JPS61127849A - Steel for pipe for working to bent pipe - Google Patents

Steel for pipe for working to bent pipe

Info

Publication number
JPS61127849A
JPS61127849A JP24819084A JP24819084A JPS61127849A JP S61127849 A JPS61127849 A JP S61127849A JP 24819084 A JP24819084 A JP 24819084A JP 24819084 A JP24819084 A JP 24819084A JP S61127849 A JPS61127849 A JP S61127849A
Authority
JP
Japan
Prior art keywords
steel
pipe
toughness
bent pipe
hot bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24819084A
Other languages
Japanese (ja)
Inventor
Tomoya Koseki
小関 智也
Chiaki Shiga
千晃 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP24819084A priority Critical patent/JPS61127849A/en
Publication of JPS61127849A publication Critical patent/JPS61127849A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To develop steel material without toughness deterioration due to various heat treatment in forming bent pipe, by using steel material contg. specified quantities of Mn, Ti, Al and Ni, Nb, etc. as the titled steel. CONSTITUTION:Steel sheet is obtd. from slab or billet by necessary rolling, hen are welded steel pipe, electrically seamed steel pipe and seamless steel pipe are manufactured by using said sheet, the necessary part is heated to 600-1,100 deg.C by high frequency, hot bending worked to manufacture bent pipe. Te material steel sheet is composed of, by weight 0.02-0.10% C, 0.20-0.50% Si, 0.50-2.00% Mn, 0.005-0.10% Ti, 0.005-0.19% Al, 0.0080% N and one or 2 kinds of 0.01-2.0% Ni and 0.01-0.10% Nb, under N <=Ti/3.4 in stoichiometric ratio. Bent pipe without deterioration in low temp. toughness, impacting characteristic after hot bending working is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 石油、ガス輸送用ラインパイプの曲がり部や分岐部で使
用される曲管に用いる鋼についてこの明細書で述べる技
術内容は、曲管成形後にも高じん性を維持できる鋼を成
分調整により得ることにあ゛る。
[Detailed Description of the Invention] (Industrial Application Field) The technical details described in this specification regarding the steel used for bent pipes used at the bends and branching parts of line pipes for oil and gas transportation are as follows: The aim is to obtain steel that can maintain high toughness by adjusting its composition.

従来石油、ガス輸送用ラインパイプの曲がり部や分岐部
に使用される曲管は、鋳造、鍛造または溶接組立て法に
よって製造されていた。
BACKGROUND OF THE INVENTION Traditionally, bent pipes used for bends and branches of line pipes for oil and gas transportation have been manufactured by casting, forging, or welding assembly methods.

近年、高周波の利用が工業的に盛んとなり1曲管の製造
においても、 UOE鋼管を高周波力n熱後・熱間曲げ
加工して経済的に成形する方法が採用されている。
In recent years, the use of high frequencies has become popular industrially, and even in the production of single-curved pipes, an economical method of forming UOE steel pipes by applying high-frequency power, post-heat, and hot bending has been adopted.

この高周波加熱を利用する曲管の成形は、815分曲げ
加工となるため、曲管部は加熱−焼入れ、あるいは加熱
−空冷、直管Sは管体成形時のまま。
Forming a curved tube using this high-frequency heating requires 815 minutes of bending, so the curved tube section is heated and quenched or heated and air-cooled, and the straight tube S remains as it was when the tube was formed.

曲管部と直管部との境界は種々の温度の加熱−水冷また
は空冷となシ、管の全長にわたり種々の熱履歴を受ける
ことになる。また高周波による表面加熱のため、管体が
加熱されると外表面と内表面とで温度差が生じ、管の肉
1Nが厚いもの程この温度差は大きくなることが推定さ
れる。さちに冷却は外面から進行するため、肉厚が異な
ると冷却速度も異なるため材質変化の原因となる。
The boundary between the curved pipe section and the straight pipe section is heated to various temperatures and subjected to various thermal histories over the entire length of the pipe, such as water cooling or air cooling. Furthermore, due to surface heating by high frequency waves, when the tube is heated, a temperature difference occurs between the outer surface and the inner surface, and it is estimated that the thicker the tube wall 1N, the larger this temperature difference becomes. Since cooling proceeds from the outside surface, different wall thicknesses result in different cooling rates, which causes changes in material properties.

