H04357694A
Authority
JP
Japan
Prior art keywords
layer
organic compound
compound layer
layers
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3157391A
Other languages
Japanese (ja)
Inventor
Tatsuo Nakano
辰夫 中野
Seiichi Yamazaki
清一 山崎
Kazuo Kato
和男 加藤
Shinichiro Asai
新一郎 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP3157391A priority Critical patent/JPH04357694A/en
Publication of JPH04357694A publication Critical patent/JPH04357694A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To conduct low voltage drive and enhance durability by providing at least one inclined structure layer having a concentration gradient in a component between respective layers of an EL element provided with organic compound layers between two electrodes. CONSTITUTION:A transparent positive electrode 2 comprising a vapor deposition thin film of a metal such as gold, platinum, palladium and the like or an oxide film of tin, indium-tin and the like is formed on a glass substrate 1. Between a compound layer 3 having an electron hole transport function and an electron transporting organic compound layer 4 having a light emission function both formed thereon, an inclined structure layer 8 having a concentration gradient wherein components of both the layers are continuously varied is provided. A negative electrode 7 is formed by vapor deposition of a metal having a little work function or of this metal together with another stable metal. Between the layer 4 and the negative electrode 7 an inclined structure layer 9 of components of both layers can be provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は電気的な発光、即ちEL
(エレクトロルミネセンス)を用いたEL素子に関し、
更に詳しくは二つの電極間に有機化合物層を設けたEL
素子の各層の層間に成分が濃度勾配を有する傾斜構造層
を少なくとも一つ設け、低電圧駆動と耐久性の向上を実
現した有機薄膜EL素子に関するものである。
[Industrial Application Field] The present invention relates to electrical light emitting, that is, EL.
Regarding EL elements using (electroluminescence),
For more details, see EL with an organic compound layer between two electrodes.
The present invention relates to an organic thin film EL device that has at least one graded structure layer in which components have a concentration gradient between each layer of the device, thereby realizing low voltage driving and improved durability.

【0002】0002

【従来の技術】EL素子はその発光機構の違いから (
1)発光層内での電子や正孔の局所的な移動により発光
体を励起し、交流電界でのみ発光する真性EL型発光素
子と、 (2)電極からの電子と正孔の注入とその発光
層内での再結合により発光体を励起し発光するキャリヤ
注入型EL発光素子の2つに分けられる。 (1)の真
性EL型発光素子は一般に無機化合物を発光体とするも
のであるが、駆動に100V以上の高い交流電界を必要
とすること、製造コストが高いこと、輝度や耐久性も不
十分である等多くの問題点を有している。(2)のキャ
リヤ注入型EL発光素子は、発光層として薄膜状有機化
合物を用いる技術が開発されてから低電圧駆動で高輝度
の発光素子が得られるようになった。これらEL素子は
、例えば、特開昭 59−194393号公報、米国特
許明細書4,720,43号、Jpn.Journal
 of Physics,vol. 27, p713
〜715 に開示されており、通常、正孔注入輸送層や
電子注入層が発光層の片側あるいは両側に設けられた素
子であり50V 以下の直流電界で高輝度に発光する。 しかしながら、従来のキャリヤ注入型EL発光素子は、
多層構造の各層を積層して形成させるため、層間の物理
的及び電気的接合性が悪く駆動電圧の上昇や耐久性が劣
る問題があった。(図2のA、B)
[Prior Art] EL elements differ in their light emitting mechanisms (
1) An intrinsic EL light-emitting element that excites a light emitter through local movement of electrons and holes within the light-emitting layer and emits light only in an alternating current electric field; (2) Injection of electrons and holes from electrodes and their There are two types of EL devices: carrier injection type EL devices, which excite a luminescent material and emit light by recombination within a light emitting layer. (1) Intrinsic EL type light emitting devices generally use inorganic compounds as light emitters, but they require a high AC electric field of 100 V or more for driving, are expensive to manufacture, and have insufficient brightness and durability. It has many problems such as In the carrier injection type EL light emitting device (2), after the development of a technology using a thin organic compound as a light emitting layer, a high brightness light emitting device can be obtained by driving at a low voltage. These EL elements are disclosed in, for example, Japanese Patent Application Laid-Open No. 59-194393, US Pat. No. 4,720,43, Jpn. Journal
of Physics, vol. 27, p713
- 715, and is usually an element in which a hole injection transport layer or an electron injection layer is provided on one or both sides of a light emitting layer, and emits light with high brightness in a DC electric field of 50 V or less. However, the conventional carrier injection type EL light emitting device is
Since each layer of the multilayer structure is formed by laminating them, there are problems with poor physical and electrical connectivity between the layers, resulting in an increase in driving voltage and poor durability. (A, B in Figure 2)

【0003】0003

【発明が解決しようとする課題】本発明は上記従来技術
の実情に鑑みて成されたものであり、その目的は駆動電
圧の低下と耐久性に優れた有機薄膜EL素子を提供する
ことにある。本発明者らは、上記目的を解決するために
層間の構造を鋭意検討した結果、層間を形成する各々の
成分が濃度勾配を持ち、層と層を簡単に積層したごとき
明瞭な界面を持たない、いわゆる傾斜構造とした場合に
上記課題が解決できることを見い出し、本発明を完成す
るに至った。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned actual state of the prior art, and its purpose is to provide an organic thin film EL element that can reduce driving voltage and has excellent durability. . In order to solve the above-mentioned object, the present inventors have carefully studied the interlayer structure and found that each component forming the interlayer has a concentration gradient and does not have a clear interface as if the layers were simply laminated. The inventors have discovered that the above problems can be solved by using a so-called inclined structure, and have completed the present invention.

【0004】0004

【課題を解決するための手段】すなわち、本発明は、1
.少なくとも一方が金属電極である二つの電極間に正孔
輸送能を有する化合物層及び発光機能を有する電子輸送
性有機化合物層を積層した有機薄膜EL素子において、
前記EL素子を構成する各層間の少なくとも一つに該層
間を形成する各々の成分で濃度勾配を設けた傾斜構造層
を形成してなることを特徴とする有機薄膜EL素子2.
少なくとも一方が金属電極である二つの電極間に正孔輸
送能を有する化合物層、発光機能を有する有機化合物層
及び電子輸送能を有する有機化合物層を積層した有機薄
膜EL素子において、前記EL素子を構成する各層間の
少なくとも一つに該層間を形成する各々の成分で濃度勾
配を設けた傾斜構造層を形成してなることを特徴とする
有機薄膜EL素子である。
[Means for Solving the Problems] That is, the present invention has the following features:
.. In an organic thin film EL device in which a compound layer having a hole transporting ability and an electron transporting organic compound layer having a light emitting function are laminated between two electrodes, at least one of which is a metal electrode,
2. An organic thin film EL device characterized in that a gradient structure layer is formed in at least one between each layer constituting the EL device, in which a concentration gradient is provided for each component forming the interlayer.
An organic thin film EL device in which a compound layer having a hole transporting ability, an organic compound layer having a light emitting function, and an organic compound layer having an electron transporting ability are laminated between two electrodes, at least one of which is a metal electrode. This organic thin film EL device is characterized in that a gradient structure layer is formed in at least one of the constituent layers in which a concentration gradient is provided for each component forming the interlayer.

