JP3011277B2 - Manufacturing method of organic electroluminescence device - Google Patents

Manufacturing method of organic electroluminescence device

Info

Publication number
JP3011277B2
JP3011277B2 JP2248631A JP24863190A JP3011277B2 JP 3011277 B2 JP3011277 B2 JP 3011277B2 JP 2248631 A JP2248631 A JP 2248631A JP 24863190 A JP24863190 A JP 24863190A JP 3011277 B2 JP3011277 B2 JP 3011277B2
Authority
JP
Japan
Prior art keywords
organic
electrode
manufactured
layer
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2248631A
Other languages
Japanese (ja)
Other versions
JPH04129191A (en
Inventor
学 竹内
光利 安西
聖一 高相
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Original Assignee
Hodogaya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17180987&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3011277(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hodogaya Chemical Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP2248631A priority Critical patent/JP3011277B2/en
Publication of JPH04129191A publication Critical patent/JPH04129191A/en
Application granted granted Critical
Publication of JP3011277B2 publication Critical patent/JP3011277B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

【発明の詳細な説明】 本発明は、平面光源やディスプレイ等に利用される有
機エレクトロルミネッセンス素子の製造法に関する。
The present invention relates to a method for manufacturing an organic electroluminescence device used for a flat light source, a display, and the like.

〔従来の技術〕[Conventional technology]

エレクトロルミネッセンス素子(以下、EL素子とい
う)は、自己発光型のため視認性が高く、完全固体素子
であるため耐衝撃性に優れ、大面積の面発光体が製造で
きるという特徴を有しており、現在、無機蛍光体である
ZnS:Mnを用いたEL素子が実用化されている。しかしなが
ら、無機EL素子は発光させるために200V程度の高い印加
電圧が必要であり、又、駆動方法も複雑である。
Electroluminescent elements (hereinafter referred to as EL elements) have the characteristics that they are self-luminous, have high visibility, are completely solid, have excellent impact resistance, and can be used to manufacture large-area surface-emitting devices. Is currently an inorganic phosphor
EL devices using ZnS: Mn have been put to practical use. However, an inorganic EL element requires a high applied voltage of about 200 V to emit light, and the driving method is complicated.

一方、有機EL素子は印加電圧を大幅に低下させること
ができ、最近、有機薄膜を二層構造にした新しいタイプ
の、より低電圧印加(10V以下)で高輝度(1000cd/m2
上)の得られる有機EL素子が報告されている(アプライ
ド・フィジックス・レターズ51巻、913頁、1987年)。
又、特開平2−8287、特開平−2−8288、特開平2−82
89等に記載された新しい有機蛍光体の開発や層構成を変
化させる事(化学と工業、第42巻、2023頁、1989年)等
により赤色光〜青色光まで各種の波長域の発光例が報告
されている。このように有機EL素子は各色の発光が可能
で且つ、構成が簡単で、容易に作製できる事から、例え
ば安価な大面積フルカラー表示素子等として注目されて
いる。
Organic EL devices, on the other hand, can greatly reduce the applied voltage. Recently, a new type of organic thin film with a two-layer structure has been developed, which has higher luminance (1000 cd / m 2 or more) with lower voltage application (10 V or less). The obtained organic EL device has been reported (Applied Physics Letters, vol. 51, p. 913, 1987).
Also, JP-A-2-8287, JP-A-2-8288, JP-A-2-82
89, etc., by developing new organic phosphors and changing the layer structure (Chemical and Industrial, Vol. 42, p. 2023, 1989) It has been reported. As described above, since the organic EL element can emit light of each color, has a simple configuration, and can be easily manufactured, it has attracted attention as an inexpensive large-area full-color display element, for example.