このように高周波加熱による曲管成形に際しては、長手
方向で熱処理が異なり、また曲管部でも種々の曲げ加熱
温度と冷却速度となるため、材質゛が不均一となってじ
ん性の劣る曲管となる。したがってじん性の劣化を防ぐ
には1曲管成形時の加熱温度、冷却速度などを厳密に制
御する必要があった。
In this way, when forming a curved tube using high-frequency heating, the heat treatment differs in the longitudinal direction, and the bending heating temperature and cooling rate also vary in the curved tube section, resulting in uneven material and curved tubes with poor toughness. becomes. Therefore, in order to prevent deterioration of toughness, it was necessary to strictly control the heating temperature, cooling rate, etc. when forming a single-curve tube.

(従来の技術) 上掲のように曲管の成形には特別の配NLを必要として
いるが、曲管用銅自体に熱間曲げ那工後にも優れたしん
性が得られる性質を付与できれば、特別な配慮を必要と
しなくて済むが、従来仁の目的のために開発された鋼は
見当らなかった。
(Prior art) As mentioned above, forming a curved pipe requires a special wiring line (NL), but if the copper for the curved pipe itself can be given properties that allow it to have excellent toughness even after hot bending. Although it does not require any special consideration, I have not found any steel that has been developed for the purpose of Jin.

(発明が解決しようとする問題点) そこでこの発明は1曲管成形時における種々の加熱−冷
却後にも常に安定したしん性を有する鋼の提供を目的と
する。
(Problems to be Solved by the Invention) Therefore, the object of the present invention is to provide a steel that always has stable toughness even after various heating and cooling processes during the forming of a single curved tube.

(問題点を解決するための手段) 発明者らは、穐々の熱処理後でも常に安定した低温じん
性を有する鋼材を得るため、焼入れ硬化性の観点からC
およびB、熱影響部の細粒化の観点からNb、 Ti、
 REMおよびB、マトリックスのじん性向上の観点か
らCuおよびNi、そして溶接金属のじん性向上の観点
からNbおよび■、の各合金元素に着目して棟々の実験
、検討を行った。
(Means for Solving the Problems) In order to obtain a steel material that always has stable low-temperature toughness even after heat treatment, the inventors developed C from the viewpoint of quench hardenability.
and B, from the viewpoint of grain refinement in the heat affected zone, Nb, Ti,
Various experiments and studies were conducted focusing on the following alloying elements: REM and B, Cu and Ni from the perspective of improving the toughness of the matrix, and Nb and (2) from the perspective of improving the toughness of the weld metal.

実験は、圧延のみを施した鋼材(以下圧&″!l:ま材
という)、圧延後550〜1100℃刀口熱空冷。
In the experiment, steel materials that were only subjected to rolling (hereinafter referred to as "ma material") were heated and air cooled at a temperature of 550 to 1100 degrees Celsius after rolling.

600〜1100℃加熱後焼入れ、および焼入れ後焼戻
し処理した各種熱処理材を用い、夫々の材質調査を行っ
て材質のばらつきについて比較検討した。またX形開先
で8電極ザブマージアーク浴接(F、 S、 81 K
J/cm、 B、 S、 8BKJ/FII) を行イ
ー ソF)溶接熱影響部についても同様の実験を行った
Using various heat-treated materials that were heated to 600 to 1100° C. and then quenched, and then quenched and then tempered, each material was investigated and the variations in material quality were compared and studied. In addition, 8-electrode submerged arc bath welding (F, S, 81 K
J/cm, B, S, 8BKJ/FII) and F) A similar experiment was conducted for the weld heat affected zone.

実験結果の一例を第1図に示す。この実験には表1に示
す組成よりなる鋼A−Hを用い、6鋼ごとに圧延後未処
理、圧延後650℃加熱空冷。
An example of the experimental results is shown in FIG. In this experiment, steels A to H having the compositions shown in Table 1 were used, and every six steels were untreated after rolling, and heated and air-cooled at 650°C after rolling.