【0005】そして本発明の傾斜構造層は、前記素子の
各有機化合物層および電極層を積層する際に、各々独立
した電源回路を持つ蒸発用ボートを有する真空蒸着装置
で蒸発速度を調整することにより、有機化合物層の各層
間及び有機化合物層と金属電極との層間を傾斜構造層に
したことを特徴とする有機薄膜EL素子が提供される。 本発明の有機薄膜EL素子は、以下に示す構成を有する
素子において、該層間に各々の成分で濃度に勾配を設け
た傾斜構造層を少なくとも一層積層したものであり、例
えば (1)陽極/正孔輸送能を有する化合物層/発光機能を
有する電子輸送性有機化合物層/陰極 (2)陽極/正孔輸送能を有する化合物層/発光機能を
有する有機化合物層/電子輸送能を有する有機化合物層
/陰極 が挙げられる。
[0005] The gradient structure layer of the present invention is produced by adjusting the evaporation rate using a vacuum evaporation apparatus having an evaporation boat each having an independent power supply circuit when laminating each organic compound layer and electrode layer of the device. Accordingly, there is provided an organic thin film EL device characterized in that a gradient structure layer is formed between each of the organic compound layers and between the organic compound layer and the metal electrode. The organic thin film EL device of the present invention is a device having the following configuration, in which at least one graded structure layer in which each component has a concentration gradient is laminated between the layers, such as (1) anode/positive layer. Compound layer with hole transport ability/electron transport organic compound layer with light emitting function/cathode (2) anode/compound layer with hole transport ability/organic compound layer with light emitting function/organic compound layer with electron transport ability / cathode.

【0006】さらに以下、図面に沿って本発明を詳細に
説明する。図1のA及びCは、本発明の有機薄膜EL素
子の断面図である。1はガラス基板であり、2は基板上
に形成された透明な陽極である。透明な陽極2は金、白
金、パラジウム等の金属の蒸着薄膜又はスズ、インジウ
ム−スズ等の酸化膜であり、発光を取り出すために可視
光線に対して透明であることが望ましい。3は正孔輸送
能を有する化合物層であり、4は発光機能を有する電子
輸送性有機化合物層である。8は層3の成分と層4の成
分が連続して変化する濃度勾配が設けられている、いわ
ゆる傾斜構造層の部分である。また7は陰極であり、金
属の真空蒸着により形成される。陰極7に用いられる金
属は、真空蒸着可能な固体の金属であればあらゆる金属
が使用され得るが、特に仕事関数の小さな金属又は仕事
関数の小さな金属と安定な金属との共蒸着が望ましい。 9は層4の成分と層7の成分との傾斜構造層の部分であ
る。また図1のBおよびDは、本発明の他の有機薄膜E
L素子の断面図であり、形成する層の1〜3は、前記A
及びCに示すものと同様である。5は発光機能を有する
有機化合物層であり、10は層3の成分と層5の成分と
の傾斜構造層の部分である。6は電子輸送能を有する有
機化合物層であり、11は層5の成分と層6の成分との
傾斜構造層の部分である。7は陰極であり、前記A及び
Cと同様の金属で構成され、12は層6の成分と層7の
成分との傾斜構造層の部分である。尚本発明のEL素子
は、いっそうの正孔輸送効率を向上させるためにはEL
素子陽極2と正孔輸送能を有する化合物層3の層間に傾
斜構造層を設けてもよい。
Further, the present invention will be explained in detail below with reference to the drawings. FIGS. 1A and 1C are cross-sectional views of the organic thin film EL device of the present invention. 1 is a glass substrate, and 2 is a transparent anode formed on the substrate. The transparent anode 2 is a vapor-deposited thin film of metal such as gold, platinum, or palladium, or an oxide film such as tin or indium-tin, and is preferably transparent to visible light in order to extract luminescence. 3 is a compound layer having a hole transporting ability, and 4 is an electron transporting organic compound layer having a light emitting function. Reference numeral 8 denotes a so-called gradient structure layer where a concentration gradient is provided in which the components of layer 3 and the components of layer 4 change continuously. Further, 7 is a cathode, which is formed by vacuum evaporation of metal. As the metal used for the cathode 7, any solid metal that can be vacuum-deposited may be used, but it is particularly desirable to use a metal with a small work function or a co-deposition of a metal with a small work function and a stable metal. Reference numeral 9 denotes a portion of the graded structure layer consisting of the components of layer 4 and the components of layer 7. In addition, B and D in FIG. 1 show other organic thin films E of the present invention.
It is a sectional view of the L element, and layers 1 to 3 to be formed are the A
and C. 5 is an organic compound layer having a light-emitting function, and 10 is a portion of a gradient structure layer consisting of the components of layer 3 and the components of layer 5. Reference numeral 6 is an organic compound layer having an electron transport ability, and reference numeral 11 is a portion of a gradient structure layer consisting of the components of layer 5 and the components of layer 6. 7 is a cathode, which is made of the same metal as A and C, and 12 is a portion of a graded structure layer consisting of the components of layer 6 and the component of layer 7. Note that the EL element of the present invention requires EL to further improve the hole transport efficiency.
A gradient structure layer may be provided between the element anode 2 and the compound layer 3 having hole transport ability.

【0007】本発明に使用する正孔輸送能を有する化合
物としては、真空蒸着可能なポリビニルカルバゾールの
オリゴマーやN,N−ジフェニルトルイジンとケトン類
の縮合物等のような正孔輸送能の優れた物質が挙げられ
る。 さらに単一有機化合物の例としては、トリフェニルアミ
ン誘導体、スチルベン誘導体類、オキサジアゾール誘導
体類等が挙げられるが、本発明に使用する有機化合物は
、これらに限定するものではない。更に、有機化合物は
、正孔輸送能や結晶化防止、安定性を改良する目的で混
合して使用しても良い。
[0007] Compounds with hole transporting ability used in the present invention include compounds with excellent hole transporting ability such as polyvinylcarbazole oligomers that can be vacuum deposited and condensates of N,N-diphenyltoluidine and ketones. Examples include substances. Furthermore, examples of single organic compounds include triphenylamine derivatives, stilbene derivatives, oxadiazole derivatives, etc., but the organic compounds used in the present invention are not limited to these. Furthermore, organic compounds may be used in combination for the purpose of improving hole transport ability, prevention of crystallization, and stability.

【0008】一方、本発明に用いる発光機能を有する有
機化合物としては、例えばオキシン金属錯体やペリレン
誘導体、ポリフェニルシクロペンタジエン、フタロペリ
ノン誘導体及びトリフェニルアミン誘導体等があり、そ
の他多くの有機化合物が挙げられるが、本発明はこれら
に限定するものではない。
On the other hand, examples of organic compounds having a light-emitting function used in the present invention include oxine metal complexes, perylene derivatives, polyphenylcyclopentadiene, phthaloperinone derivatives, triphenylamine derivatives, and many other organic compounds. However, the present invention is not limited to these.