しかしながら、有機EL用薄膜は膜厚0.1〜0.3μmであ
るためピンホールが生じ易く、大面積化が困難である。
蒸着法によれば、形成される膜の均一性は向上し、ピン
ホールも生じにくくなるが、蒸着膜の結晶化が進行し微
結晶集合体薄膜として得られることが多い。
However, since the organic EL thin film has a thickness of 0.1 to 0.3 μm, pinholes are easily generated, and it is difficult to increase the area.
According to the vapor deposition method, the uniformity of the formed film is improved and pinholes are less likely to occur. However, the crystallization of the deposited film proceeds, and it is often obtained as a microcrystalline aggregate thin film.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

蒸着法により有機EL用薄膜を形成する場合において、
結晶化が進行し微結晶集合体薄膜として得られることが
多く、このような場合には結晶化による膜方向の均一性
が失なわれ、発光強度にムラが生じ、大面積で均一な発
光を示す有機EL素子が得られない。
When forming a thin film for organic EL by vapor deposition method,
Crystallization progresses and is often obtained as a microcrystalline aggregate thin film. In such a case, uniformity in the film direction due to crystallization is lost, emission intensity becomes uneven, and uniform light emission occurs in a large area. The organic EL device shown cannot be obtained.

本発明は、上述の欠点を改良した有機EL素子を製造す
るための製造法を提供する事を目的とする。
An object of the present invention is to provide a manufacturing method for manufacturing an organic EL device in which the above-mentioned disadvantages are improved.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、有機EL素子において発光強度ムラが観
察される原因は蒸着膜の結晶化による事を見い出し、蒸
着法により基板上に薄膜を形成させ有機EL素子を製造す
る場合において、蒸着工程時、基板を充分に冷却して蒸
着薄膜の結晶化を防ぎアモルファス状に形成させる事に
より発光強度にムラのない有機EL素子を製造できる事を
見い出し本発明に到った。
The present inventors have found that the cause of the emission intensity unevenness observed in the organic EL element is due to crystallization of the deposited film, and when the organic EL element is manufactured by forming a thin film on a substrate by an evaporation method, the deposition step is performed. At this time, the present inventors have found that an organic EL element having no uneven emission intensity can be manufactured by sufficiently cooling the substrate to prevent crystallization of the vapor-deposited thin film and to form the thin film in an amorphous state.

すなわち、本発明は、蒸着法により基板上に薄膜を形
成して成る有機EL素子において、その蒸着工程の際に基
板を冷却する事を特徴とする有機EL素子の製造法であ
る。
That is, the present invention is a method for manufacturing an organic EL device, which comprises cooling a substrate during an evaporation step in an organic EL device formed by forming a thin film on a substrate by an evaporation method.

有機EL素子には、二層構造と三層構造のものが有り、
これらの層構成を基板となる透明電極上に設け、その上
に対電極を設けて有機EL素子を製造する。二層構造の場
合は、正孔輸送層と電子輸送性発光層の組み合せあるい
は電子輸送層と正孔輸送性発光層の組み合せから成り、
三層構造の場合は正孔輸送層と電子輸送層で発光層をサ
ンドイッチした構成となる。
Organic EL devices are available in two-layer and three-layer structures.
An organic EL device is manufactured by providing these layer configurations on a transparent electrode serving as a substrate and providing a counter electrode thereon. In the case of a two-layer structure, it consists of a combination of a hole transporting layer and an electron transporting light emitting layer or a combination of an electron transporting layer and a hole transporting light emitting layer,
In the case of a three-layer structure, the light emitting layer is sandwiched between the hole transport layer and the electron transport layer.