1050℃加熱−焼入れ、および1050℃加熱焼入れ
後650℃焼戻しの処理を施したときの破面遷移温度を
調べた。
The fracture surface transition temperature was investigated when heat-quenching at 1050°C and tempering at 650°C after heat-quenching at 1050°C were performed.

第1図および表1から、低0− Ti −Nb鋼の鋼F
や低0− Ti −Ni鋼の鋼Gは圧延まま材、各熱処
理材とも破面遷移温度が低く、かつ各処理後の破面遷移
温度のばらつきが小さいことが明らかとなつ念。
From Figure 1 and Table 1, the low 0-Ti-Nb steel F
It is clear that Steel G, which is a low 0-Ti-Ni steel, has a low fracture surface transition temperature in both the as-rolled material and each heat-treated material, and that the dispersion in the fracture surface transition temperature after each treatment is small.

鋼F、 Gに添加されたTiについては、 TiNによ
る粒成長抑制効果や鋼中Nの捕捉作用を通じて大入熱溶
接部の特性を改善するという現象が公知であるが、溶接
部のみに層目したものであり、鋼F。
Regarding Ti added to Steels F and G, it is known that TiN improves the properties of high heat input welds through the effect of suppressing grain growth and the trapping effect of N in the steel. Steel F.

Gのように低C化とT1添加とを組合わせることによっ
てOCT曲線におけるフェライトノーズを短時間側へ移
行させて、冷却速度に大きく依存せずに母材および溶接
部のじん性が各稿熱処理後でも安定する鋼を提供できる
ことが判った。
By combining low C and T1 addition as shown in G, the ferrite nose in the OCT curve is shifted to the short time side, and the toughness of the base metal and weld is improved by each heat treatment without greatly depending on the cooling rate. It turned out that it was possible to provide steel that remained stable even after the process.

刃口えて高周波による急速加熱は短時間で済むため加熱
時の粒成長が少なく、一層の高じん性化を図ることがで
きる。
On the other hand, rapid heating using high-frequency waves requires only a short time, so there is little grain growth during heating, and even higher toughness can be achieved.

さちに低a −Ti鋼へNb +Nin加すると、まず
N1はマトリックスのじん性を向上する効果がちり、焼
入れ処理に伴うしん性の劣化を補完でき。
When Nb + Nin is added to low a-Ti steel, N1 has the effect of improving the toughness of the matrix and can compensate for the deterioration of toughness caused by quenching.

またNbはNb炭窒化物とな9粒成長抑制効果によって
じん性を向上できるとともに、Nb炭窒化物自体が安定
なため比較的高温まで加熱して熱間曲げ加工を施す材料
への添加に有効でおることが判った。
In addition, Nb can improve toughness by suppressing the growth of Nb carbonitrides, and Nb carbonitrides themselves are stable, so they are effective when added to materials that are heated to relatively high temperatures and subjected to hot bending. It turned out that it was possible.

この発明は、上記知見に由来するものである。This invention is derived from the above knowledge.

すなわちこの発明は、 c : 0.02〜0.10w
t%。
That is, in this invention, c: 0.02 to 0.10w
t%.

Si : 0.20〜0.50 wt%、Mn : 0
.50〜2.IJOwt%。
Si: 0.20-0.50 wt%, Mn: 0
.. 50-2. IJOwt%.

xi: 0.005〜O,10wt%−AI!: 0.
005〜0゜100vtチおよびN : [1,008
0wt%以下を含み、さちにNi : 0.1−2.O
wL% (!: Nb : 0.01〜0.10 wt
%のうちのIPlまたに2種を含有し残部Feおよび不
可避不純物からなシ、部分熱間油は加工後のじん性に優
れていることを特徴とする面前加工用管用鋼である。
xi: 0.005~O, 10wt%-AI! : 0.
005~0°100vt Chi and N: [1,008
Contains 0wt% or less, and Ni: 0.1-2. O
wL% (!: Nb: 0.01~0.10 wt
It is a steel for pipes for surface processing, which is characterized by containing two types of IPl in %, the remainder being Fe and unavoidable impurities, and partially hot oil having excellent toughness after processing.

