JPS62151545A - Thick-walled, high-strength, low-pcm bended steel pipe and its production - Google Patents

Thick-walled, high-strength, low-pcm bended steel pipe and its production

Info

Publication number
JPS62151545A
JPS62151545A JP29075585A JP29075585A JPS62151545A JP S62151545 A JPS62151545 A JP S62151545A JP 29075585 A JP29075585 A JP 29075585A JP 29075585 A JP29075585 A JP 29075585A JP S62151545 A JPS62151545 A JP S62151545A
Authority
JP
Japan
Prior art keywords
strength
thick
heating
pcm
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29075585A
Other languages
Japanese (ja)
Other versions
JPH0567699B2 (en
Inventor
Tomoya Koseki
小関 智也
Kenichi Amano
虔一 天野
Hisae Terajima
寺嶋 久栄
Chiaki Shiga
千晃 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP29075585A priority Critical patent/JPS62151545A/en
Publication of JPS62151545A publication Critical patent/JPS62151545A/en
Publication of JPH0567699B2 publication Critical patent/JPH0567699B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To manufacture a thick-walled, high-strength, low-PCM curved pipe by subjecting a thick-walled steel pipe which has a specific composition and in which PCM is regulated to a specific value or below to heating in a specific temp. range, to bending at that temp., to cooling, and then to tempering in a specific temp. range. CONSTITUTION:The thick-walled steel pipe has a composition consisting of, by weight, 0.04-0.12% C, 0.2-0.6% Si, 0.8-1.6% Mn, 0.05-0.5% Ni, 0.1-0.25% Mo, 0.03-0.1% V, 0.005-0.05% Ti, 0.02-0.08% Nb, 0.05-0.5% Cu, 0.01-0.1% Al, 0.002-0.006% N, and the balance Fe with inevitable impurities, in which the value of PCM represented by an equation is regulated to <=0.19%. This thick-walled steel pipe is subjected to heating to a temp. between AC3 point and 1,100 deg.C, bending at the same temp., cooling, and then tempering at 550-650 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 石油、ガス輸送用バイブラインの曲り部や分岐部に利用
される厚肉高強度曲管に用いる鋼管について、誘導加熱
成形後にもX60グレード(Y、S 42.7〜52.
7kgf/mm2. T、S、 52.8〜65.9k
gf/mm2)相当の高強度高靭性を維持できる厚肉高
強度低Pcm曲管とその製造法を提案しようとするもの
である。
Detailed Description of the Invention (Field of Industrial Application) Regarding steel pipes used for thick-walled, high-strength curved pipes used for bends and branching parts of oil and gas transportation vibrating lines, X60 grade ( Y, S 42.7-52.
7kgf/mm2. T, S, 52.8~65.9k
The purpose of this paper is to propose a thick-walled, high-strength, low-Pcm curved pipe that can maintain high strength and high toughness equivalent to (gf/mm2) and a method for manufacturing the same.

−IQに石油、ガス輸送用ラインパイプの曲り部や分岐
部に使用される曲管は、鋳造、鍜造または溶接組み立て
法によって製造されて来た。
BACKGROUND OF THE INVENTION Bent pipes used for bends and branches in oil and gas transmission line pipes have been manufactured by casting, forging or welding assembly methods.

これに対して近年、高周波の利用が工業的に盛んとなり
、この種の曲管の製造においても、UOE鋼管、電縫鋼
管やシームレス鋼管などの直管を高周波加熱の熱間曲げ
加工で曲管にするという経済的な成形法が採用されるよ
うになりつつあり、その一方で、曲管使用環境もか酷な
ものとなって、冷寒地、深海使用などから曲管に高靭性
で高強度厚肉化が要求されるようになってきた。
On the other hand, in recent years, the use of high frequencies has become popular industrially, and even in the manufacture of this type of bent pipe, straight pipes such as UOE steel pipes, ERW steel pipes, and seamless steel pipes are processed by hot bending using high frequency heating. At the same time, the environment in which bent pipes are used has become harsher, and curved pipes with high toughness and high performance are being used in cold regions and deep seas. There is a growing demand for increased strength and thicker walls.