電荷輸送剤としては、電子写真用有機感光体に使用さ
れている化合物や電荷輸送能を有する化合物が利用でき
る。正孔輸送剤としては、例えば、ポルフィン、テトラ
フェニルポルフィン銅、フタロシアニン、銅フタロシア
ニン、チタニウムフタロシアニンオキサイド等のポルフ
ィリン化合物、1,1−ビス{4−(ジ−p−トリルアミ
ノ)フェニル}シクロヘキサン、4,4′,4″−トリメチ
ルトリフェニルアミン、N,N,N′,N′−テトラキス(p
−トリル)−p−フェニレンジアミン、1−(N,N,−ジ
−p−トリルアミノ)ナフタリン、4,4′−ビス(ジメ
チルアミノ)−2,2′−ジメチルトリフェニルメタン、
N,N,N′,N′−テトラフェニル−4,4′−ジアミノビフェ
ニル、N,N′−ジフェニル−N,N′−ジ−m−トリル−4,
4′−ジアミノビフェニル、N−フェニルカルバゾール
等の芳香族三級アミン、4−ジ−p−トリルアミノスチ
ルベン、4−(ジ−p−トリルアミノ)−4′−〔4−
(ジ−p−トリルアミノ)スチリル〕スチルベン等のス
チルベン化合物等である。電子輸送剤としては、例え
ば、2−(p−tert−ブチルフェニル)−5−(p−ビ
フェニリル)−1,3,5−オキサジアゾール、テトラシア
ノキノジメタン、3,5−ジメチル−3′,5′−ジ−tert
−ブチル−4,4′−ジフェノキノン等である。
As the charge transporting agent, a compound used in an organic photoreceptor for electrophotography or a compound having charge transporting ability can be used. Examples of the hole transport agent include porphyrin compounds such as porphine, tetraphenylporphine copper, phthalocyanine, copper phthalocyanine, and titanium phthalocyanine oxide; 1,1-bis {4- (di-p-tolylamino) phenyl} cyclohexane; 4 ', 4 "-trimethyltriphenylamine, N, N, N', N'-tetrakis (p
-Tolyl) -p-phenylenediamine, 1- (N, N, -di-p-tolylamino) naphthalene, 4,4'-bis (dimethylamino) -2,2'-dimethyltriphenylmethane,
N, N, N ', N'-tetraphenyl-4,4'-diaminobiphenyl, N, N'-diphenyl-N, N'-di-m-tolyl-4,
Aromatic tertiary amines such as 4'-diaminobiphenyl and N-phenylcarbazole, 4-di-p-tolylaminostilbene, 4- (di-p-tolylamino) -4 '-[4-
(Di-p-tolylamino) styryl] stilbene and the like. Examples of the electron transport agent include 2- (p-tert-butylphenyl) -5- (p-biphenylyl) -1,3,5-oxadiazole, tetracyanoquinodimethane, and 3,5-dimethyl-3. ', 5'-di-tert
-Butyl-4,4'-diphenoquinone and the like.

発光層用有機蛍光物質としては、例えば、トリス(8
−キノリノール)アルミニウム、ビス(8−キノリノー
ル)マグネシウム、トリス(5−クロロ−8−キノリノ
ール)ガリウム等のキレート化オキシノイド化合物、1,
4−ビス(4−エチルスチリル)ベンゼン、1,2,3,4−テ
トラフェニルシクロペンタジエン、1,2,3,4,5−ペンタ
フェニルシクロペンタジエン等の芳香族系化合物、ペリ
レン系顔料、キレート化2,2′−ビピリジン化合物やサ
リチリデン−0−アミノフェノール誘導体のキレート化
合物、及び、4−(ジ−p−トリルアミノ)−4′−ク
ロロスチルベン、4−(ジ−p−トリルアミノ)−β−
フェニルスチルベン、4,4′−ジメトキシ−4″−(1
−ナフチルビニル)トリフェニルアミン等のスチルベン
型化合物などである。
As the organic fluorescent substance for the light emitting layer, for example, Tris (8
Chelating oxinoid compounds such as -quinolinol) aluminum, bis (8-quinolinol) magnesium, and tris (5-chloro-8-quinolinol) gallium;
Aromatic compounds such as 4-bis (4-ethylstyryl) benzene, 1,2,3,4-tetraphenylcyclopentadiene, 1,2,3,4,5-pentaphenylcyclopentadiene, perylene pigments, chelates Chelate compounds of 2,2'-bipyridine compounds and salicylidene-0-aminophenol derivatives, and 4- (di-p-tolylamino) -4'-chlorostilbene and 4- (di-p-tolylamino) -β-
Phenylstilbene, 4,4'-dimethoxy-4 "-(1
-Naphthylvinyl) triphenylamine and the like.

