JPH0144769B2 - - Google Patents

Info

Publication number
JPH0144769B2
JPH0144769B2 JP59238299A JP23829984A JPH0144769B2 JP H0144769 B2 JPH0144769 B2 JP H0144769B2 JP 59238299 A JP59238299 A JP 59238299A JP 23829984 A JP23829984 A JP 23829984A JP H0144769 B2 JPH0144769 B2 JP H0144769B2
Authority
JP
Japan
Prior art keywords
less
toughness
welded
weld metal
quenched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59238299A
Other languages
Japanese (ja)
Other versions
JPS61117223A (en
Inventor
Kyoteru Hirabayashi
Toyofumi Kitada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP23829984A priority Critical patent/JPS61117223A/en
Publication of JPS61117223A publication Critical patent/JPS61117223A/en
Publication of JPH0144769B2 publication Critical patent/JPH0144769B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

発明の目的 本発明は高靭性溶接金属部を有するシーム部を
サブマージドアーク溶接した曲り管の製造方法に
係るものであり、制御圧延鋼板を用い、SAWシ
ーム溶接した直管を高周波誘導加熱して曲り管を
製造するに当り、溶接金属部の組成を特定し、直
管の加熱条件を限定することにより、曲げ加工し
つつ焼入れを行いそのまま(焼戻しを行うことな
く)製品とすることを特徴とするものであり、溶
接金属部が強度と靭性に優れており、而も簡単で
低コストの曲り管の製造法を提供することを目的
とする。 産業上の利用分野 高靭性溶接金属部を有する曲り管の製造技術。 従来の技術 産業用原燃料として採屈した地下資源の原油や
天然ガス或いはそれらを精製して得られた液体若
しくは気体ないしスラリー、その他原燃料以外の
産業用液体、気体、スラリー等を大量輸送する手
段としてパイプラインが用いられることは周知の
通りである。このパイプラインは輸送効率の向上
を図るために圧送圧力を上昇し、或いは寒冷地に
施設する対策として鋼管に対する品質要求は高張
力化の度合いが更に強まると共に低温衝撃特性に
ついての要求も次第に厳しくなつている。ところ
でこのようなパイプライン等に使用する鋼管にお
いて曲り管などのフイテイング類は、直管と同等
以上の性能を有する鋼板をプレス成形して得た半
割材を対向させてシーム溶接し所定形状とする
か、直管を冷間或いは熱間加工して目的の形状と
し、更に焼入、焼戻熱処理を施すなどして製造し
ているが、生産性の良好な点からは直管を高周波
加熱しながら第7図に示すように原管15をガイ
ドローラ16,16でガイドしながら基端を枢着
17した回動アーム18に挾持し、該回動アーム
18を実線位置から仮想線位置に回動して曲げを
進行させて曲り管15aとなし急冷して曲り管を
製造する方法がある。 前記のように使用環境の厳しいラインパイプ用
フイツテイング材としての曲り管にはコントロー
ルドローリング鋼板を用い、SAW(サブマージド
アーク溶接)シーム溶接した直管を高周波誘導加
熱して曲り管としている。このものは第6図の如
くで、曲り部11は焼入れ焼戻し(QT)処理さ
れ、直管部12は焼戻しのみとなるもので、曲り
部11は高周波誘導加熱して水冷しながら曲げ加
工した後、鋼管全体を炉内において加熱し焼戻し
を実施する。 発明が解決しようとする問題点 ところが上記したような従来法によるものでは
シーム部をサブマージドアーク溶接した鋼管全体
を炉内において加熱し焼戻しすることが工程的に
煩雑であり、そのための費用がかかり過ぎ、コス
トアツプの大きな要因となつている。従つてこの
焼戻し処理を省略することが低コスト化の大きな
メリツトをもたらすこととなるが、この場合には
曲り部は焼入れままとなり、直管部は溶接ままと
なるので材質性能的には焼入れまま及び溶接まま
の状態で同時に満足されることが必要であつて、
このような関係を満足する技術は得られておら
ず、上記のような不利を避け得ないものとされて
いる。 「発明の構成」 問題点を解決するための手段 (1) C:0.02〜0.12wt%、Si:0.6wt%以下、
Mn:1.20〜1.60wt%、P:0.02wt%以下、
S:0.15wt%以下、Nb:0.05wt%以下、Al:
0.02wt%以下、N:0.010wt%以下、O:
0.035wt%以下 を含有し、残部がFeおよび不可避的不純物か
らなる組成の溶接金属部を有する直管を、Ac3
点以上に加熱して、曲げ加工しつつ焼入れし、
冷却後そのまま製品とすることを特徴とする高
靭性溶接金属部を有するシーム部をサブマージ
ドアーク溶接した曲り管の製造方法。 (2) C:0.02〜0.12wt%、Si:0.6wt%以下、
Mn:1.20〜1.60wt%、P:0.02wt%以下、
S:0.15wt%以下、Nb:0.05wt%以下、Al:
0.02wt%以下、N:0.010wt%以下、O:
0.035wt%以下 を含有すると共に、 Cu:0.5wt%以下、Ni:3.0wt%以下、Mo:
0.7wt%以下、V:0.07wt%以下、Ti:0.06wt
%以下、B:0.0030wt%以下 の何れか1種又は2種以上を含有し、残部が
Feおよび不可避的不純物からなる組成の溶接
金属部を有する直管を、Ac3点以上に加熱し
て、曲げ加工しつつ焼入れし、冷却後そのまま
製品とすることを特徴とする高靭性溶接金属部
を有するシーム部をサブマージドアーク溶接し
た曲り管の製造方法。 作 用 本発明はシーム部をサブマージドアーク溶接し
た管による曲り管の製造法に関するものである。
溶接金属部の組成をSi:0.6wt%以下(以降単に
%という)、Mn:1.2%以上、P:0.02%以下、
S:0.015%以下、Nb:0.05%以下、Al:0.05%
以下、N:0.1%以下、O:0.035%以下とするこ
とによつて溶接ままの靭性を高め、又C:0.02%
以上、Mn:1.6%以下、O:0.035%以上とする
ことにより焼入ままの靭性を高くすることができ
る。 C:0.12%以下、P:0.02%以下、S:0.015%
以下とすることによつて凝固割れをなからしめ
る。 本願発明における溶接金属部とは溶接材料(溶
接棒とフラツクス)と母材の鋼板の双方がアーク
熱により溶解されて形成された組成を有する帯域
のことである。 Ac3点以上に加熱することによりオーステナイ
ト化し、その後に曲げ加工しつつ焼入することに
より好ましい焼入効果が得られ、冷却速度につい
ては60℃/sec以下とすることによつて靭性低下
が避けられる。なお110℃以下で焼入れするなら
ば靭性劣化を有効に回避することができる。 実施例 上記したような本発明について更に説明する
と、本発明者等は上記したような実情に鑑み、焼
入まま及び溶接ままにおける溶接部の高靭性能を
ともに満足するための各種元素の影響を系統的に
検討した結果、前記したようなSAW溶接金属部
の化学成分として、C:0.02〜0.12%、Si:0.6%
以下、Mn:1.20〜1.60%、P:0.02%以下、S:
0.015%以下、Nb:0.05%以下、Al:0.005〜0.07
%、N:0.010%以下、O:0.035%以下を含有
し、残部がFeおよび不可避不純物からなるもの、
および上記成分組成にCu:0.5%以下、Ni:3.0%
以下、Mo:0.7%以下、V:0.07%以下、Ti:
0.06%以下、B:0.0030%以下の何れか1種又は
2種以上を有する鋼管をAc3点以上、好ましくは
Ac3点以上1100℃以下の温度に加熱し、焼入れす
るもので、直管を熱間曲げ加工して曲り管とする
場合には上記のように加熱焼入れしながら曲げ加
工して目的の曲り管を製造するもので、第1図に
示すように焼入ままの曲り部1と溶接ままの直管
部2より成る曲り管が得られる。 上記したような本発明の溶接金属部における化
学成分限定理由について説明すると以下の如くで
ある。 Cは、焼入ままの強度と靭性に最も大きい影響
を及ぼす元素であつて、焼入ままの靭性を確保す
るためには低炭素にすることが望ましいが、引張
強度が低下して所定の強度を満足することができ
なくなるので極低炭素とすることはできず、その
下限を0.02%とした。又高C側では強度的には満
足できても高靭性が得られず、しかも0.12%を超
えると溶接金属の凝固割れ感受性が大きくなるこ
とからこれを上限とした。 Siは、0.6%を超えると、溶接ままで硬化して
靭性低下が大きく、しかも焼入ままでも所期の靭
性が得られないこととなるのでこの0.6%を上限
とした。 Mnは、第2図に示したような関係によるもの
で、この第2図は0.03C−1.7Mn−0.04Nb−