なおT1とNとの比は、化学量論当量からN≦Ti/B
、4とすることが望ましい。
Note that the ratio of T1 and N is determined from the stoichiometric equivalent to N≦Ti/B.
, 4 is desirable.

以上の成分範囲で調整した溶鋼を通常の裏銅手段で得た
後、造塊法または連続鋳造法によってスラブ、ビレット
として必要な圧延加工を常法に従い施してアーク溶接鋼
管、!縫鋼管、および継目無鋼管を製造し、これらの鋼
管を用いて高周波加熱によって60υ〜1100 ℃に
加熱した部分に熱間曲げ加工を施せば、鋼管各所で同様
の優れた衝撃特性を有する高じん性曲管を得ることがで
きる。
After obtaining the molten steel adjusted to the above composition range using the usual back copper method, it is subjected to the necessary rolling processing to form slabs and billets using the ingot-forming method or continuous casting method according to conventional methods to produce arc-welded steel pipes! If we manufacture sewn steel pipes and seamless steel pipes and use high-frequency heating to heat the parts of these steel pipes to 60υ to 1100°C and perform hot bending, we can create high-dust products with the same excellent impact properties at various parts of the steel pipes. You can get a sex tube.

(作用) 次に各成分の限定理由を説明する。(effect) Next, the reasons for limiting each component will be explained.

Cは、最も簡便に鋼の強度を高めるのに役豆っ成分であ
り、 0.02 wt% (以下単に係と示す)未満で
はその効果が期待されない一方、0.10%を超えると
焼入れ性が上がってじん性が劣化するとともに@凝性も
低下するため、0.02〜0.10%の範囲とする。
C is an essential component that most easily increases the strength of steel, and if it is less than 0.02 wt% (hereinafter simply referred to as C), no effect can be expected, while if it exceeds 0.10%, it will reduce hardenability. The content is set in the range of 0.02 to 0.10%, since this increases the toughness and decreases the coagulability.

Slは、脱酸作用の利用と強度への寄与から0.20%
以・上を必要とするが、 0.50%を超えると焼入れ
性が上がって低温じん性が劣化するため、0.2(1〜
0.50%の範囲とする。
Sl is 0.20% due to its deoxidizing effect and contribution to strength.
However, if it exceeds 0.50%, hardenability increases and low temperature toughness deteriorates, so 0.2 (1 to 1%) is required.
The range is 0.50%.

Mnは、所定の強度確保のため0.50%以上が必要で
あるが、2.0096を超えると焼入れ時のじん性が大
きく、さちに浴接性や加工性を害するので’ 0.50
〜2.00 %の範囲とする。
Mn needs to be 0.50% or more to ensure the specified strength, but if it exceeds 2.0096, the toughness during quenching will be large and the bath weldability and workability will be immediately impaired.
-2.00% range.

T1は、重要成分であり、窒化物となって粒成長を抑制
し、さちに鋼中窒素を低減することによシじん性を改善
するとともに、フェライトノーズを短時間側に移行させ
得るために1種々の熱処理でも材質変化を抑える効果が
ある。この効果は0.005%未満では少なく、また0
、10%を超えると飽和するとともにTi炭化物析出に
よりじん性が劣化し、さちに経済性を損うことから、 
0.005〜0.10%の範囲とする。
T1 is an important component that becomes a nitride and suppresses grain growth, which reduces nitrogen in the steel and improves toughness, as well as shifts the ferrite nose to the short-time side. Various heat treatments also have the effect of suppressing changes in material properties. This effect is small below 0.005%, and
If it exceeds 10%, it becomes saturated and the toughness deteriorates due to the precipitation of Ti carbides, which immediately impairs economic efficiency.
The range is 0.005 to 0.10%.

A/’は、脱酸作用があり0.005%以上が必要であ
るが、0.100%を超えると溶接性が低下するので0
.005〜0.100%の範囲とする。
A/' has a deoxidizing effect and needs to be at least 0.005%, but if it exceeds 0.100%, weldability will deteriorate, so
.. The range is 0.005% to 0.100%.

Nは、o、oos%を超えるとじん性の劣化が著しいた
め0.008 %以下とする。
If N exceeds o, oos%, the toughness deteriorates significantly, so it should be kept at 0.008% or less.