有機EL素子の支持体にはガラス、プラスチック、石英
などが用いられ、この基板上に、金、アルミニウム、イ
ンジウム、銀、マグネシウム等の金属やインジウム−チ
ン−オキサイド(ITO)、酸化スズ、酸化亜鉛などから
成る極薄膜の電極を蒸着法等で形成し、半透明あるいは
透明電極とする。この上に電荷輸送層や発光層を積層
し、更にその上に前述したのと同様な電極を形成して有
機EL素子を製造する。これに直流電圧を印加し発光を行
なう。
Glass, plastic, quartz, etc. are used for the support of the organic EL element. Metals such as gold, aluminum, indium, silver, magnesium, indium-tin-oxide (ITO), tin oxide, and zinc oxide are formed on this substrate. An ultra-thin electrode made of a thin film or the like is formed by a vapor deposition method or the like to obtain a translucent or transparent electrode. A charge transport layer and a light emitting layer are laminated thereon, and furthermore, an electrode similar to that described above is formed thereon to manufacture an organic EL device. A DC voltage is applied to this to emit light.

〔実施例〕〔Example〕

以下、実施例により本発明を具合的に説明する。 Hereinafter, the present invention will be described specifically with reference to examples.

実施例1 市販のITOガラス電極(松崎真空(株)製 透明導電
膜(標準タイプ))を蒸着装置(真空器械工業(株)製
LC−6F型)の基板ホルダーに固定し、加熱ボートに銅フ
タロシアニン(Cu・Pc)を入れて、1×10-5Torrまで減
圧した。加熱ボートを300℃に加熱し、500Å/分の蒸着
速度で蒸着を行ない、膜厚1000Åの銅フタロシアニンの
正孔注入層をITOガラス電極上に形成した。この際、ITO
ガラス電極は−100℃に冷却し、図−1に示すように銅
フタロシアニンのアモルファス状の蒸着膜を得た。次
に、トリス(8−キノリノール)アルミニウム(Alq3)
を入れたもう一方の加熱ボートを180℃まで加熱して500
Å/分の蒸着速度で膜厚1000Åの発光層を正孔注入層の
上に形成した。更にその上に膜厚5000Åのマグネシウム
蒸着膜を3mm×8mmの大きさで形成して対電極とし、有機
EL素子を作製した。また、前記した条件と同様の条件で
ITOガラス電極の冷却温度のみを変化させ、−40℃に冷
却したものと、−160℃に冷却したものについても作製
した。
Example 1 A commercially available ITO glass electrode (transparent conductive film (standard type) manufactured by Matsuzaki Vacuum Co., Ltd.) was deposited on a vapor deposition device (manufactured by Vacuum Instrument Industry Co., Ltd.).
(LC-6F type) substrate holder, copper phthalocyanine (Cu · Pc) was placed in a heating boat, and the pressure was reduced to 1 × 10 −5 Torr. The heating boat was heated to 300 ° C., and deposition was performed at a deposition rate of 500 ° C./min to form a hole injecting layer of copper phthalocyanine having a thickness of 1000 μm on the ITO glass electrode. At this time, ITO
The glass electrode was cooled to −100 ° C. to obtain an amorphous vapor-deposited film of copper phthalocyanine as shown in FIG. Next, tris (8-quinolinol) aluminum (Alq3)
Heat the other heating boat containing the
A light emitting layer having a thickness of 1000 mm was formed on the hole injection layer at a deposition rate of Å / min. Further, a 5000 mm-thick magnesium vapor-deposited film is formed thereon in a size of 3 mm x 8 mm to serve as a counter electrode, and an organic
An EL device was manufactured. Also, under the same conditions as those described above,
Only the cooling temperature of the ITO glass electrode was changed, and the one cooled to −40 ° C. and the one cooled to −160 ° C. were produced.