【0009】上述した正孔輸送能を有する化合物層3単
独の厚さは、1000Å未満、好ましくは10Å〜50
0 Åであり、1000Åを越えると著しく駆動電圧が
高くなり、本発明の目的に反する。また正孔輸送能を有
する化合物層3と発光機能を有する電子輸送性有機化合
物層4の層間で形成される傾斜構造層8、又は正孔輸送
を有する化合物層3と発光機能を有する有機化合物層5
の層間で形成される傾斜構造層10部分の厚さは、5Å
〜1000Å、好ましくは10Å〜500 Åである。 厚さが5Å未満では物理的強度が乏しく、1000Åを
越えると著しく駆動電圧が高くなり、本発明の目的に反
する。
The thickness of the compound layer 3 having the above-mentioned hole transporting ability alone is less than 1000 Å, preferably 10 Å to 50 Å.
0 Å, and if it exceeds 1000 Å, the driving voltage becomes significantly high, which is contrary to the purpose of the present invention. Also, a gradient structure layer 8 formed between a compound layer 3 having a hole transporting ability and an electron transporting organic compound layer 4 having a light emitting function, or a compound layer 3 having a hole transporting ability and an organic compound layer having a light emitting function. 5
The thickness of the gradient structure layer 10 formed between the layers is 5 Å.
~1000 Å, preferably 10 Å to 500 Å. If the thickness is less than 5 Å, the physical strength is poor, and if it exceeds 1000 Å, the driving voltage becomes significantly high, which is contrary to the purpose of the present invention.

【0010】更に、発光機能を有する電子輸送性有機化
合物層4又は発光機能を有する有機化合物層5単独の厚
さは1000Å未満、好ましくは50Å〜500 Åで
あり、1000Å越えると著しく駆動電圧が高くなり、
本発明の目的に反する。また本発明の電子輸送能を有す
る有機化合物層6は、1000Å未満、好ましくは50
Å〜500 Åである。厚さが1000Åを越えると著
しく駆動電圧が高くなり、本発明の目的に反する。そし
て発光機能を有する有機化合物層5と電子輸送能を有す
る有機化合物層6で形成される傾斜構造層11部分の厚
さは、物理的強度及び駆動電圧の点から前記傾斜構造層
8又は10と同様であることが好ましい。尚電子輸送能
を有する有機化合物層6の厚みが100 Å以下の際に
は、傾斜構造層11部分の厚さが200 Å〜500 
Åであることが好ましい。発光機能を有する電子輸送性
有機化合物層4と陰極7の層間で形成される傾斜構造層
9、又は電子輸送能を有する有機化合物層6と陰極7の
層間で形成される傾斜構造層12部分の厚さは、5Å〜
500 Å、好ましくは10Å〜100 Åである。そ
して厚みが5Å未満では層間の密着効果が悪く、また5
00 Åを超える厚さであっても大きなメリットはない
Further, the thickness of the electron-transporting organic compound layer 4 having a light-emitting function or the organic compound layer 5 having a light-emitting function alone is less than 1000 Å, preferably 50 Å to 500 Å, and if it exceeds 1000 Å, the driving voltage becomes significantly high. Become,
This is contrary to the purpose of the present invention. Further, the organic compound layer 6 having electron transport ability of the present invention has a thickness of less than 1000 Å, preferably 50 Å.
Å to 500 Å. If the thickness exceeds 1000 Å, the driving voltage becomes significantly high, which is contrary to the purpose of the present invention. The thickness of the gradient structure layer 11 formed by the organic compound layer 5 having a light emitting function and the organic compound layer 6 having an electron transporting ability is determined from the gradient structure layer 8 or 10 in terms of physical strength and driving voltage. Preferably, they are the same. Note that when the thickness of the organic compound layer 6 having electron transport ability is 100 Å or less, the thickness of the gradient structure layer 11 portion is 200 Å to 500 Å.
It is preferable that it is Å. The gradient structure layer 9 formed between the electron-transporting organic compound layer 4 having a light-emitting function and the cathode 7, or the gradient structure layer 12 portion formed between the organic compound layer 6 having an electron-transporting ability and the cathode 7. Thickness is 5 Å ~
500 Å, preferably 10 Å to 100 Å. If the thickness is less than 5 Å, the adhesion effect between the layers is poor;
Even if the thickness exceeds 0.00 Å, there is no significant advantage.

【0011】本発明の傾斜構造層とは、電極間に設けら
れた各層間を形成する各々の成分が連続して変化した濃
度勾配を持ち、層と層とを単に積層したごとき明瞭な境
界を持たないものである。そして連続して変化した濃度
勾配とは、一方の層である成分濃度が一定で他方の層の
成分濃度が連続的に増加又は減少するか、又は双方の層
の中間を境に各層へ向かって成分濃度が増加又は減少す
るものであってもよい。本発明の傾斜構造層を得る方法
としては、真空中で一方の層の成分を一定時間で蒸着さ
せながら、他方の層の成分の蒸着時間を連続的に変化さ
せる。又は双方の層の成分の蒸着時間を連続して変化さ
せる方法で行うこともできる。
[0011] The graded structure layer of the present invention is a layer in which each component forming a gap between the electrodes has a concentration gradient that continuously changes, and has a clear boundary as if the layers were simply laminated. It's something you don't have. Continuously changing concentration gradient means that the concentration of a component in one layer is constant and the concentration of a component in the other layer increases or decreases continuously, or that the concentration of a component in one layer is constant and the concentration of a component in the other layer increases or decreases continuously, or that the concentration of a component in one layer is constant and the concentration of a component in the other layer increases or decreases continuously, or The component concentration may increase or decrease. As a method for obtaining the gradient structure layer of the present invention, the components of one layer are deposited for a fixed time in vacuum, while the deposition time of the components of the other layer is continuously changed. Alternatively, the deposition time of the components of both layers may be continuously changed.

【0012】更に、各有機化合物層の厚さは、駆動電圧
に直接影響するので、出来る限り薄くした方が駆動電圧
が低くなるので好ましいが、反面絶縁破壊電圧も低下す
る傾向があり、素子全体の有機化合物層の総厚さは、目
的に応じて選択してよく限定するものではない。次いで
、本発明の陰極7は、真空蒸着することによって透明な
陰極が形成されることが好ましく、厚さは特に限定する
ものではない。
Furthermore, since the thickness of each organic compound layer directly affects the drive voltage, it is preferable to make it as thin as possible because the drive voltage will be lower, but on the other hand, the dielectric breakdown voltage also tends to decrease, and the overall The total thickness of the organic compound layer may be selected depending on the purpose and is not limited. Next, the cathode 7 of the present invention is preferably formed into a transparent cathode by vacuum deposition, and the thickness is not particularly limited.

【0013】本発明で得られたEL素子は、主にフラッ
トパネル、液晶表示使用分野、その他LCD用バックラ
イト、大画面ディスプレイ及びテレビジョンなどに用い
られる。
The EL element obtained by the present invention is mainly used in flat panels, liquid crystal displays, backlights for LCDs, large screen displays, televisions, and the like.