0.015Ti−0.0009Bおよび0.03C−1.2Mn−0.3Cu−
0.07V−0.01Tiの母材に関して、その溶接ままお
よび焼入ままのSAW溶接金属における強度と靭
性におよぼすMn含有量の影響を示したものであ
り、強度はMn含有量の上昇に従つて上昇する
が、1.2%未満の領域では溶接ままの靭性低下が
大きく、又焼入ままの状態でも靭性低下が認めら
れる。即ち高強度で、しかも溶接まま及び焼入ま
まの靭性を同時に満足するためには1.2%以上に
することが必要であり、特に1.4〜1.5%の領域で
溶接ままと焼入ままの靭性が重なる程、良好な靭
性が得られている。しかしこのMnを過度に多く
すると、溶接ままでは高靭性が得られるものの焼
入ままでは硬化しすぎ、高靭性が得られないため
1.6%を上限とすることが必要である。 Pは、溶接金属の靭性および凝固割れに影響を
及ぼす元素であつて、少い方が好ましく、溶接金
属の靭性低下を防止し、凝固割れをなからしめる
には0.02%以下とすべきである。 Sも、Pと同様に溶接金属の靭性と凝固割れに
影響を及ぼす元素であつて少い方がよく、0.015
%を上限とすべきである。 Nbは、それが溶接金属に含まれるのは、溶接
材料から添加しているのではなしに母材から稀釈
されることによるものであつて、母材は通常Nb
含有のコントロールドローリング鋼板を用いるた
め溶接金属中に稀釈されてくる。然して本発明に
おける上記のような溶接金属の強度、靭性確保の
立場からは少い方がよく、0.05%を上限とすべき
である。 Alは、溶融金属を脱酸させるためには微量含
有した方が好ましく、その値は0.005%以上であ
る。しかし多量のAlは溶接金属の靭性を劣化す
るので余剰な添加は避けるべきであり、0.05%以
下に限定した。 Nは、溶接金属の靭性向上には有害であつて、
低い方が好ましく、0.1%を上限とする。 Oは、溶接まま及び焼入ままの溶接金属におけ
る靭性に大きく影響し、少い方が高靭性を得しめ
る。しかし溶接金属の酸素含有量は母材に比較し
て約5〜10倍も高いことからこの酸素量を減少す
ることは溶接金属の靭性向上のために最も大きな
課題となる。本発明においては高温基性溶融型フ
ラツクスの如きを用いてこれを低減し、0.035%
以下に限定する。 上記のような基本的成分組成のものに対し、任
意成分として添加される各成分については以下の
通りである。 Cuは、焼入ままの溶接金属強度と靭性を向上
させるが、0.5%を超えると、溶接金属に凝固割
れが生ずるようになるので、これを上限すべきで
ある。 Niは、溶接まま及び焼入ままの溶接金属にお
ける高靭性を得るのに最も適した元素であるため
多量に含んだ方がよいが、3.0%を超えるNiを含
有した溶接金属は凝固割れ歌受性を増し危険であ
るためこれを上限とした。 Moは、溶接ままの溶接金属靭性を向上させる
のに有効な元素であるが、焼入ままの状態では著
しい硬化元素であり靭性低下を招くのでこれらの
バランスから0.7%を上限とすべきである。 Tiについては、前記した第2図におけると同
じ母材に関する第3図に示すような溶接まま及び
焼入ままの溶接金属のvE−46℃に及ぼす影響に
よるもので、Mnが1.2%以上の領域で0.012%程
度の少量のTiを溶接金属に添加すると溶接まま
で著しい高靭性が得られる。しかしこのTi含有
量が0.06%以上となると溶接金属に析出硬化を生
じ、溶接ままの靭性低下が著しくなるため、この
0.06%以下とする。 Bは、Tiと共に複合添加することにより溶接
ままで焼入性を向上し、均一なaccicular ferrite
にするので高靭性が得られるが、焼入ままでは焼
きが入り過ぎて靭性低下が著しい。従つて本発明
では0.0030%以下とする。 Vは、溶接まま及び焼入ままの溶接金属におけ
る強度を高めるが、靭性に対しては有効と言えな
い。然してこのVは溶接材料からは積極的に添加
されるものでなくて、母材の稀釈によつて溶接金
属中に入る元素であり、V含有の母材を用いると
きにおいてその溶接金属は0.07%以下に限定す
る。 次に熱処理について述べると、本発明では
SAW溶接金属をAc3点以上、好ましくはAc3
1100℃の温度に加熱して、60℃/sec以下の冷却
速度で焼入処理するもので、この限定理由は以下
の如くである。 即ち第4図は溶接金属の強度と靭性に及ぼす焼
入温度の影響を示したものであるが、鋼材を焼入
れするためには一旦Ac3点以上に加熱してオース
テナイト化した後、焼入するのが一般的である。
然し第4図から理解されるように焼入温度が高く
なりすぎると強度は上昇するが靭性劣化が大き
く、1100℃以下で焼入することが好ましい。 又第5図は、1000℃で焼入れしたときの冷却速
度の影響を示しているが、冷却速度が大きくなる
程、強度が上昇し、靭性が低下することが認めら
れ、60℃/sec以下の冷却速度を採用すべきであ
る。 本発明によるものの具体的な構造例について説
明すると以下の如くである。 次の表1には本発明者等の用いた供試鋼板の化
学成分を示すが、板厚15.9mmで、成分系としては
0.04C−1.5Mn−0.3Cu−0.13Ni−0.034Nb−
0.011Ti−0.0032Nのものである。
Purpose of the Invention The present invention relates to a method for manufacturing a bent pipe in which a seam portion having a high-toughness weld metal portion is submerged arc welded, in which a straight pipe SAW seam welded is heated by high-frequency induction using a controlled rolled steel plate. When manufacturing bent pipes, by specifying the composition of the welded metal part and limiting the heating conditions for the straight pipes, the product can be made as is (without tempering) by being quenched while being bent. The purpose of the present invention is to provide a simple and low-cost manufacturing method for a bent pipe in which the welded metal part has excellent strength and toughness. Industrial Application Fields Manufacturing technology for bent pipes with high toughness welded metal parts. Conventional technology Mass transportation of crude oil and natural gas from underground resources harvested as raw materials and fuel for industrial use, liquids, gases, and slurries obtained by refining them, and other industrial liquids, gases, slurries, etc. other than raw materials and fuels. It is well known that a pipeline is used as a means. In order to improve the transportation efficiency of this pipeline, the pumping pressure is increased, and as a measure to install the pipeline in a cold region, the quality requirements for the steel pipe are becoming even more high tensile strength, and the requirements for low-temperature impact properties are also gradually becoming stricter. ing. By the way, fittings such as bent pipes used in pipelines, etc. are made by press-forming steel plates with performance equivalent to or better than straight pipes, then facing each other and seam welding them to form a predetermined shape. Alternatively, straight pipes are manufactured by cold or hot processing into the desired shape, and then subjected