加えて、溶接性の良好な低P、イ曲管が求められること
は言うまでもない。
In addition, it goes without saying that a low P, curved pipe with good weldability is required.

ここで、成形時の高周波加熱は、管表面からの加熱であ
るため、外表面と内表面とで温度差が生じ、管の肉厚が
厚くなる程、この温度差は大きくなることが推定される
Here, since high-frequency heating during molding is heating from the tube surface, a temperature difference occurs between the outer and inner surfaces, and it is estimated that this temperature difference will increase as the wall thickness of the tube increases. Ru.

さらに、加熱曲げ直後、水冷されるが、肉厚が厚くなる
ほど冷却能は小さくなり、冷却速度が小さくなるととも
に、表面と板厚中心(1/2を部)の冷却速度差も大き
くなると推定される。
Furthermore, it is water cooled immediately after heating and bending, but it is estimated that the thicker the wall, the lower the cooling capacity, the lower the cooling rate, and the larger the difference in cooling rate between the surface and the center of the thickness (1/2). Ru.

このように高周波加熱による曲管成形に際しては、鋼管
厚み方向の部位により種々の曲げ加熱温度と冷却速度と
なるため、厚肉になるほど材質不均一が大となり、鋼管
各部位でその機械的性質が異なる不均質曲管となってし
まう。
In this way, when forming a bent pipe using high-frequency heating, the bending heating temperature and cooling rate vary depending on the part in the thickness direction of the steel pipe, so the thicker the wall, the more uneven the material becomes, and the mechanical properties of each part of the steel pipe vary. This results in a different, non-uniform curved pipe.

加えて、厚肉になるほど冷却速度が小さくなるため、高
強度化のためには、添加合金元素量を増加しなければな
らず、溶接性の低下をもたらす。
In addition, as the thickness increases, the cooling rate decreases, so in order to increase the strength, it is necessary to increase the amount of added alloying elements, resulting in a decrease in weldability.

(従来の技術) これら曲管材質の不均一性を軽減するため、下記のよう
な操業的な工夫も考慮されている。すなわち、加熱温度
差を小さくする目的から、加熱浸透深さを増すよう加熱
周波数を下げた加工がなされる。しかし、これにより加
熱帯の幅も広がり曲げ成形時に大変形となり真円度など
の面から新たな問題点も生じてしまい、本質的には加熱
温度差はなくならない。
(Prior Art) In order to reduce the non-uniformity of these curved pipe materials, the following operational measures have been considered. That is, for the purpose of reducing the heating temperature difference, processing is performed by lowering the heating frequency so as to increase the heating penetration depth. However, this also increases the width of the heating zone and causes large deformations during bending, causing new problems in terms of roundness, etc., and essentially does not eliminate the heating temperature difference.

また、冷却能の向上を狙い水量密度を上げたり、管の内
外面同時冷却もなされるが、誘導加熱曲げ装置では、冷
却ゾーンと加熱ゾーンが隣接しているため、加熱ゾーン
への冷却効果も大きくなり所定の加熱温度が得られにく
くなるという問題も派生してくることとなる。
In addition, in order to improve the cooling capacity, the water density is increased and the inner and outer surfaces of the tube are simultaneously cooled. However, in induction heating bending equipment, the cooling zone and heating zone are adjacent to each other, so the cooling effect on the heating zone is also reduced. As the temperature increases, the problem arises that it becomes difficult to obtain a predetermined heating temperature.

さらに、材質不均一性をな(すため、誘導加熱曲げ成形
後の曲管を大型熱処理炉に入れ、均一加熱し、大型水槽
に焼入れるという後工程も取られることがあるが、コス
ト面から不利なこと、また、寸法変化も生じるため所定
形状の曲管が得られにく い。
Furthermore, in order to eliminate material non-uniformity, post-processing is sometimes performed in which the bent pipe after induction heating bending is placed in a large heat treatment furnace, heated uniformly, and quenched in a large water tank, but this is not possible due to cost considerations. Another disadvantage is that dimensional changes occur, making it difficult to obtain a curved pipe of a predetermined shape.