【0014】[0014]

【実施例】以下、実施例により本発明を更に詳細に説明
する。 実施例1 陽極として、インジウム−スズ酸化物をコートしたガラ
ス(松崎真空社製、以下ITO という)をアセトン中
で10分間超音波洗浄した。次いでエタノール中で5分
間煮沸後取り出し乾燥窒素ガスを吹き付けて乾燥した後
、真空装置内にセットした。つぎに正孔輸送能を有する
有機化合物としてN,N’− ジフェニル−N,N’−
(3−メチルフェニル)−1,1’−ビフェニル−4,
4’−ジアミン( 以下TPD という)を、発光機能
を有する電子輸送性有機化合物としてオキシンのアルミ
ニウム錯体( 以下Alq3という) を用い、さらに
陰極材料としてマグネシウムおよび銀を真空装置内の各
々独立した電源回路を有する抵抗加熱ボートにそれぞれ
投入して、真空装置内の真空度を3×10−6torr
とした。まづITO の面にTPD のボートを加熱し
て1.0 Å/Secの一定した蒸着速度でTPDを5
0Å蒸着し、正孔輸送能を有する有機化合物層を形成し
た。さらにTPD は、1.0 Å/Sec の一定し
た蒸着速度で蒸着を継続しながらAlq3の蒸着を開始
した。Alq3の蒸着速度は、0Å/Secから徐々に
増加させTPD とAlq3の成分濃度に勾配を設けた
傾斜構造層の部分が190 Åの製膜時では、Alq3
の蒸着速度が10Å/Secであった。この時点でTP
D の加熱を低下させて傾斜構造層の部分が 200Å
の製膜時でTPD の蒸着を停止した。引続きAlq3
は、単独で蒸着を継続して発光機能を有する電子輸送性
有機化合物層を 200Å形成した。 次いで、マグネシウムと銀を共蒸着して2000Åの陰
極を形成した。得られた素子は、ITO 側を陽極とし
上述した陰極に直流電圧をかけると緑色の発光を呈した
。また駆動電圧15V、電流密度110 mA/cm2
では945cd/m2の発光輝度を示した。また、この
素子は大気中でも作動させることが可能であった。更に
、この素子を充分に乾燥した空気中で電流密度6mA/
cm2で輝度50cd/m2 の条件で駆動させたが、
48時間経過後の輝度の低下は観測されなかった。
[Examples] The present invention will be explained in more detail with reference to Examples below. Example 1 As an anode, a glass coated with indium-tin oxide (manufactured by Matsuzaki Vacuum Co., Ltd., hereinafter referred to as ITO) was ultrasonically cleaned in acetone for 10 minutes. Next, it was boiled in ethanol for 5 minutes, taken out, dried by blowing dry nitrogen gas, and then set in a vacuum device. Next, N,N'-diphenyl-N,N'-
(3-methylphenyl)-1,1'-biphenyl-4,
4'-diamine (hereinafter referred to as TPD), an aluminum complex of oxine (hereinafter referred to as Alq3) as an electron-transporting organic compound with a light-emitting function, and magnesium and silver as cathode materials were used in separate power supply circuits in a vacuum apparatus. The vacuum level inside the vacuum device was set to 3 x 10-6 torr
And so. First, a TPD boat was heated on the ITO surface and TPD was deposited at a constant deposition rate of 1.0 Å/Sec.
0 Å was deposited to form an organic compound layer having hole transport ability. Furthermore, TPD started the deposition of Alq3 while continuing the deposition at a constant deposition rate of 1.0 Å/Sec. The deposition rate of Alq3 was gradually increased from 0 Å/Sec.
The deposition rate was 10 Å/Sec. At this point T.P.
By reducing the heating of D, the graded structure layer becomes 200 Å.
The TPD deposition was stopped when the film was formed. Continue Alq3
By continuing vapor deposition alone, a layer of an electron-transporting organic compound having a light-emitting function was formed with a thickness of 200 Å. Next, magnesium and silver were co-deposited to form a 2000 Å cathode. The obtained device emitted green light when a direct current voltage was applied to the ITO side as the anode and the above-mentioned cathode. Also, driving voltage 15V, current density 110 mA/cm2
showed a luminance of 945 cd/m2. Additionally, this device could be operated in the atmosphere. Furthermore, this element was heated at a current density of 6 mA/in sufficiently dry air.
It was driven under the conditions of cm2 and brightness of 50 cd/m2,
No decrease in brightness was observed after 48 hours.

【0015】実施例2 実施例1と同様の材料を用いて、同様の操作を行い、I
TO ガラス表面に正孔輸送能を有する有機化合物層を
200 Å、傾斜構造層を100 Å、発光機能を有す
る電子輸送性有機化合物層を200 Å及び陰極を20
00Åを形成して、有機薄膜EL素子とした。得られた
素子は、ITO 側を陽極とし上述した陰極に直流電圧
をかけると緑色の発光を呈した。また駆動電圧21V、
電流密度100mA/cm2 では1000cd/m2
 の発光輝度を示した。また、この素子は大気中でも作
動させることが可能であった。更に、この素子を充分に
乾燥した窒素中で電流密度5mA/cm2で輝度50c
d/m2 の条件で駆動させたが、48時間経過後の輝
度の低下は観測されなかった。
Example 2 Using the same materials and performing the same operations as in Example 1, I
TO The glass surface has an organic compound layer with a hole transporting ability of 200 Å, a gradient structure layer of 100 Å, an electron transporting organic compound layer with a light emitting function of 200 Å, and a cathode of 200 Å.
00 Å to form an organic thin film EL device. The obtained device emitted green light when a direct current voltage was applied to the ITO side as the anode and the above-mentioned cathode. In addition, the driving voltage is 21V,
Current density 100mA/cm2 is 1000cd/m2
It showed a luminance of . Additionally, this device could be operated in the atmosphere. Furthermore, this element was heated to a luminance of 50 c at a current density of 5 mA/cm2 in sufficiently dry nitrogen.
Although the device was driven under the condition of d/m2, no decrease in brightness was observed after 48 hours.

【0016】比較例1 実施例1の装置で同様の材料を用いて、ITO ガラス
表面に正孔輸送能を有する有機化合物層を250 Å、
発光機能を有する電子輸送性有機化合物層を250 Å
及び陰極を2000Å真空蒸着して有機薄膜EL素子を
作製した。この素子は、13Vで緑色の発光を呈したが
、数秒で電極が破壊した。
Comparative Example 1 Using the same material as in Example 1, an organic compound layer having a hole transporting ability was formed on the surface of the ITO glass at a thickness of 250 Å.
An electron transporting organic compound layer with a light emitting function is formed at a thickness of 250 Å.
Then, a cathode of 2000 Å was vacuum deposited to produce an organic thin film EL device. This device emitted green light at 13 V, but the electrodes were destroyed within a few seconds.