ITO電極を正極、マグネシウム電極を負極として直流2
2Vを印加したところ明るい緑色に発光した。発光面を8
個の小エリヤに区分し、各々の小エリヤについて1mmφ
の大きさの測定点で、輝度計(ミノルタカメラ(株)製
LS−110型)を用いて輝度を測定したところ表−1の結
果を得た。
DC 2 with ITO electrode as positive electrode and magnesium electrode as negative electrode
When a voltage of 2 V was applied, bright green light was emitted. 8 light emitting surfaces
Divided into small areas, 1mmφ for each small area
Is a luminance measuring point (Minolta Camera Co., Ltd.)
When the luminance was measured using LS-110, the results shown in Table 1 were obtained.

平均輝度は437cd/m2であり、発光ムラの小さい有機EL
素子が得られた。
Average luminance is 437cd / m 2
An element was obtained.

また、3種の有機EL素子の回折強度を理学電機(株)
製RAD−Cシステムにて測定した結果は、第2図の通り
回折強度が小さく、蒸着膜の結晶化が防がれていること
がわかる。
The diffraction intensities of the three types of organic EL devices were measured by Rigaku Denki Co., Ltd.
As a result of the measurement using the RAD-C system manufactured by Asahi Kasei, the diffraction intensity is small as shown in FIG. 2, and it can be seen that crystallization of the deposited film is prevented.

比較例1 実施例1で蒸着の際、ITOガラス電極を冷却すること
なく室温で実施した以外は実施例1と同様に行なって表
−2に示す結果を得た。
Comparative Example 1 In Example 1, the same procedure as in Example 1 was carried out except that the ITO glass electrode was carried out at room temperature without cooling the electrode during the vapor deposition, and the results shown in Table 2 were obtained.

平均輝度は154cd/m2であり、実施例1に比較して発光
効率が低く、発光ムラの大きいものであった。また、回
折強度を理学電機(株)製RAD−Cシステムにて測定し
た結果は、第2図の通り回折強度が大きく、蒸着膜の結
晶化が進行していることがわかる。この比較例により本
発明による効果が顕著である事がわかる。
The average luminance was 154 cd / m 2 , and the luminous efficiency was low and the luminous unevenness was large as compared with Example 1. In addition, the result of measuring the diffraction intensity with a RAD-C system manufactured by Rigaku Denki Co., Ltd. shows that the diffraction intensity is large as shown in FIG. 2 and the crystallization of the deposited film is progressing. This comparative example shows that the effect of the present invention is remarkable.