to quenching and tempering heat treatment, but from the standpoint of productivity, high-frequency heating of straight pipes is recommended. While doing so, as shown in FIG. 7, the base tube 15 is guided by guide rollers 16, 16, and its base end is clamped by a rotating arm 18 which is pivoted 17, and the rotating arm 18 is moved from the solid line position to the imaginary line position. There is a method in which the pipe is rotated to advance the bending to form the bent pipe 15a, and then rapidly cooled to produce the bent pipe. As mentioned above, a controlled draw rolling steel plate is used for the bent pipe as a fitting material for line pipes that are used in harsh environments, and the straight pipe is seam welded using SAW (submerged arc welding) and then heated by high-frequency induction to form the bent pipe. This is as shown in Figure 6, where the bent part 11 is quenched and tempered (QT), the straight pipe part 12 is only tempered, and the bent part 11 is subjected to high-frequency induction heating, water cooling, and bending. , the entire steel pipe is heated and tempered in a furnace. Problems to be Solved by the Invention However, in the conventional method as described above, the process of heating and tempering the entire steel pipe with the seam submerged arc welded in a furnace is complicated and expensive. This is a major factor in increasing costs. Therefore, omitting this tempering treatment brings a great advantage in reducing costs, but in this case, the bent parts remain hardened and the straight pipe parts remain welded, so in terms of material performance, it is better to leave them as hardened. and must be satisfied simultaneously in the as-welded state,
No technology has been obtained that satisfies this relationship, and the disadvantages described above are considered unavoidable. "Structure of the invention" Means for solving the problem (1) C: 0.02 to 0.12wt%, Si: 0.6wt% or less,
Mn: 1.20-1.60wt%, P: 0.02wt% or less,
S: 0.15wt% or less, Nb: 0.05wt% or less, Al:
0.02wt% or less, N: 0.010wt% or less, O:
Ac 3
It is heated above a point and quenched while being bent.
A method for manufacturing a bent pipe in which a seam portion having a high toughness weld metal portion is submerged arc welded, characterized in that the product is made into a product as is after cooling. (2) C: 0.02 to 0.12wt%, Si: 0.6wt% or less,
Mn: 1.20-1.60wt%, P: 0.02wt% or less,
S: 0.15wt% or less, Nb: 0.05wt% or less, Al:
0.02wt% or less, N: 0.010wt% or less, O:
Contains 0.035wt% or less, Cu: 0.5wt% or less, Ni: 3.0wt% or less, Mo:
0.7wt% or less, V: 0.07wt% or less, Ti: 0.06wt
% or less, B: contains one or more of the following 0.0030wt% or less, and the remainder is
A high-toughness weld metal part characterized by heating a straight pipe having a weld metal part with a composition consisting of Fe and inevitable impurities to 3 Ac points or more, quenching it while bending it, and making it into a product as it is after cooling. A method for manufacturing a bent pipe in which a seam portion having a seam portion is submerged arc welded. Function The present invention relates to a method for manufacturing a bent pipe using a pipe whose seam portion is submerged arc welded.
The composition of the weld metal part is Si: 0.6wt% or less (hereinafter simply referred to as %), Mn: 1.2% or more, P: 0.02% or less,
S: 0.015% or less, Nb: 0.05% or less, Al: 0.05%
Below, by setting N: 0.1% or less and O: 0.035% or less, the as-welded toughness is improved, and C: 0.02%.
As described above, by setting Mn to 1.6% or less and O to 0.035% or more, as-quenched toughness can be increased. C: 0.12% or less, P: 0.02% or less, S: 0.015%