なお、曲管成形時における種々の加熱−冷却後にも常に
安定した靭性を有する鋼としてさきに発明者らの一部は
特願昭59−248190号の発明を提起したが、これ
は薄薗管の靭性に着目しているのみで、その他この発明
のように厚内低PCMで、高強度高靭性曲管用鋼につい
ての先行技術は見当らない。
Incidentally, some of the inventors previously proposed the invention of Japanese Patent Application No. 59-248190 as a steel that always has stable toughness even after various heating and cooling processes during bent pipe forming, but this The focus is only on the toughness of the steel, and no other prior art has been found regarding steel for curved pipes with low PCM in thickness and high strength and high toughness as in the present invention.

(発明が解決しようとする問題点) 以上のように、厚肉高強度低pc、曲管の成形には、特
別の配慮を必要としていたのに対し、曲管用銅自体に、
熱間曲げ加工後にも高強度高靭性で均質性の優れる性質
を付与できれば、上述の特別な配慮を必要としなくて済
み、またその性質を組合わせることでより一層高品質の
曲管製造が可能となる。
(Problems to be Solved by the Invention) As described above, special consideration has been required for forming thick-walled, high-strength, low-PC, curved pipes, but the copper itself for curved pipes has
If properties such as high strength, high toughness, and excellent homogeneity can be imparted even after hot bending, the above-mentioned special considerations will not be necessary, and by combining these properties, it will be possible to manufacture bent pipes of even higher quality. becomes.

従って溶接性の優れた厚肉高強度曲管を誘導加熱曲げ゛
成形法で製造する場合、特別なプロセス上の配慮をしな
くても成形後学に安定した強度、靭性を有する曲管を従
供することがごの発明の目的とするところである。
Therefore, when manufacturing thick-walled, high-strength curved pipes with excellent weldability using the induction heating bending/forming method, the curved pipes with stable strength and toughness can be produced after forming without any special process consideration. It is the purpose of your invention to provide.

この発明の具体的な目標は、主に、板厚0.5インチ以
上であって、PCMは0.19%以下、強度はX60グ
レ一ド以上さらにVE−zoが20kgf m以上の厚
肉低PCM高強度高靭性曲管を与えようとするものであ
る。
The specific goals of this invention are mainly to have a plate thickness of 0.5 inches or more, a PCM of 0.19% or less, a strength of X60 grade or more, and a VE-zo of 20 kgf m or more. The purpose is to provide a PCM high-strength, high-toughness curved pipe.

(問題点を解決するための手段) この発明は C: 0.04〜0.12wt%、 Si : 0.2
0〜0.60wt%Mn : 0.80〜0.6Owt
%、 Ni : 0.05〜1.60wt%Mo : 
0.10〜0.25wt%、  V : 0.030〜
0.100 wt%Ti : 0.005〜0.050
 wt%Nb : 0.020〜0.080 wt%C
u : 0.05〜1.60wt% A 1 : 0.010〜0.100wt%N : 0
.0020〜0.0060讐t%を、下記式で与えられ
るpc+(!0.19%以下で含み、残部鉄及び不純物
から成る厚肉高強度低Pl:M曲管。
(Means for solving the problems) This invention has C: 0.04 to 0.12 wt%, Si: 0.2
0~0.60wt%Mn: 0.80~0.6Owt
%, Ni: 0.05-1.60wt%Mo:
0.10~0.25wt%, V: 0.030~
0.100 wt%Ti: 0.005 to 0.050
wt%Nb: 0.020-0.080 wt%C
u: 0.05-1.60wt% A1: 0.010-0.100wt% N: 0
.. A thick-walled, high-strength, low-Pl:M curved pipe containing 0.020 to 0.0060 t%, pc+(!0.19% or less, given by the following formula, and the balance consisting of iron and impurities.