【0017】比較例2 実施例1の装置で同様の材料を用いて、ITO ガラス
表面に正孔輸送能を有する有機化合物層500 Å、発
光機能を有する電子輸送性有機化合物層を800 Å及
び陰極を2000Å真空蒸着して有機薄膜EL素子を作
製した。この素子は、駆動電圧46V、電流密度110
 mA/cm2で輝度925cd/m2の緑色発光を呈
した。しかし、21Vでは輝度2cd/m2 以下の発
光であった。また、陰極端子引出しのため、陰極金属表
面に銀ペーストを塗布し、陰極端子を接合する作業中、
蒸着した陰極金属が発光機能を有する電子輸送性有機化
合物層から簡単に剥離してしまった。
Comparative Example 2 Using the same material as in Example 1, a 500 Å layer of an organic compound having a hole transporting ability was formed on the ITO glass surface, an 800 Å layer of an electron transporting organic compound having a light emitting function, and a cathode. An organic thin film EL device was fabricated by vacuum deposition of 2000 Å. This device has a driving voltage of 46V and a current density of 110V.
It exhibited green light emission with a brightness of 925 cd/m2 at mA/cm2. However, at 21 V, the luminance was less than 2 cd/m2. In addition, in order to draw out the cathode terminal, silver paste was applied to the cathode metal surface, and during the work of joining the cathode terminal,
The deposited cathode metal easily peeled off from the electron-transporting organic compound layer having a light-emitting function.

【0018】実施例3 実施例1の装置で同様の材料を用い、ITO ガラス表
面に正孔輸送能を有する有機化合物層を400 Åと発
光機能を有する電子輸送性有機化合物層を600 Åを
蒸着後、Alq3と陰極金属の層間に100 Åの傾斜
構造層を形成し、次いで、陰極を2000Å真空蒸着し
て有機薄膜EL素子を作製した。この素子は、駆動電圧
30V、電流密度100 mA/cm2で輝度950c
d/m2の緑色の発光を呈した。この素子は、陰極金属
表面にセロハンテープを貼り剥離すると、有機化合物層
部分が陰極金属に付着していた。更に、銀ペースト接合
にて陰極端子引出し時にも剥離しなかった。
Example 3 Using the same material as in Example 1, a 400 Å layer of an organic compound having a hole-transporting ability and a 600 Å layer of an electron-transporting organic compound having a light-emitting function were deposited on the surface of an ITO glass. Thereafter, a 100 Å gradient structure layer was formed between the Alq3 and cathode metal layers, and then a 2000 Å cathode was vacuum deposited to produce an organic thin film EL device. This device has a brightness of 950c at a driving voltage of 30V and a current density of 100 mA/cm2.
It exhibited green luminescence of d/m2. In this element, when cellophane tape was applied to the surface of the cathode metal and peeled off, the organic compound layer portion was found to be attached to the cathode metal. Furthermore, no peeling occurred when the cathode terminal was drawn out during silver paste bonding.

【0019】実施例4 実施例1と同様にして、ITO ガラス表面に正孔輸送
能有する有機化合物層を200 Å、50Åの傾斜構造
層を形成し、さらに発光機能を有する電子輸送性有機化
合物層200 Åを蒸着後、Alq3と陰極金属の層間
に50Åの傾斜構造層を形成し、次いで、陰極金属20
00Åを真空蒸着して有機薄膜EL素子とした。得られ
た素子は、ITO 側を陽極とし上述した陰極に直流電
圧をかけると緑色の発光を呈した。駆動電圧19V、電
流密度100mA/cm2 では1050cd/m2 
の発光輝度を示した。また、この素子は大気中でも作動
させることが可能であった。更に、この素子を充分に乾
燥した窒素中で電流密度5mA/cm2で輝度50cd
/m2 の条件で駆動させたが、48時間経過後の輝度
の低下は観測されなかった。またこの素子は、銀ペース
ト接合にて陰極端子引出し時に陰極部分での剥離を起こ
さなかった。
Example 4 In the same manner as in Example 1, a gradient structure layer of 200 Å and 50 Å of an organic compound layer having a hole transporting ability was formed on the surface of an ITO glass, and an electron transporting organic compound layer having a light emitting function was further formed. After depositing 200 Å, a 50 Å graded structure layer was formed between the Alq3 and cathode metal layers, and then the cathode metal 20
00 Å was vacuum deposited to form an organic thin film EL device. The obtained device emitted green light when a direct current voltage was applied to the ITO side as the anode and the above-mentioned cathode. Drive voltage 19V, current density 100mA/cm2: 1050cd/m2
It showed a luminance of . Additionally, this device could be operated in the atmosphere. Furthermore, this element was heated to a luminance of 50 cd at a current density of 5 mA/cm2 in sufficiently dry nitrogen.
/m2, but no decrease in brightness was observed after 48 hours. Furthermore, this element did not cause peeling at the cathode portion when the cathode terminal was drawn out by silver paste bonding.

【0020】[0020]

【発明の効果】本発明の有機薄膜EL素子は、その素子
を構成する多層の各層間の少なくとも一つにを明瞭な界
面を持たない、いわゆる傾斜構造層を設けたことから、
各層間の接合性が改良され、しかも接合面積の拡大によ
り電子等キャリヤの注入性が改良され、さらに低電圧駆
動と耐久性の向上を実現し得るなどの利点を有する。
Effects of the Invention The organic thin film EL device of the present invention has a so-called graded structure layer that does not have a clear interface between at least one of the multiple layers constituting the device.
The bonding properties between each layer are improved, and the injectability of carriers such as electrons is improved due to the enlarged bonding area. Furthermore, it has advantages such as low voltage driving and improved durability.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1のA、B、C及びDは、本発明に係る有機
薄膜EL素子の一例を示す断面図である。
1A, B, C, and D of FIG. 1 are cross-sectional views showing an example of an organic thin film EL element according to the present invention.

【図2】図2のA及Bは、従来の有機薄膜EL素子の一
例を示す断面図である。
FIGS. 2A and 2B are cross-sectional views showing an example of a conventional organic thin film EL element.

【符号の説明】[Explanation of symbols]