By doing the following, solidification cracking can be completely eliminated. The weld metal part in the present invention is a zone having a composition formed by melting both the welding material (welding rod and flux) and the base metal steel plate by arc heat. A favorable hardening effect can be obtained by heating to Ac 3 or higher to austenite, followed by quenching while bending, and a decrease in toughness can be avoided by setting the cooling rate to 60℃/sec or less. It will be done. Note that toughness deterioration can be effectively avoided if quenched at 110°C or lower. EXAMPLES To further explain the present invention as described above, in view of the above-mentioned actual circumstances, the present inventors have investigated the influence of various elements in order to satisfy both the high toughness performance of the welded part in as-quenched and as-welded states. As a result of a systematic study, the chemical composition of the SAW weld metal part as described above is C: 0.02 to 0.12%, Si: 0.6%.
Below, Mn: 1.20-1.60%, P: 0.02% or less, S:
0.015% or less, Nb: 0.05% or less, Al: 0.005 to 0.07
%, N: 0.010% or less, O: 0.035% or less, with the balance consisting of Fe and inevitable impurities,
And the above component composition includes Cu: 0.5% or less, Ni: 3.0%
Below, Mo: 0.7% or less, V: 0.07% or less, Ti:
Steel pipes containing one or more of the following: 0.06% or less, B: 0.0030% or less, Ac 3 points or more, preferably
Ac It is heated to a temperature of 3 points or more and 1100℃ or less and then quenched.When hot bending a straight pipe to make a bent pipe, bend it while heating and quenching as described above to make the desired bent pipe. As shown in FIG. 1, a bent pipe consisting of an as-quenched bent section 1 and an as-welded straight section 2 is obtained. The reasons for limiting the chemical components in the weld metal part of the present invention as described above are explained below. C is the element that has the greatest effect on as-quenched strength and toughness, and it is desirable to use a low carbon content to ensure as-quenched toughness, but the tensile strength decreases and the required strength is not reached. Since it would not be possible to satisfy the following criteria, ultra-low carbon could not be achieved, and the lower limit was set at 0.02%. Further, on the high C side, even if the strength is satisfactory, high toughness cannot be obtained, and if it exceeds 0.12%, the solidification cracking susceptibility of the weld metal increases, so this was set as the upper limit. If Si exceeds 0.6%, it will harden as welded, resulting in a significant decrease in toughness, and the desired toughness will not be obtained even as quenched, so 0.6% was set as the upper limit. Mn is based on the relationship shown in Figure 2, which is 0.03C−1.7Mn−0.04Nb−
0.015Ti−0.0009B and 0.03C−1.2Mn−0.3Cu−
This figure shows the effect of Mn content on the strength and toughness of as-welded and as-quenched SAW weld metals for base metals of 0.07V−0.01Ti, and the strength increases as the Mn content increases. However, in the region of less than 1.2%, the as-welded toughness decreases significantly, and even in the as-quenched state, a decrease in toughness is observed. In other words, in order to simultaneously satisfy high strength and as-welded and as-quenched toughness, it is necessary to increase the toughness to 1.2% or more, and especially in the 1.4 to 1.5% range, the as-welded and as-quenched toughness overlap. Good toughness was obtained. However, if Mn is excessively increased, high toughness can be obtained when welded, but when quenched it becomes too hard and high toughness cannot be obtained.
It is necessary to set the upper limit to 1.6%. P is an element that affects the toughness and solidification cracking of the weld metal, and the smaller the content, the better, and the content should be 0.02% or less to prevent a decrease in the toughness of the weld metal and eliminate solidification cracking. . Like P, S is an element that affects the toughness and solidification cracking of weld metal, and the smaller the amount, the better.
The upper limit should be %. Nb is contained in the weld metal because it is diluted from the base metal rather than being added from the welding material, and the base metal is usually Nb.