実施例2 市販のITOガラス電極(松崎真空(株)製 透明導電
膜(標準タイプ))を蒸着装置(真空器械工業(株)製
LC−6F型)の基板ホルダーに固定し、加熱ボートに銅
フタロシアニン(Cu・Pc)を入れて、1×10-5Torrまで
減圧した。加熱ボートを300℃に加熱し、500Å/分の蒸
着速度で蒸着を行ない、膜厚1000Åの銅フタロシアニン
の正孔注入層をITOガラス電極上に形成した。この際、I
TOガラス電極は−100℃に冷却し、銅フタロシアニンの
アモルファス状の蒸着膜を得た。次に、真空度を1×10
-6Torrまであげてサリチリデン−0−アミノフェノール
のA1錯体を入れたもう一方の加熱ボートを320℃まで加
熱して500Å/分の蒸着速度で膜厚2000Åの発光層を正
孔注入層の上に形成した。更にその上に膜厚5000Åのマ
グネシウム蒸着膜を3mm×8mmの大きさで形成して対電極
とし、有機EL素子を作成した。
Example 2 A commercially available ITO glass electrode (transparent conductive film (standard type) manufactured by Matsuzaki Vacuum Co., Ltd.) was deposited on a vapor deposition apparatus (manufactured by Vacuum Instrument Industry Co., Ltd.).
(LC-6F type) substrate holder, copper phthalocyanine (Cu · Pc) was placed in a heating boat, and the pressure was reduced to 1 × 10 −5 Torr. The heating boat was heated to 300 ° C., and deposition was performed at a deposition rate of 500 ° C./min to form a hole injecting layer of copper phthalocyanine having a thickness of 1000 μm on the ITO glass electrode. At this time, I
The TO glass electrode was cooled to -100 ° C to obtain an amorphous deposited film of copper phthalocyanine. Next, reduce the degree of vacuum to 1 × 10
The other heating boat containing the salicylidene-0-aminophenol A1 complex was heated to -6 Torr and the other heating boat was heated to 320 ° C, and the light emitting layer having a thickness of 2000 mm was deposited on the hole injection layer at a deposition rate of 500 mm / min. Formed. Further, a 5000 mm-thick magnesium vapor-deposited film having a size of 3 mm × 8 mm was formed thereon to serve as a counter electrode, thereby producing an organic EL device.

ITO電極を正極、マグネシウム電極を負極として直流2
5Vを印加したところ青緑色に発光した。発光面を8個の
小エリヤに区分し、各々の小エリヤについて1mmφの大
きさの測定点で、輝度計(ミノルタカメラ(株)製 LS
−110型)を用いて輝度を測定したところ表−3の結果
を得た。
DC 2 with ITO electrode as positive electrode and magnesium electrode as negative electrode
When 5 V was applied, blue-green light was emitted. The light emitting surface is divided into eight small areas, and each small area is measured at a measuring point of 1 mmφ with a luminance meter (LS manufactured by Minolta Camera Co., Ltd.).
When the luminance was measured using (−110 type), the results shown in Table 3 were obtained.

平均輝度は201cd/m2であり、発光ムラの小さい有機EL
素子が得られた。
The average luminance is 201 cd / m 2 , and organic EL with little emission unevenness
An element was obtained.

比較例2 実施例2で蒸着の際、ITOガラス電極を冷却すること
なく室温で実施した以外は実施例2と同様に行なって表
−4に示す結果を得た。
Comparative Example 2 In the same manner as in Example 2, except that the ITO glass electrode was cooled at room temperature without cooling during the vapor deposition in Example 2, the results shown in Table 4 were obtained.

平均輝度は91cd/m2であり、実施例2に比較して発光
効率が低く、発光ムラの大きいものであった。この比較
例により本発明による効果が顕著である事がわかる。
The average luminance was 91 cd / m 2 , and the luminous efficiency was low and the luminous unevenness was large as compared with Example 2. This comparative example shows that the effect of the present invention is remarkable.