NiおよびNt)はじん性の向上に有効であり。Ni and Nt) are effective in improving toughness.

同等の作用効果を示す。Shows equivalent effects.

まずN1は、じん性の向上に0.10%以上必要である
が、2.0%を超えると溶接性、熱間加工性が低下し、
経済性の面でも不利となるため0.1O〜2.0%の範
囲とする。
First, N1 is required to be 0.10% or more to improve toughness, but if it exceeds 2.0%, weldability and hot workability will decrease.
Since it is disadvantageous in terms of economy, it is set in the range of 0.10 to 2.0%.

Nbは、Nb炭窒化物となって粒成長を抑制してじん性
を同上するため0.01%以上必要であるが。
Nb is required to be 0.01% or more because it becomes Nb carbonitride, suppresses grain growth, and improves toughness.

0.10%を超えると溶接性が低下するとともに焼入れ
性の向上によるしん性の劣化を招くので。
If it exceeds 0.10%, weldability decreases and toughness deteriorates due to improved hardenability.

0.01−2.0%の範囲とする。The range is 0.01-2.0%.

(実施例) 表2に示す化学成分を含有する比較鋼1〜6゜発明鋼7
〜9を真空溶解により夫々l 00 kp鋼塊に溶製し
、l l Q mm厚のスラブ鋼片を切出し、次いで1
150℃に刀n熱後、制御圧延により780℃の仕上げ
温度で15 mm厚の圧延鋼板とした。ここで衝撃特性
の評価のため圧延まま材からシャルピー試験片を採取し
た。さちに圧延まま材を600℃ないし1150℃の温
度に加熱し、50℃ごとの各温度にて先端の曲率半径が
180 mmのポンチでプレスし、板厚tと曲管部属径
りとの関係がt/D:8:4%となる熱間加工を施した
。その後直ちに冷却速度約80℃/Sの水冷をし、衝撃
特性を調べた。このときの冷却速度は実機曲げ装置の冷
・却速度(推定5〜15℃/S )よりかなり速く、実
際の製品よりも衝撃特性が低下していることが予想され
る。また曲げ加工後の焼戻し処理によシじん性は改善さ
れることから、ここでは最もじん住方化が著しい曲げ加
工直後の急冷という条件で鋼材の評価を行った。その結
果を表8に示す。
(Example) Comparative steel 1 to 6° Invention steel 7 containing the chemical components shown in Table 2
~9 were melted into l00 kp steel ingots by vacuum melting, cut into l l Q mm thick slab steel pieces, and then 1
After heating to 150°C, a rolled steel plate with a thickness of 15 mm was obtained by controlled rolling at a finishing temperature of 780°C. Here, Charpy test pieces were taken from the as-rolled material for evaluation of impact properties. First, the as-rolled material was heated to a temperature of 600°C to 1150°C, and pressed with a punch whose tip has a radius of curvature of 180 mm at each temperature of 50°C to determine the relationship between the plate thickness t and the diameter of the bent pipe part. Hot working was performed such that t/D was 8:4%. Immediately thereafter, it was water-cooled at a cooling rate of about 80° C./s, and its impact properties were examined. The cooling rate at this time is considerably faster than the cooling rate of the actual bending machine (estimated at 5 to 15°C/S), and it is expected that the impact properties will be lower than that of the actual product. In addition, since toughness is improved by tempering after bending, the steel materials were evaluated here under the condition of rapid cooling immediately after bending, where the greatest degree of dust accumulation occurs. The results are shown in Table 8.

表8から明らかなように発明鋼は、各温度での熱間加工
後の急冷によるじん性基化は少なく、圧延″!ま材の破
面遷移温度と同一レベルの値を示し。
As is clear from Table 8, the invention steel showed less toughness due to quenching after hot working at each temperature, and showed a value on the same level as the fracture surface transition temperature of the rolled material.

高じん性を有することがわかる。すなわち、加熱温度が
板厚によって広範囲に変化しても各部で均等の蔦じん性
を有する曲管の製造が可能となることがわかる。
It can be seen that it has high toughness. That is, it can be seen that even if the heating temperature varies over a wide range depending on the plate thickness, it is possible to manufacture a curved pipe having uniform stiffness in each part.