1  ガラス基板 2  陽極 3  正孔輸送能を有する化合物層 4  発光機能を有する電子輸送性有機化合物層5  
発光機能有する有機化合物層 6  電子輸送能を有する有機化合物層7  陰極 8  正孔輸送能を有する化合物層と発光機能を有する
電子輸送性有機化合物層の傾斜構造層 9  発光機能を有する電子輸送性有機化合物層と陰極
の傾斜構造層 10  正孔輸送能を有する化合物層と発光機能を有す
る有機化合物層の傾斜構造層 11  発光機能を有する有機化合物層と電子輸送能を
有する有機化合物層の傾斜構造層 12  電子輸送能を有する有機化合物層と陰極の傾斜
構造層
1 Glass substrate 2 Anode 3 Compound layer having hole transporting ability 4 Electron transporting organic compound layer having light emitting function 5
Organic compound layer with a light-emitting function 6 Organic compound layer with an electron-transporting ability 7 Cathode 8 Gradient structure layer of a compound layer with a hole-transporting ability and an electron-transporting organic compound layer with a light-emitting function 9 Electron-transporting organic compound with a light-emitting function Gradient structure layer 10 of compound layer and cathode Gradient structure layer 11 of compound layer having hole transport ability and organic compound layer having light emitting function Gradient structure layer of organic compound layer having light emitting function and organic compound layer having electron transport ability 12 Organic compound layer with electron transport ability and graded structure layer of cathode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  少なくとも一方が金属電極である二つ
の電極間に正孔輸送能を有する化合物層及び発光機能を
有する電子輸送性有機化合物層を積層した有機薄膜EL
素子において、前記EL素子を構成する各層間の少なく
とも一つに該層間を形成する各々の成分で濃度勾配を設
けた傾斜構造層を形成してなることを特徴とする有機薄
膜EL素子。
Claim 1: An organic thin film EL in which a compound layer having a hole transporting ability and an electron transporting organic compound layer having a light emitting function are laminated between two electrodes, at least one of which is a metal electrode.
An organic thin film EL device, characterized in that a gradient structure layer is formed in at least one of the layers constituting the EL device, in which a concentration gradient is provided for each component forming the interlayer.
【請求項2】  少なくとも一方が金属電極である二つ
の電極間に正孔輸送能を有する化合物層、発光機能を有
する有機化合物層及び電子輸送能を有する有機化合物層
を積層した有機薄膜EL素子において、前記EL素子を
構成する各層間の少なくとも一つに該層間を形成する各
々の成分で濃度勾配を設けた傾斜構造層を形成してなる
ことを特徴とする有機薄膜EL素子。
Claim 2: An organic thin film EL device in which a compound layer having a hole transporting ability, an organic compound layer having a light emitting function, and an organic compound layer having an electron transporting ability are laminated between two electrodes, at least one of which is a metal electrode. . An organic thin film EL device, characterized in that a gradient structure layer is formed in at least one space between each layer constituting the EL device, in which a concentration gradient is provided for each component forming the space between the layers.
JP3157391A 1991-06-03 1991-06-03 Thin organic film el element Pending JPH04357694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3157391A JPH04357694A (en) 1991-06-03 1991-06-03 Thin organic film el element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3157391A JPH04357694A (en) 1991-06-03 1991-06-03 Thin organic film el element

Publications (1)

Publication Number Publication Date
JPH04357694A true JPH04357694A (en) 1992-12-10

Family

ID=15648612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3157391A Pending JPH04357694A (en) 1991-06-03 1991-06-03 Thin organic film el element

Country Status (1)

Country Link
JP (1) JPH04357694A (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711244A (en) * 1993-06-24 1995-01-13 Mitsui Petrochem Ind Ltd Thin film element emitting light in electric field and method for producing same
US5540999A (en) * 1993-09-09 1996-07-30 Takakazu Yamamoto EL element using polythiophene
JPH09188875A (en) * 1996-01-09 1997-07-22 Toray Ind Inc Luminescent element and backlight or display using the same
US5792557A (en) * 1994-02-08 1998-08-11 Tdk Corporation Organic EL element
WO2001026425A1 (en) * 1999-10-05 2001-04-12 Matsushita Electric Industrial Co., Ltd. Luminescent device and method for manufacturing the same, and display and illuminator comprising the same
JP2002324673A (en) * 2001-02-22 2002-11-08 Semiconductor Energy Lab Co Ltd Organic luminous element and display device using above element
JP2003243179A (en) * 2002-02-13 2003-08-29 Univ Toyama Organic electroluminescent element
JP2004247313A (en) * 1998-03-13 2004-09-02 Cambridge Display Technol Ltd Electroluminescent element and its manufacturing method
JP2005135600A (en) * 2003-10-28 2005-05-26 Idemitsu Kosan Co Ltd Organic electroluminescent element
WO2005031798A3 (en) * 2003-09-26 2005-05-26 Semiconductor Energy Lab Light-emitting device and method for manufacturing the same
JP2005522852A (en) * 2002-04-05 2005-07-28 ゼロックス コーポレイション Display device having organic metal mixed layer
SG114527A1 (en) * 2001-02-08 2005-09-28 Semiconductor Energy Lab Light emitting device
US7201974B2 (en) * 2000-10-31 2007-04-10 Sanyo Electric Co., Ltd. Organic electroluminescence element
JP2007300137A (en) * 2000-12-28 2007-11-15 Semiconductor Energy Lab Co Ltd Light emitting element, light emitting device, and electric appliance
JP2007300132A (en) * 2000-12-28 2007-11-15 Semiconductor Energy Lab Co Ltd Light emitting device
WO2008069153A1 (en) * 2006-12-04 2008-06-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US7387904B2 (en) 2003-10-03 2008-06-17 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and manufacturing method thereof, and light emitting device using the light emitting element
US7432116B2 (en) 2001-02-21 2008-10-07 Semiconductor Energy Laboratory Co., Ltd. Method and apparatus for film deposition
JP2008261058A (en) * 2001-02-08 2008-10-30 Semiconductor Energy Lab Co Ltd Film deposition apparatus and method for manufacturing light-emitting apparatus
US7459722B2 (en) 2001-02-01 2008-12-02 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting element and display device using the element
US7488986B2 (en) 2001-10-26 2009-02-10 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
CN100464441C (en) * 2000-12-28 2009-02-25 株式会社半导体能源研究所 Light emitting device
US20090058285A1 (en) * 2001-02-01 2009-03-05 Semiconductor Energy Laboratory Co., Ltd. Deposition Apparatus and Deposition Method
US7592193B2 (en) 2001-10-30 2009-09-22 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP2009259852A (en) * 2009-08-12 2009-11-05 Idemitsu Kosan Co Ltd Organic electroluminescent light emitting element
US7667389B2 (en) 2004-12-06 2010-02-23 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
US7745989B2 (en) 2005-06-30 2010-06-29 Semiconductor Energy Laboratory Co., Ltd Light emitting element, light emitting device, and electronic apparatus
US7790296B2 (en) 2005-05-20 2010-09-07 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
US7851989B2 (en) 2005-03-25 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7893427B2 (en) 2004-07-23 2011-02-22 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
US7951470B2 (en) 2004-08-23 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and lighting system
US7994711B2 (en) 2005-08-08 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
US8017252B2 (en) 2005-06-22 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic appliance using the same
JP2011224503A (en) * 2010-04-22 2011-11-10 Fujifilm Corp Method and apparatus for manufacturing thin film
JP2012028823A (en) * 2011-11-09 2012-02-09 Konica Minolta Holdings Inc Organic electroluminescent element
WO2012076740A1 (en) * 2010-12-10 2012-06-14 Fundación Imdea Nanociencia Position-sensitive photodetector, method for obtaining same and method for measuring the response from the photodetector
US8334057B2 (en) 2005-06-08 2012-12-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US8404500B2 (en) 2009-11-02 2013-03-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting element, light-emitting element, light-emitting device, lighting device, and electronic appliance
US8420227B2 (en) 2005-03-23 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Composite material, light emitting element and light emitting device
JP2015053493A (en) * 2008-10-01 2015-03-19 エルジー・ケム・リミテッド Organic light emitting element and method of manufacturing the same
US9224976B2 (en) 2008-11-19 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US9564609B2 (en) 2011-02-11 2017-02-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element including electrode of three layers
US9570697B2 (en) 2003-12-26 2017-02-14 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US10134996B2 (en) 2004-10-29 2018-11-20 Semicondcutor Energy Laboratory Co., Ltd. Composite material, light-emitting element, light-emitting device, and manufacturing method thereof
US10862060B2 (en) * 2012-05-22 2020-12-08 Lg Display Co., Ltd. Organic light emitting device and method of fabricating the same