In order to use a controlled draw rolling steel plate with a high content, it is diluted into the weld metal. However, from the standpoint of ensuring the strength and toughness of the weld metal as described above in the present invention, less is better, and the upper limit should be 0.05%. In order to deoxidize the molten metal, it is preferable to contain a trace amount of Al, and the value is 0.005% or more. However, since a large amount of Al deteriorates the toughness of the weld metal, excessive addition should be avoided, and it was limited to 0.05% or less. N is harmful to improving the toughness of weld metal,
The lower the better, the upper limit is 0.1%. O greatly affects the toughness of as-welded and as-quenched weld metals, and the smaller the amount, the higher the toughness. However, since the oxygen content of the weld metal is approximately 5 to 10 times higher than that of the base metal, reducing this oxygen content is the most important issue for improving the toughness of the weld metal. In the present invention, this is reduced to 0.035% by using a high-temperature base melting type flux.
Limited to the following. The components added as optional components to the above-mentioned basic component composition are as follows. Cu improves the strength and toughness of the as-quenched weld metal, but if it exceeds 0.5%, solidification cracking will occur in the weld metal, so this should be the upper limit. Ni is the most suitable element for obtaining high toughness in as-welded and as-quenched weld metals, so it is better to include a large amount of it; however, weld metals containing more than 3.0% Ni are susceptible to solidification cracking. This is set as the upper limit because it is dangerous. Mo is an effective element for improving the toughness of the weld metal in the as-welded state, but in the as-quenched state it is a significant hardening element and causes a decrease in toughness, so the upper limit should be 0.7% to balance these factors. . Regarding Ti, this is due to the effect on vE-46℃ of as-welded and as-quenched weld metals as shown in Figure 3 for the same base metal as in Figure 2 above, and in the area where Mn is 1.2% or more. By adding a small amount of Ti, about 0.012%, to the weld metal, remarkable high toughness can be obtained in the as-welded state. However, if the Ti content exceeds 0.06%, precipitation hardening occurs in the weld metal, resulting in a significant decrease in as-welded toughness.
0.06% or less. By adding B in combination with Ti, it improves the hardenability in as-welded condition and creates a uniform accidental ferrite.
However, if it is left as quenched, it will become too hard and the toughness will deteriorate significantly. Therefore, in the present invention, the content is set to 0.0030% or less. Although V increases the strength of as-welded and as-quenched weld metals, it cannot be said to be effective for improving toughness. However, this V is not actively added to the welding material, but is an element that enters the weld metal by diluting the base metal, and when using a base metal containing V, the weld metal contains 0.07%. Limited to the following. Next, regarding heat treatment, in the present invention
SAW weld metal with Ac of 3 points or more, preferably Ac 3 ~
It is heated to a temperature of 1100°C and quenched at a cooling rate of 60°C/sec or less, and the reason for this limitation is as follows. In other words, Figure 4 shows the effect of quenching temperature on the strength and toughness of weld metal.In order to quench steel, it must first be heated to a temperature of Ac 3 or higher to form austenite, and then quenched. is common.
However, as can be understood from FIG. 4, if the quenching temperature becomes too high, the strength will increase but the toughness will deteriorate significantly, so it is preferable to quench at a temperature of 1100° C. or lower. Figure 5 shows the influence of the cooling rate when quenching at 1000℃, and it is observed that as the cooling rate increases, the strength increases and the toughness decreases. Cooling rate should be adopted. A specific structural example of the device according to the present invention will be described below. Table 1 below shows the chemical composition of the test steel plate used by the inventors.
0.04C−1.5Mn−0.3Cu−0.13Ni−0.034Nb−
It is of 0.011Ti−0.0032N.