なお鋼材の変形抵抗と曲は装置の容量との関係から実際
の曲げ加工においてd900℃以上の加熱温度とする場
合が多く、発明鋼のように加熱温度がかなp高い場合で
も高じん性を有し、その効果は大きい〇 (発明の効果) この発明の鋼を用いることによって、熱間曲げ加工で特
別の配慮を必要とせず、かつ曲げ加工後の衝撃特性も各
部所で同一である高じん性の曲管を製造することができ
る。
Furthermore, due to the relationship between the deformation resistance and bending of steel materials and the capacity of the equipment, heating temperatures of d900℃ or higher are often used in actual bending processes, and even when the heating temperature is kana p high, as with the invented steel, it has high toughness. However, the effect is large〇 (Effect of the invention) By using the steel of this invention, it is possible to create a high-tension steel that does not require special consideration during hot bending and has the same impact characteristics at each part after bending. It is possible to manufacture flexible curved pipes.

すなわち、厳密な加熱温度制御、温度ばらつきに対する
考慮が不要で、原えて曲げ加工後の管全体にわたる焼戻
し処理を行わずにしん性の優れた曲管を提供できる。
That is, there is no need for strict heating temperature control or consideration of temperature variations, and it is possible to provide a bent pipe with excellent stiffness without subjecting the entire pipe to tempering after bending.

し友がって、加工条件の緩和による作業性の向上、生産
性の向上、さちに焼戻し処理に要する加熱原単位の低減
によるコストの低下を図れる。
In turn, it is possible to improve workability and productivity by relaxing processing conditions, and to reduce costs by reducing the heating unit required for tempering treatment.

転回面の簡単な説明 第1図は、各徨熱愚理による破面遷移温度の変化を示す
グラフである。
Brief Explanation of Turning Surface FIG. 1 is a graph showing changes in fracture surface transition temperature due to various heating effects.

Claims (1)

【特許請求の範囲】 1、C:0.02〜0.10wt%、 Si:0.20〜0.50wt%、 Mn:0.50〜2.00wt%、 Ti:0.005〜0.10wt%、 Al:0.005〜0.100wt%、およびN:0.
0080wt%以下 を含み、さちにNi:0.1〜2.0wt%とNb:0
.01〜0.10wt%のうちの一種または2種を含有
し、残部Feおよび不可避不純物からなり、部分熱間曲
げ加工後のじん性に優れていることを特徴とする曲管加
工用管用鋼。
[Claims] 1. C: 0.02 to 0.10 wt%, Si: 0.20 to 0.50 wt%, Mn: 0.50 to 2.00 wt%, Ti: 0.005 to 0.10 wt%. %, Al: 0.005 to 0.100 wt%, and N: 0.
Contains 0.080 wt% or less, including Ni: 0.1 to 2.0 wt% and Nb: 0
.. A pipe steel for forming curved pipes, characterized in that the steel contains one or two of the following: 01 to 0.10 wt%, the remainder being Fe and unavoidable impurities, and having excellent toughness after partial hot bending.
JP24819084A 1984-11-26 1984-11-26 Steel for pipe for working to bent pipe Pending JPS61127849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24819084A JPS61127849A (en) 1984-11-26 1984-11-26 Steel for pipe for working to bent pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24819084A JPS61127849A (en) 1984-11-26 1984-11-26 Steel for pipe for working to bent pipe

Publications (1)

Publication Number Publication Date
JPS61127849A true JPS61127849A (en) 1986-06-16

Family

ID=17174541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24819084A Pending JPS61127849A (en) 1984-11-26 1984-11-26 Steel for pipe for working to bent pipe

Country Status (1)