実施例3 市販のITOガラス電極(松崎真空(株)製 透明導電
膜(標準タイプ))を蒸着装置(真空器械工業(株)製
LC−6F型)の基板ホルダーに固定し、加熱ボートにN,
N′−ジフェニル−N,N′−ジ−m−トリル−4,4′−ジ
アミノビフェニルを入れて、1×10-5Torrまで減圧し
た。加熱ボートを200℃に加熱し、500Å/分の蒸着速度
で蒸着を行ない、膜厚1500Åの、N,N′−ジフェニル−
N,N′−ジ−m−トリル−4,4′−ジアミノビフェニルの
正孔注入層をITOガラス電極上に形成した。この際、ITO
ガラス電極は−100℃に冷却し、N,N′−ジフェニル−N,
N′−ジ−m−トリル−4,4′−ジアミノビフェニルのア
モルファス状の蒸着膜を得た。次に、トリス(8−キノ
リノール)アルミニウムを入れたもう一方の加熱ボート
を180℃まで加熱して500Å/分の蒸着速度で膜厚1000Å
の発光層を正孔注入層の上に形成した。更にその上に膜
厚5000Åのマグネシウム蒸着膜を3mm×8mmの大きさで形
成して対電極とし、有機EL素子を作成した。
Example 3 A commercially available ITO glass electrode (transparent conductive film (standard type) manufactured by Matsuzaki Vacuum Co., Ltd.) was deposited on a vapor deposition device (manufactured by Vacuum Instrument Industry Co., Ltd.).
(LC-6F type) is fixed to the substrate holder, and N,
N′-diphenyl-N, N′-di-m-tolyl-4,4′-diaminobiphenyl was added and the pressure was reduced to 1 × 10 −5 Torr. The heating boat was heated to 200 ° C., and the deposition was performed at a deposition rate of 500 ° / min.
A hole injection layer of N, N'-di-m-tolyl-4,4'-diaminobiphenyl was formed on the ITO glass electrode. At this time, ITO
The glass electrode was cooled to -100 ° C and N, N'-diphenyl-N,
An amorphous deposited film of N'-di-m-tolyl-4,4'-diaminobiphenyl was obtained. Next, the other heating boat containing tris (8-quinolinol) aluminum was heated to 180 ° C., and the film thickness was set to 1000 ° at a deposition rate of 500 ° / min.
Was formed on the hole injection layer. Further, a 5000 mm-thick magnesium vapor-deposited film having a size of 3 mm × 8 mm was formed thereon to serve as a counter electrode, thereby producing an organic EL device.

ITO電極を正極、マグネシウム電極を負極として直流4
0Vを印加したところ緑色に発光した。発光面を8個の小
エリヤに区分し、各々の小エリヤについて1mmφの大き
さの測定点で、輝度計(ミノルタカメラ(株)製 LS−
110型)を用いて輝度を測定したところ表−5の結果を
得た。
DC 4 with ITO electrode as positive electrode and magnesium electrode as negative electrode
When 0 V was applied, green light was emitted. The light-emitting surface was divided into eight small areas, and each small area was measured at a measurement point of 1 mmφ with a luminance meter (LS-Linus manufactured by Minolta Camera Co., Ltd.).
When the luminance was measured using a (110 type), the results in Table 5 were obtained.

平均輝度は296cd/m2であり、発光ムラの小さい有機EL
素子が得られた。
The average luminance is 296 cd / m 2 , and organic EL with little emission unevenness
An element was obtained.

〔発明の効果〕〔The invention's effect〕

本発明の製造方法によって製造された有機EL素子は、
蒸着工程の際に基板を冷却するので蒸着薄膜の結晶化が
防がれてアモルファス状に形成されるため、発光強度に
ムラを生じない、という効果を発揮する。
The organic EL device manufactured by the manufacturing method of the present invention,
Since the substrate is cooled during the vapor deposition step, crystallization of the vapor-deposited thin film is prevented, and the vapor-deposited thin film is formed in an amorphous state.