【表】 又2電極SAWを用いた溶接条件は、前記鋼板
の内面側に厚さ5mm、外面側に厚さ5.5mmに亘る
各45゜の開先を形成し、このような開先に次の表
2の溶接材料を用いて、内面は1050A36V、
950A40V、800mm/min、外面は1200A38V、
1000A44V、850mm/minで溶接した。
[Table] Also, the welding conditions using a two-electrode SAW were to form a 45° groove on the inner surface of the steel plate with a thickness of 5 mm and on the outer surface with a thickness of 5.5 mm, and then Using the welding materials in Table 2, the inner surface is 1050A36V,
950A40V, 800mm/min, 1200A38V on the outside,
Welded at 1000A44V, 850mm/min.

【表】 更にこのようにして得られた溶接金属部の化学
成分は次の表3の如くであつて、本発明の範囲内
のものである。
[Table] Further, the chemical composition of the weld metal part thus obtained is as shown in Table 3 below, and is within the scope of the present invention.

【表】 然してこの溶接金属部を1000℃に加熱し、1分
間保持してから20℃/secの冷却速度で焼入した
後、該溶接金属の機械的性質を調べた結果は次の
表4の如くであつた。
[Table] After heating this weld metal to 1000℃, holding it for 1 minute, and quenching it at a cooling rate of 20℃/sec, the mechanical properties of the weld metal were investigated, and the results are shown in Table 4 below. It was like that.