Cited By (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711244A (en) * 1993-06-24 1995-01-13 Mitsui Petrochem Ind Ltd Thin film element emitting light in electric field and method for producing same
US5540999A (en) * 1993-09-09 1996-07-30 Takakazu Yamamoto EL element using polythiophene
US5792557A (en) * 1994-02-08 1998-08-11 Tdk Corporation Organic EL element
JPH09188875A (en) * 1996-01-09 1997-07-22 Toray Ind Inc Luminescent element and backlight or display using the same
US7078251B2 (en) 1998-03-13 2006-07-18 Cambridge Display Technology Ltd. Electroluminescent devices
US7449714B2 (en) 1998-03-13 2008-11-11 Cambridge Display Technology Ltd. Electroluminescent devices
US8115199B2 (en) 1998-03-13 2012-02-14 Cambridge Display Technology Ltd. Electroluminescent devices
JP2004247313A (en) * 1998-03-13 2004-09-02 Cambridge Display Technol Ltd Electroluminescent element and its manufacturing method
US6897473B1 (en) 1998-03-13 2005-05-24 Cambridge Display Technology Ltd. Electroluminescent devices
US7393704B2 (en) 1998-03-13 2008-07-01 Cambridge Display Tech Ltd Electroluminescent devices
JP2005174947A (en) * 1998-03-13 2005-06-30 Cambridge Display Technol Ltd Electroluminescent element
US7227180B2 (en) 1998-03-13 2007-06-05 Cambridge Display Technology Ltd. Electroluminescent devices
WO2001026425A1 (en) * 1999-10-05 2001-04-12 Matsushita Electric Industrial Co., Ltd. Luminescent device and method for manufacturing the same, and display and illuminator comprising the same
US6910933B1 (en) 1999-10-05 2005-06-28 Matsushita Electric Industrial Co., Ltd. Light emitting element and producing method thereof, and display device and lighting device using the same
US7201974B2 (en) * 2000-10-31 2007-04-10 Sanyo Electric Co., Ltd. Organic electroluminescence element
US9362518B2 (en) 2000-12-28 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
CN100464441C (en) * 2000-12-28 2009-02-25 株式会社半导体能源研究所 Light emitting device
US9209418B2 (en) 2000-12-28 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
JP2012238896A (en) * 2000-12-28 2012-12-06 Semiconductor Energy Lab Co Ltd Light-emitting device
US7915807B2 (en) 2000-12-28 2011-03-29 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
JP2007300137A (en) * 2000-12-28 2007-11-15 Semiconductor Energy Lab Co Ltd Light emitting element, light emitting device, and electric appliance
JP2007300132A (en) * 2000-12-28 2007-11-15 Semiconductor Energy Lab Co Ltd Light emitting device
US7342355B2 (en) 2000-12-28 2008-03-11 Semiconductor Energy Laboratory Co., Ltd. Light emitting device having organic light emitting material with mixed layer
JP2014160850A (en) * 2000-12-28 2014-09-04 Semiconductor Energy Lab Co Ltd Light-emitting device
JP2016028392A (en) * 2000-12-28 2016-02-25 株式会社半導体エネルギー研究所 Light-emitting device
US8878431B2 (en) 2000-12-28 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US8432094B2 (en) 2000-12-28 2013-04-30 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US7572522B2 (en) 2000-12-28 2009-08-11 Semiconductor Energy Laboratory Co., Ltd. Luminescent device
KR100890163B1 (en) * 2000-12-28 2009-03-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting device and method of manufacturing the same
JP2014017532A (en) * 2000-12-28 2014-01-30 Semiconductor Energy Lab Co Ltd Light-emitting device
JP2011109153A (en) * 2000-12-28 2011-06-02 Semiconductor Energy Lab Co Ltd Luminescent device
JP2010186758A (en) * 2000-12-28 2010-08-26 Semiconductor Energy Lab Co Ltd Method for manufacturing light emitting apparatus
US7459722B2 (en) 2001-02-01 2008-12-02 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting element and display device using the element
US8174007B2 (en) 2001-02-01 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting element and display device using the element
US8354786B2 (en) * 2001-02-01 2013-01-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US20090058285A1 (en) * 2001-02-01 2009-03-05 Semiconductor Energy Laboratory Co., Ltd. Deposition Apparatus and Deposition Method
US9608224B2 (en) 2001-02-01 2017-03-28 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting element and display device using the element
US9219241B2 (en) 2001-02-01 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting element and display device using the element
US9349977B2 (en) 2001-02-01 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device having mixed layer including hole transporting compound
US7858977B2 (en) 2001-02-01 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting element and display device using the element
JP2008261058A (en) * 2001-02-08 2008-10-30 Semiconductor Energy Lab Co Ltd Film deposition apparatus and method for manufacturing light-emitting apparatus
SG114527A1 (en) * 2001-02-08 2005-09-28 Semiconductor Energy Lab Light emitting device
US7629025B2 (en) 2001-02-08 2009-12-08 Semiconductor Energy Laboratory Co., Ltd. Film formation apparatus and film formation method
JP2012214908A (en) * 2001-02-08 2012-11-08 Semiconductor Energy Lab Co Ltd Film-forming method
US8513648B2 (en) 2001-02-08 2013-08-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7456425B2 (en) 2001-02-08 2008-11-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7196360B2 (en) 2001-02-08 2007-03-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7432116B2 (en) 2001-02-21 2008-10-07 Semiconductor Energy Laboratory Co., Ltd. Method and apparatus for film deposition
JP2002324673A (en) * 2001-02-22 2002-11-08 Semiconductor Energy Lab Co Ltd Organic luminous element and display device using above element
US7663149B2 (en) 2001-02-22 2010-02-16 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting device and display device using the same
US7399991B2 (en) 2001-02-22 2008-07-15 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting device and display device using the same
SG118118A1 (en) * 2001-02-22 2006-01-27 Semiconductor Energy Lab Organic light emitting device and display using the same
KR100961626B1 (en) * 2001-10-26 2010-06-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting device
US7488986B2 (en) 2001-10-26 2009-02-10 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7592193B2 (en) 2001-10-30 2009-09-22 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP2003243179A (en) * 2002-02-13 2003-08-29 Univ Toyama Organic electroluminescent element
JP2005522852A (en) * 2002-04-05 2005-07-28 ゼロックス コーポレイション Display device having organic metal mixed layer
US8507903B2 (en) 2003-09-26 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
WO2005031798A3 (en) * 2003-09-26 2005-05-26 Semiconductor Energy Lab Light-emitting device and method for manufacturing the same
US7732808B2 (en) 2003-09-26 2010-06-08 Semiconductor Energy Laboratory Co., Ltd Light-emitting device and method for manufacturing the same
US8178869B2 (en) 2003-09-26 2012-05-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US8216875B2 (en) 2003-09-26 2012-07-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US8994007B2 (en) 2003-10-03 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and manufacturing method thereof, and light emitting device using the light emitting element
US7994496B2 (en) 2003-10-03 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and manufacturing method thereof, and light emitting device using the light emitting element
US9461271B2 (en) 2003-10-03 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and manufacturing method thereof, and light emitting device using the light emitting element
US7387904B2 (en) 2003-10-03 2008-06-17 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and manufacturing method thereof, and light emitting device using the light emitting element
JP2005135600A (en) * 2003-10-28 2005-05-26 Idemitsu Kosan Co Ltd Organic electroluminescent element
US10886497B2 (en) 2003-12-26 2021-01-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US9570697B2 (en) 2003-12-26 2017-02-14 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element
US9520532B2 (en) 2004-07-23 2016-12-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
US7893427B2 (en) 2004-07-23 2011-02-22 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
US8872169B2 (en) 2004-07-23 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
US8368060B2 (en) 2004-07-23 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
US8368059B2 (en) 2004-07-23 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device using the same
US7951470B2 (en) 2004-08-23 2011-05-31 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and lighting system
US10134996B2 (en) 2004-10-29 2018-11-20 Semicondcutor Energy Laboratory Co., Ltd. Composite material, light-emitting element, light-emitting device, and manufacturing method thereof
US7667389B2 (en) 2004-12-06 2010-02-23 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
US8916276B2 (en) 2005-03-23 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Composite material, light emitting element and light emitting device
US8420227B2 (en) 2005-03-23 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Composite material, light emitting element and light emitting device
US7851989B2 (en) 2005-03-25 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US9246056B2 (en) 2005-03-25 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8362688B2 (en) 2005-03-25 2013-01-29 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8445121B2 (en) 2005-05-20 2013-05-21 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
US7790296B2 (en) 2005-05-20 2010-09-07 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
US7883788B2 (en) 2005-05-20 2011-02-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
US8227097B2 (en) 2005-05-20 2012-07-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
US8048543B2 (en) 2005-05-20 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic device
US9263645B2 (en) 2005-06-08 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US8334057B2 (en) 2005-06-08 2012-12-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US8541114B2 (en) 2005-06-22 2013-09-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic appliance using the same
US8252434B2 (en) 2005-06-22 2012-08-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic appliance using the same
US8815419B2 (en) 2005-06-22 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic appliance using the same
US8017252B2 (en) 2005-06-22 2011-09-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic appliance using the same
US7745989B2 (en) 2005-06-30 2010-06-29 Semiconductor Energy Laboratory Co., Ltd Light emitting element, light emitting device, and electronic apparatus
US8519617B2 (en) 2005-06-30 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting element having a metal oxide composite layer, and light emitting device, and electronic apparatus
US7948169B2 (en) 2005-06-30 2011-05-24 Semiconductor Energy Larboratory Co., Ltd. Light emitting element with composite layers of varying concentration, light emitting device, and electronic apparatus
US8378570B2 (en) 2005-06-30 2013-02-19 Semiconductor Energy Laboratory Co., Ltd. Light emitting element, light emitting device, and electronic apparatus having first and second composite layers with different metal concentrations
US7994711B2 (en) 2005-08-08 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
WO2008069153A1 (en) * 2006-12-04 2008-06-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US8916857B2 (en) 2006-12-04 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
JP2008166745A (en) * 2006-12-04 2008-07-17 Semiconductor Energy Lab Co Ltd Light-emitting element, light-emitting device, and electronic instrument
US7732811B2 (en) 2006-12-04 2010-06-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US8319210B2 (en) 2006-12-04 2012-11-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US9587172B2 (en) 2008-10-01 2017-03-07 Lg Display Co., Ltd. Organic light-emitting diode and method of manufacturing the same
JP2015053493A (en) * 2008-10-01 2015-03-19 エルジー・ケム・リミテッド Organic light emitting element and method of manufacturing the same
US9224976B2 (en) 2008-11-19 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
JP2009259852A (en) * 2009-08-12 2009-11-05 Idemitsu Kosan Co Ltd Organic electroluminescent light emitting element
US8803188B2 (en) 2009-11-02 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting element, light-emitting element, Light-emitting device, lighting device, and electronic appliance
US8404500B2 (en) 2009-11-02 2013-03-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting element, light-emitting element, light-emitting device, lighting device, and electronic appliance
JP2011224503A (en) * 2010-04-22 2011-11-10 Fujifilm Corp Method and apparatus for manufacturing thin film
WO2012076740A1 (en) * 2010-12-10 2012-06-14 Fundación Imdea Nanociencia Position-sensitive photodetector, method for obtaining same and method for measuring the response from the photodetector
ES2384766A1 (en) * 2010-12-10 2012-07-12 Fundación Imdea Nanociencia Position-sensitive photodetector, method for obtaining same and method for measuring the response from the photodetector
US9564609B2 (en) 2011-02-11 2017-02-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element including electrode of three layers
JP2012028823A (en) * 2011-11-09 2012-02-09 Konica Minolta Holdings Inc Organic electroluminescent element
US10862060B2 (en) * 2012-05-22 2020-12-08 Lg Display Co., Ltd. Organic light emitting device and method of fabricating the same