【図面の簡単な説明】 第1図は、本発明で得られる有機エレクトロルミネッセ
ンス素子の構成層を示すものである。 第2図は、Cu・Pc薄膜のX−線回折パターンを示すもの
であり、ITOガラス電極(基板)の冷却温度(−160℃、
−100℃、−40℃、室温)と回折強度との関係を示して
おり、横軸は回折角(2θ)を、縦軸は回折強度を表わ
す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows constituent layers of an organic electroluminescence device obtained by the present invention. FIG. 2 shows an X-ray diffraction pattern of the Cu.Pc thin film, in which the cooling temperature of the ITO glass electrode (substrate) was -160.degree.
(-100 ° C, -40 ° C, room temperature) and the diffraction intensity. The horizontal axis represents the diffraction angle (2θ), and the vertical axis represents the diffraction intensity.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−139893(JP,A) 特開 平1−112693(JP,A) 特開 昭61−156786(JP,A) 特開 昭59−141218(JP,A) 特開 平1−292794(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-139893 (JP, A) JP-A-1-1122693 (JP, A) JP-A-61-156786 (JP, A) JP-A-59-156 141218 (JP, A) JP-A-1-292794 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】蒸着法により基板上に薄膜を形成して成る
有機エレクトロルミネッセンス素子において、その蒸着
工程の際に、基板を冷却する事を特徴とする有機エレク
トロルミネッセンス素子の製造法。
1. A method for manufacturing an organic electroluminescent device, comprising cooling a substrate during a deposition step in an organic electroluminescent device formed by forming a thin film on a substrate by a vapor deposition method.
JP2248631A 1990-09-20 1990-09-20 Manufacturing method of organic electroluminescence device Expired - Lifetime JP3011277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2248631A JP3011277B2 (en) 1990-09-20 1990-09-20 Manufacturing method of organic electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2248631A JP3011277B2 (en) 1990-09-20 1990-09-20 Manufacturing method of organic electroluminescence device

Publications (2)

Publication Number Publication Date
JPH04129191A JPH04129191A (en) 1992-04-30
JP3011277B2 true JP3011277B2 (en) 2000-02-21

Family

ID=17180987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2248631A Expired - Lifetime JP3011277B2 (en) 1990-09-20 1990-09-20 Manufacturing method of organic electroluminescence device

Country Status (1)

Country Link
JP (1) JP3011277B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3428152B2 (en) * 1994-07-13 2003-07-22 松下電器産業株式会社 Manufacturing method of organic EL element
JP3596084B2 (en) * 1995-04-26 2004-12-02 ソニー株式会社 Electroluminescent device
TW359765B (en) 1996-05-10 1999-06-01 Seiko Epson Corp Projection type liquid crystal display apparatus
JP3614335B2 (en) 1999-12-28 2005-01-26 三星エスディアイ株式会社 Organic EL display device and manufacturing method thereof
JP3369154B2 (en) * 2000-09-01 2003-01-20 科学技術振興事業団 Manufacturing method of organic co-deposited film
US20030117069A1 (en) * 2001-12-03 2003-06-26 Tetsuya Kato Organic electroluminescent element and process for its manufacture

Also Published As

Publication number Publication date
JPH04129191A (en) 1992-04-30

Similar Documents

Publication Publication Date Title
JP2998268B2 (en) Organic electroluminescent device
JP3924648B2 (en) Organic electroluminescence device
JP2879080B2 (en) EL device
JP3852509B2 (en) Electroluminescent device and manufacturing method thereof
JP4584272B2 (en) Blue light emitting compound for organic electroluminescent device and organic electroluminescent device using the same
KR20030038441A (en) Organic Electroluminescence Element and Display
JPH0496990A (en) Organic electroluminescence element
JP4227158B2 (en) Organic electroluminescence device
KR100751464B1 (en) Organic electroluminescent device
JP3965014B2 (en) Blue light-emitting compound, organic electroluminescent device using the same, and display device employing the same as a coloring material
JP2002313582A (en) Light emitting element and display device
JP3011277B2 (en) Manufacturing method of organic electroluminescence device
JPH10284252A (en) Organic el element
JP2003282266A (en) Organic electroluminescent device
JP2000188184A (en) Organic thin film el element and its manufacture
JPH11251068A (en) Organic electroluminescence element
JP2003229279A (en) Organic electroluminescent element
JP3208833B2 (en) Organic electroluminescent device
JP2000150161A (en) Organic electroluminescence display device
JP3736881B2 (en) Organic thin film EL device
JP2723723B2 (en) Organic electroluminescence device
JPH1126164A (en) Organic electroluminescent element
JPH1060425A (en) Organic electroluminescent element
JPH08148281A (en) Organic thin film electroluminescent element and manufacture thereof
JPH0633047A (en) Organic thin film luminescent element