記 ’ PCH ならびに、 C: 0.04〜0.12wt%、 Si : 0.2
0〜0.60讐L%Mn : 0.80〜0.60wt
%、旧: 0.05〜1.60wt%Mo : 0.1
0〜0.25wt%、 V : 0.030〜0.10
0 wt%Ti : 0.005 〜0.050 wt
%Nb : 0.020 〜0.080  wt%Cu
 : 0.05〜1.60wt% A l  : 0.010 〜0.100軛t %N 
: 0.0020〜0.0060wt%を下記式で与え
られるPCM値0.19%以下で含有する組成になる厚
肉鋼管を^c3点温度以上で1100″C以下に加熱し
、該温度で曲げ加工した後、冷却し、550〜650℃
で焼もどしを施すことを特徴とする厚肉高強度低PCM
曲管の製造方法。
PCH and C: 0.04-0.12wt%, Si: 0.2
0~0.60 L%Mn: 0.80~0.60wt
%, old: 0.05-1.60wt%Mo: 0.1
0-0.25wt%, V: 0.030-0.10
0 wt%Ti: 0.005 to 0.050 wt
%Nb: 0.020 ~ 0.080 wt%Cu
: 0.05~1.60wt% Al: 0.010~0.100yoket%N
: A thick-walled steel pipe having a composition containing 0.0020 to 0.0060 wt% with a PCM value of 0.19% or less given by the following formula is heated to a temperature above the 3 point temperature and below 1100''C, and bent at that temperature. After processing, cool to 550-650℃
Thick wall high strength low PCM characterized by tempering
Method for manufacturing bent pipes.

記 cH である。Record cH It is.

この発明では加熱温度の変化によるオーステナイト粒径
変化を少なくする。ここに第1図のように、加熱温度の
上昇に伴うオーステナイト粒成長をできるだけ少なくす
ることで、曲管製造加熱時の鋼管板厚方向でのオーステ
ナイト粒径差が少なくなり、材質均質性に優れるように
なる。
In this invention, changes in austenite grain size due to changes in heating temperature are reduced. As shown in Figure 1, by minimizing the growth of austenite grains as the heating temperature increases, the difference in austenite grain size in the thickness direction of the steel pipe plate during heating for manufacturing bent pipes is reduced, resulting in excellent material homogeneity. It becomes like this.

このため、C+Mn、Cu、Ni、Cr、Nb添加でへ
1点(加熱下限)を下げ、またNb、Ti、ZrとRE
M添加で加熱温度が高くなっても細粒を維持できる成分
系とする。ことが必要である。一方、低PC□の低冷却
速度で強度確保のため、Cの有効利用からNb、M。
Therefore, the addition of C+Mn, Cu, Ni, Cr, and Nb lowers the temperature by one point (lower heating limit), and the addition of Nb, Ti, Zr, and RE
The addition of M creates a component system that can maintain fine grains even when the heating temperature increases. It is necessary. On the other hand, in order to ensure strength at a low cooling rate with a low PC□, Nb and M are used due to the effective use of C.

添加、焼きもどし析出強化からNb、 V 、 Mo、
 Ti添加を考慮することも必要である。
From addition and tempering precipitation strengthening, Nb, V, Mo,
It is also necessary to consider the addition of Ti.

さて従来の技術における問題点として、20mm厚を超
える厚肉鋼管を誘導加熱法で加熱し、曲管加工を施す場
合、板厚方向で材質がバラつくこと、また、冷却速度が
遅くなるため低PCM成分で高強度曲管を製造する事に
困難さが伴っていた。
Now, as a problem with the conventional technology, when a thick-walled steel pipe exceeding 20 mm thick is heated by induction heating and processed into a curved pipe, the material quality varies in the thickness direction, and the cooling rate is slow, resulting in low It has been difficult to manufacture high-strength bent pipes using PCM components.