【表】 即ち溶接ままおよび焼入ままの状態で何れも高
強度、高靭性を得しめていることは明かである。 「発明の効果」 以上説明したような本発明によるときはシーム
部をサブマージドアーク溶接した管を溶接まま及
び焼入ままの溶接金属部において充分な高強度と
共に高靭性を確保し得るものであり、従つて鋼管
全体を炉内において加熱し焼戻しする煩雑な工程
を必要とせず、又好ましい低コスト化を図つて曲
り管を製造し得るものであつて、工業的にその効
果の大きい発明である。
[Table] In other words, it is clear that high strength and high toughness are achieved in both the as-welded and as-quenched states. "Effects of the Invention" According to the present invention as explained above, it is possible to ensure sufficient high strength and high toughness in the as-welded and as-quenched weld metal parts of a pipe whose seam part is submerged arc welded. Therefore, the invention does not require the complicated process of heating and tempering the entire steel pipe in a furnace, and it is possible to manufacture bent pipes at a preferable cost reduction, and this invention has great industrial effects. .

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の技術的内容を示すものであつ
て、第1図は本発明方法で得られる曲り管の説明
図、第2図は溶接まま及び焼入ままのSAW溶接
金属における強度と靭性に及ぼすMn含有量の影
響を示した図表、第3図は溶接まま及び焼入まま
の溶接金属におけるvE−46℃に及ぼすMn含有量
との関係でのTi含有量の影響を示した図表、第
4図は溶接金属の強度と靭性に及ぼす焼入温度の
影響を示した図表、第5図は1000℃で焼入したと
きの冷却速度の影響を示した図表、第6図は従来
の焼入焼戻法による曲り管の説明図、第7図は同
じく従来の高周波加熱による曲り管製造法の説明
図である。 然してこれらの図面において、1焼入ままによ
る曲り部、2は溶接ままによる直管部を示すもの
である。
The drawings show the technical content of the present invention, and Fig. 1 is an explanatory diagram of a bent pipe obtained by the method of the present invention, and Fig. 2 is an illustration of the strength and toughness of as-welded and as-quenched SAW weld metal. Figure 3 is a diagram showing the influence of Mn content on vE-46℃ in as-welded and as-quenched weld metals. Figure 4 is a chart showing the effect of quenching temperature on the strength and toughness of weld metal, Figure 5 is a chart showing the effect of cooling rate when quenching at 1000℃, and Figure 6 is a chart showing the effect of cooling rate on the strength and toughness of weld metal. FIG. 7 is an explanatory diagram of a bent tube manufactured by the tempering method, and FIG. 7 is an explanatory diagram of a conventional method of manufacturing a bent tube by high-frequency heating. However, in these drawings, 1 shows a bent part due to as-quenching, and 2 shows a straight pipe part due to as-welded.

Claims (1)

【特許請求の範囲】 1 C:0.02〜0.12wt%、Si:0.6wt%以下、
Mn:1.20〜1.60wt%、P:0.02wt%以下、S:
0.15wt%以下、Nb:0.05wt%以下、Al:0.02wt
%以下、N:0.010wt%以下、O:0.035wt%以下 を含有し、残部がFeおよび不可避的不純物から
なる組成の溶接金属部を有する直管を、Ac3点以
上に加熱して、曲げ加工しつつ焼入れし、冷却後
そのまま製品とすることを特徴とする高靭性溶接
金属部を有するシーム部をサブマージドアーク溶
接した曲り管の製造方法。 2 C:0.02〜0.12wt%、Si:0.6wt%以下、
Mn:1.20〜1.60wt%、P:0.02wt%以下、S:
0.15wt%以下、Nb:0.05wt%以下、Al:0.02wt
%以下、N:0.010wt%以下、O:0.035wt%以下 を含有すると共に、 Cu:0.5wt%以下、Ni:3.0wt%以下、Mo:
0.7wt%以下、V:0.07wt%以下、Ti:0.06wt%
以下、B:0.0030wt%以下 の何れか1種又は2種以上を含有し、残部がFe
および不可避的不純物からなる組成の溶接金属部
を有する直管を、Ac3点以上に加熱して、曲げ加
工しつつ焼入れし、冷却後そのまま製品とするこ
とを特徴とする高靭性溶接金属部を有するシーム
部をサブマージドアーク溶接した曲り管の製造方
法。
[Claims] 1 C: 0.02 to 0.12wt%, Si: 0.6wt% or less,
Mn: 1.20-1.60wt%, P: 0.02wt% or less, S:
0.15wt% or less, Nb: 0.05wt% or less, Al: 0.02wt
% or less, N: 0.010wt% or less , O: 0.035wt% or less, and the balance is Fe and unavoidable impurities. A method for manufacturing a bent pipe in which a seam portion having a high-toughness weld metal portion is submerged arc welded, the method comprising quenching while processing and producing the product as is after cooling. 2 C: 0.02 to 0.12wt%, Si: 0.6wt% or less,
Mn: 1.20-1.60wt%, P: 0.02wt% or less, S:
0.15wt% or less, Nb: 0.05wt% or less, Al: 0.02wt
% or less, N: 0.010wt% or less, O: 0.035wt% or less, Cu: 0.5wt% or less, Ni: 3.0wt% or less, Mo:
0.7wt% or less, V: 0.07wt% or less, Ti: 0.06wt%
Below, B: contains any one or more of 0.0030wt% or less, and the balance is Fe.
A high-toughness weld metal part is produced by heating a straight pipe having a weld metal part with a composition consisting of unavoidable impurities, heating it to Ac 3 or higher, quenching it while bending it, and making it into a product as it is after cooling. A method for manufacturing a bent pipe in which the seam portion is submerged arc welded.
JP23829984A 1984-11-14 1984-11-14 Manufacture of bent pipe made of high toughness welding metal Granted JPS61117223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23829984A JPS61117223A (en) 1984-11-14 1984-11-14 Manufacture of bent pipe made of high toughness welding metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23829984A JPS61117223A (en) 1984-11-14 1984-11-14 Manufacture of bent pipe made of high toughness welding metal