Country Link
JP (1) JPS61127849A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790375A (en) * 1993-09-28 1995-04-04 Sumitomo Metal Ind Ltd Production of thick bend steel pipe having high strength and high toughness
US7892605B2 (en) * 2004-07-09 2011-02-22 Aisin Takaoka Co., Ltd. High-strength quenched formed body with good corrosion resistance and process for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123325A (en) * 1977-04-02 1978-10-27 Nippon Steel Corp Manufacture of high tensile steel
JPS56119759A (en) * 1980-02-28 1981-09-19 Nippon Kokan Kk <Nkk> High tensile steel with superior sulfide corrosion crack resistance
JPS5884958A (en) * 1981-11-13 1983-05-21 Nippon Steel Corp Manufacture of killed steel slab for hot rolling
JPS58207355A (en) * 1982-05-27 1983-12-02 Kawasaki Steel Corp Welded steel pipe and its usage
JPS59232225A (en) * 1983-06-13 1984-12-27 Nippon Kokan Kk <Nkk> Manufacture of bent pipe with high tension and toughness
JPS61117223A (en) * 1984-11-14 1986-06-04 Nippon Kokan Kk <Nkk> Manufacture of bent pipe made of high toughness welding metal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123325A (en) * 1977-04-02 1978-10-27 Nippon Steel Corp Manufacture of high tensile steel
JPS56119759A (en) * 1980-02-28 1981-09-19 Nippon Kokan Kk <Nkk> High tensile steel with superior sulfide corrosion crack resistance
JPS5884958A (en) * 1981-11-13 1983-05-21 Nippon Steel Corp Manufacture of killed steel slab for hot rolling
JPS58207355A (en) * 1982-05-27 1983-12-02 Kawasaki Steel Corp Welded steel pipe and its usage
JPS59232225A (en) * 1983-06-13 1984-12-27 Nippon Kokan Kk <Nkk> Manufacture of bent pipe with high tension and toughness
JPS61117223A (en) * 1984-11-14 1986-06-04 Nippon Kokan Kk <Nkk> Manufacture of bent pipe made of high toughness welding metal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790375A (en) * 1993-09-28 1995-04-04 Sumitomo Metal Ind Ltd Production of thick bend steel pipe having high strength and high toughness
US7892605B2 (en) * 2004-07-09 2011-02-22 Aisin Takaoka Co., Ltd. High-strength quenched formed body with good corrosion resistance and process for producing the same
US8133544B2 (en) 2004-07-09 2012-03-13 Aisin Takaoka Co., Ltd. High-strength quenched formed body with good corrosion resistance and process for producing the same
US8697253B2 (en) 2004-07-09 2014-04-15 Aisin Takaoka Co., Ltd. High-strength quenched formed body with good corrosion resistance

Similar Documents

Publication Publication Date Title
KR101388334B1 (en) High tensile steel products excellent in the resistance to delayed fracture and process for production of the same
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
CN113015815A (en) Hot-rolled steel strip and method for producing same
JP2014029003A (en) Method of producing high tensile steel sheet excellent in delayed fracture resistance
JP2013104124A (en) Directly quenched and tempered high tensile strength steel sheet having excellent bendability and method for producing the same
JP5692305B2 (en) Thick steel plate with excellent heat input welding characteristics and material homogeneity, and its manufacturing method
JPH06306543A (en) High strength pc wire rod excellent in delayed fracture resistance and its production
JP2013108168A (en) Method of producing high strength steel plate of tensile strength of 780 mpa or greater, excellent in weldability and delayed fracture resistance
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JPS6141968B2 (en)
JP3760640B2 (en) Steel pipe manufacturing method
JPH09143612A (en) High strength hot rolled steel plate member low in yield ratio
JPH06184636A (en) Production of high strength and high toughness seamless steel pipe excellent in weldability
JP6051735B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JPH0567699B2 (en)
JPS61127849A (en) Steel for pipe for working to bent pipe
JP4043004B2 (en) Manufacturing method of hollow forgings with high strength and toughness with excellent stress corrosion cracking resistance and hollow forgings
JPH11302785A (en) Steel for seamless steel pipe
JPS602364B2 (en) Manufacturing method of non-thermal high tensile strength steel plate with excellent low-temperature toughness
US20040003876A1 (en) Structural Fe-Cr steel sheet, manufacturing method thereof, and structural shaped steel
JP3760641B2 (en) Steel pipe manufacturing method
JPH1088230A (en) Production of high tensile strength steel material excellent in toughness
JPH0247525B2 (en)
JPH02190423A (en) Manufacture of steel plate having excellent ctod properties in weld zone