発明者らは、多数の鋼種について850〜1150℃の
種々の温度に加熱後、800〜400℃間の冷却速度を
2〜b 厚方向位の熱履歴を再現し、材質調査を行った。
The inventors investigated the materials by heating a large number of steel types to various temperatures from 850 to 1150°C, then cooling at a cooling rate of 2 to 400°C between 800 and 400°C to reproduce the thermal history in the thickness direction.

また、焼きもどし温度についても400°C〜700℃
で90分処理し、その影響を調査した。
Also, the tempering temperature is 400°C to 700°C.
The effect was investigated after 90 minutes of treatment.

その結果、^、3点温度以下の二相域加熱では、靭性が
低く、また、材質がバラついてしまうこと、また、加熱
の限界温度は鋼種にもよるが高温加熱によりオーステナ
イト粒の粗大化と添加各元素の固溶量の増加等により強
度が上昇し、靭性が劣化することがわかった。
As a result, heating in the two-phase region below the 3-point temperature results in low toughness and uneven material quality, and although the limiting temperature for heating depends on the steel type, high-temperature heating causes coarsening of austenite grains. It was found that the strength increases and the toughness deteriorates due to an increase in the solid solution amount of each added element.

一例として、C10,08,5i10.25. Mn/
0.45. Nb10.030. Vlo、029. 
A A10.030. Pc1ll=O,16%の鋼に
ついての、加熱温度による材質変化を第2図に示す。加
熱時の保持時間は約10秒であり、冷却速度は15°C
/s、焼きもどし温度は600℃である。
As an example, C10,08,5i10.25. Mn/
0.45. Nb10.030. Vlo, 029.
A A10.030. FIG. 2 shows changes in material properties depending on heating temperature for steel with Pc1ll=O, 16%. The holding time during heating is approximately 10 seconds, and the cooling rate is 15°C.
/s, and the tempering temperature is 600°C.

第2図かられかるように、850〜950℃の加熱温度
範囲で強度・靭性が安定しているが、なお目標とするX
60グレード材とはならないことがわかる。
As shown in Figure 2, the strength and toughness are stable in the heating temperature range of 850 to 950℃, but the target
It can be seen that it is not a 60 grade material.

次に第3図は、PCM値と強度、靭性の関係を示したも
のであるが、PCl3値が0.19%以下(950℃加
熱−1O℃/S冷却−600℃焼きもどし条件)でX6
0グレードを製造するのにはかなり困難を要することが
わかる。
Next, Figure 3 shows the relationship between PCM value, strength, and toughness.
It can be seen that it is quite difficult to produce 0 grade.

高強度化のため、加熱温度をあげた場合、前述のように
材質バラつきが大きくなること、また、溶接部の靭性が
劣化するため単純にあげられないことは言うまでもない
It goes without saying that raising the heating temperature in order to increase the strength will simply increase the material quality variation as described above and deteriorate the toughness of the welded part.

発明者らは、これら多大の実験がら、低PCM化をはか
りつつ高強度化のためのCの有効利用がらMoとNb、
また、高温加熱による強度の大きな上昇を抑える点から
TiとNb、  さらに、焼きもどし時の析出強化の点
からNbとVに着目し適正バランスに成分設計すること
で上記の各課題を克服できるとの知見を得、この発明に
いたったものである。
Through these numerous experiments, the inventors discovered that Mo and Nb could be effectively used to increase strength while reducing PCM.
In addition, we believe that each of the above issues can be overcome by designing the components in an appropriate balance, focusing on Ti and Nb from the perspective of suppressing a large increase in strength due to high-temperature heating, and Nb and V from the perspective of precipitation strengthening during tempering. This knowledge was obtained and led to this invention.

(作 用) まず各成分の限定理由を説明する。(for production) First, the reasons for limiting each component will be explained.

Cは最も簡便に鋼の強度を高めるのに役立つ成分である
が、0.04%未満では所定の強度が得られにくくまた
、製網コストが割高となる一方、0.12%を超えると
焼入れ性が上がって靭性が劣化すると共に溶接性も低下
(PcPI値の上昇)するため0.04〜0.12%の
範囲とする。
C is a component that most easily helps increase the strength of steel, but if it is less than 0.04%, it is difficult to obtain the specified strength and the net making cost becomes relatively high, while if it exceeds 0.12%, it is hard to harden. The content is set in the range of 0.04 to 0.12% because it increases the toughness and deteriorates the weldability (increase in PcPI value).