Publications (2)

Publication Number Publication Date
JPS61117223A JPS61117223A (en) 1986-06-04
JPH0144769B2 true JPH0144769B2 (en) 1989-09-29

Family

ID=17028129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23829984A Granted JPS61117223A (en) 1984-11-14 1984-11-14 Manufacture of bent pipe made of high toughness welding metal

Country Status (1)

Country Link
JP (1) JPS61117223A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127849A (en) * 1984-11-26 1986-06-16 Kawasaki Steel Corp Steel for pipe for working to bent pipe
JPH0714534B2 (en) * 1985-04-08 1995-02-22 株式会社日立製作所 High frequency heating bending steel pipe manufacturing method
JPS63317218A (en) * 1987-06-19 1988-12-26 Nippon Steel Corp Production of high frequency bending pipe of low hardness as it is worked
CN102896186B (en) * 2011-07-26 2016-05-25 张家港华裕有色金属材料有限公司 Method and the device thereof of the U-shaped bend pipe finishing sizing of titanium or titanium alloy
CN114871699B (en) * 2022-05-26 2023-11-24 中南大学 High-strength and high-toughness X70 pipeline steel bent pipe with welded joint

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884925A (en) * 1981-11-13 1983-05-21 Kawasaki Steel Corp Heat treatment for electric welded steel pipe
JPS5925932A (en) * 1982-08-02 1984-02-10 Kawasaki Steel Corp Production of electric welded steel pipe having high strength
JPS5935629A (en) * 1982-08-24 1984-02-27 Nippon Steel Corp Manufacture of high-tension electric-welded steel pipe having superior toughness at low temperature
JPS59129727A (en) * 1983-01-14 1984-07-26 Dai Ichi High Frequency Co Ltd Production of heat treated bent pipe
JPS59153840A (en) * 1983-02-23 1984-09-01 Nippon Steel Corp Production of high-tension electric welded steel pipe having excellent low temperature toughness

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884925A (en) * 1981-11-13 1983-05-21 Kawasaki Steel Corp Heat treatment for electric welded steel pipe
JPS5925932A (en) * 1982-08-02 1984-02-10 Kawasaki Steel Corp Production of electric welded steel pipe having high strength
JPS5935629A (en) * 1982-08-24 1984-02-27 Nippon Steel Corp Manufacture of high-tension electric-welded steel pipe having superior toughness at low temperature
JPS59129727A (en) * 1983-01-14 1984-07-26 Dai Ichi High Frequency Co Ltd Production of heat treated bent pipe
JPS59153840A (en) * 1983-02-23 1984-09-01 Nippon Steel Corp Production of high-tension electric welded steel pipe having excellent low temperature toughness

Also Published As

Publication number Publication date
JPS61117223A (en) 1986-06-04

Similar Documents

Publication Publication Date Title
JP5200932B2 (en) Bend pipe and manufacturing method thereof
CA2687436C (en) Bent pipe and a method for its manufacture
CN101722382A (en) High-strength welding wires of gas shielded welding needing thermal refining after welding
CN101818308B (en) Steel for low-yield-ratio straight-seam electric resistance welded pipe and manufacturing method thereof
JP3290247B2 (en) Method for manufacturing high tensile strength and high toughness bent pipe with excellent corrosion resistance
JPH0144769B2 (en)
JPH0138851B2 (en)
JP3887832B2 (en) Manufacturing method of high strength hot bend steel pipe
CN102296233B (en) Steel for high-frequency electric resistance welding petroleum casing pipe and manufacturing method of steel
JPS62151545A (en) Thick-walled, high-strength, low-pcm bended steel pipe and its production
JP2002129288A (en) High strength pipe bend and its manufacturing method
JP4102103B2 (en) Manufacturing method of high strength bend pipe
JPH11172374A (en) Bent pipe with high strength and high toughness, and its production
JPS6216250B2 (en)
JPS594993A (en) Welding method of tempered type steel pipe
JP3836919B2 (en) Manufacturing method of ultra-thick high-strength bend pipe with excellent low temperature toughness
JP3850913B2 (en) Manufacturing method of high strength bend pipe with excellent weld metal toughness
JP4133566B2 (en) Manufacturing method of high strength bend pipe with excellent low temperature toughness
JPS602364B2 (en) Manufacturing method of non-thermal high tensile strength steel plate with excellent low-temperature toughness
JPS5817808B2 (en) Method for producing welded steel pipes with excellent stress corrosion cracking resistance
JPH0211654B2 (en)
JPH04180537A (en) High tensile strength steel plate for door guard bar excellent in collapse strength
JP2834500B2 (en) Manufacturing method of high-strength steel sheet with excellent thermal toughness
JPH07113126B2 (en) Method for producing stainless steel with excellent resistance to stress corrosion cracking
JPS6210240A (en) Steel for seamless drawn oil well pipe excellent in corrosion resistance and collapsing strength