Similar Documents

Publication Publication Date Title
JPH04357694A (en) Thin organic film el element
JP4142782B2 (en) Organic EL device
JPH0963771A (en) Organic thin film luminescent element
JP2003115387A (en) Organic light emitting element and its manufacturing method
JPH04137485A (en) Electroluminesence element
JP3691192B2 (en) Organic electroluminescence device
JP2000040589A (en) Organic el element
JPH11345687A (en) Luminescent element
JP2000100575A (en) Organic el element
JPH1140365A (en) Organic el element and its manufacture
JPH07106066A (en) Organic electroluminescence element
JP3300065B2 (en) Organic electroluminescence device
JP3651347B2 (en) Organic electroluminescence device
JPH1140352A (en) Organic el element and manufacture thereof
JP2004031214A (en) Organic electroluminescent element
JPH07166160A (en) Organic thin film el element
JP4892795B2 (en) Organic EL device and method for manufacturing the same
JPH11339969A (en) Organic el element
JP3868061B2 (en) Organic electroluminescence device
JP2001110569A (en) Organic light emitting element and image display apparatus
JP2001068264A (en) Organic el element, and manufacture thereof
US20020182307A1 (en) Organic electroluminescent devices with organic layers deposited at elevated substrate temperatures
TW200423813A (en) Organic light-emitting diode containing fullerene as a hole-injection modification layer or hole-transporting layer
JP2001118675A (en) Organic electroluminescent element
JP4132458B2 (en) Organic EL device