Siは脱酸作用の利用と焼入れ強化の点から0.20%
以上を必要とするが、0.60%を超えると焼入れ性が
上がって低温靭性が劣化するため0.20−0.60%
の範囲とする。
Si is 0.20% from the point of view of deoxidizing effect and hardening hardening.
However, if it exceeds 0.60%, hardenability increases and low temperature toughness deteriorates, so 0.20-0.60%
The range shall be .

Mnは、所定の強度確保のため0.80%以上が必要で
あるが、0.60%を超えると焼入れ時の靭性劣化が大
きく、さらに溶接性や加工性、低PCM化を害tルノテ
o、ao%〜0.60%の範囲とする。
Mn needs to be 0.80% or more to ensure the specified strength, but if it exceeds 0.60%, toughness will deteriorate significantly during quenching, and it will also harm weldability, workability, and low PCM. , ao% to 0.60%.

Niは、靭性の向上と八。1点の低下から0.05%以
上必要であるが1.60%以上では効果の顕著な差がな
くなり、また、経済性の面でも不利となるため0.05
〜1.60%の範囲とする。
Ni improves toughness. 0.05% or more is required for a decrease of 1 point, but if it exceeds 1.60%, there will be no noticeable difference in the effect, and it will be disadvantageous in terms of economy, so 0.05% or more is necessary.
The range is 1.60%.

Moは、焼入れ11の向上や整粒化効果の点がらo、i
Mo is used in o and i in terms of improvement in hardening 11 and grain size regulating effect.
.

%以上が必要であるが、0.25%以上では靭性劣化が
大きく、また、経済性の点から0.10−0.25%の
範囲とする。この成分は低PCM鋼で所定の強度を確保
すべくとくに重要な元素である。
% or more, but if it is 0.25% or more, the toughness deteriorates significantly, and from the point of view of economic efficiency, it is set in the range of 0.10-0.25%. This component is a particularly important element in order to ensure a predetermined strength in low PCM steel.

■は少量で強化の得られる元素であり、0.030%以
上必要であるが、0.100%を超えると溶接性の低下
を招くので0.030〜0.100%の範囲とする。
(2) is an element that can be strengthened in a small amount, and needs to be present in an amount of 0.030% or more; however, if it exceeds 0.100%, weldability deteriorates, so it should be in the range of 0.030 to 0.100%.

Tiは窒化物となって粒成長を抑制し、さらに、鋼中窒
素を低減することによって靭性を向上させることから0
.005%以上が必要であるが、0.050%を超える
と効果が飽和すると共に多すぎると靭性が劣化すること
よりo、oos〜o、oso%の範囲とする。
Ti becomes a nitride and suppresses grain growth, and further improves toughness by reducing nitrogen in the steel.
.. 0.005% or more is required, but if it exceeds 0.050%, the effect will be saturated, and if it is too much, the toughness will deteriorate, so it is set in the range of o, oos to o, oso%.

Nbは、Nb炭窒化物となって高温加熱時の粒成長を抑
制し、靭性向上をもたらすため0.020%以上が必要
であるが、0.080%を超えると溶接性が低下すると
共に焼入れ性の向上による靭性の劣化を招くので、0.
020〜0.080%の範囲とする。
Nb needs to be 0.020% or more because it becomes Nb carbonitride and suppresses grain growth during high-temperature heating and improves toughness, but if it exceeds 0.080%, weldability decreases and hardening Since the improvement in toughness will lead to a deterioration in toughness,
The range is 0.020% to 0.080%.

Cuは、強度上昇効果とへ1点の低下から0.05%以
上必要であるが、1.60%をこえると効果が飽和する
と共に、溶接性、熱間加工性が低下することより、O,
OS〜1.60%の範囲とする。
Cu is required to be added in an amount of 0.05% or more in order to increase the strength by one point, but if it exceeds 1.60%, the effect will be saturated and weldability and hot workability will decrease. ,
The range is from OS to 1.60%.

Aj2は、脱酸作用があり、0.010%以上が必要で
あるが、0.100%を超えると溶接性、靭性が劣化す
るため0.010〜0.100%の範囲とする。
Aj2 has a deoxidizing effect and needs to be 0.010% or more, but if it exceeds 0.100%, weldability and toughness will deteriorate, so it should be in the range of 0.010 to 0.100%.

Nは、製鋼時に不可避的に混入する元素であり、靭性を
向上させるためには少ない方が好ましく、上限を0.0
060%とする。
N is an element that is unavoidably mixed during steel manufacturing, and in order to improve toughness, it is preferable to have a small amount, and the upper limit is set to 0.0
060%.

次に、PCM値については0.19%を超えてもX60
グレードの強度確保は比較的容易であり特別な配慮も必
要ないが、本発明鋼のようにpc、が0.19%以下で
あるときその有意性が発揮されると共に溶接性靭性向上
もめざましいためこの発明ではPCM値を0.19%以
下とする。
Next, regarding the PCM value, even if it exceeds 0.19%,
Ensuring the strength of the grade is relatively easy and no special consideration is required, but when the pc is 0.19% or less, as in the case of the steel of the present invention, its significance is demonstrated and the weldability toughness is also significantly improved. In this invention, the PCM value is set to 0.19% or less.

すなわち、0.19%以下のPCMではこの発明による
特別な配慮なくしてはX60グレードの高強度、高靭性
化がはかれない。
That is, with PCM of 0.19% or less, high strength and high toughness of the X60 grade cannot be achieved without special consideration according to the present invention.

さらに、加熱温度による材質バラつきについては、発明
鋼は細粒化効果や低成分系であることがら八、温度以上
から1100°Cの加熱範囲で強度、靭性が安定である
。加熱温度が1100°Cを超えると粒粗大化により強
度上昇、靭性低下が余儀なくされる。なお、実プロセス
においては950°C前後の加熱温度が目安となること
が多く、1100℃まで材質が安定であることは操業上
有利な要因となる。
Furthermore, regarding variations in material quality due to heating temperature, the invention steel has a grain refining effect and is a low-component type, and its strength and toughness are stable in the heating range from above the temperature to 1100°C. If the heating temperature exceeds 1100°C, grain coarsening will inevitably lead to an increase in strength and a decrease in toughness. In addition, in actual processes, a heating temperature of around 950°C is often used as a guideline, and the fact that the material is stable up to 1100°C is an advantageous factor for operation.

また、低PCM鋼で強度、特にY、S、 (降伏応力)
を確保するためには焼きもどし処理が必要であり、N 
b + V + Mo + T iによる析出強化を有
効に引出すために550℃〜650℃の温度が最適であ
る。
In addition, the strength of low PCM steel, especially Y, S, (yield stress)
In order to ensure that N
A temperature of 550° C. to 650° C. is optimal in order to effectively bring out precipitation strengthening due to b + V + Mo + Ti.

ここで、550°C未満ではY、S、上昇が少なく、ま
た、靭性向上効果も少ない。一方、650℃をこえると
材料の軟化が生じ、強度が所定の値を満足しなくなる恐
れがあることより、焼きもどし温度として550〜65
0℃とする。
Here, when the temperature is lower than 550°C, the increase in Y and S is small, and the effect of improving toughness is also small. On the other hand, if the temperature exceeds 650℃, the material will soften and the strength may not meet the specified value.
The temperature shall be 0°C.

(実施例) 表1に示す化学成分を含有する比較鋼1〜6゜並びに発
明鋼7〜10を真空溶解によりそれぞれ100kg鋼塊
に溶製し、110mm厚のスラブ鋼片を切出し、次いで
1150°Cに加熱後、制御圧延により730℃の仕上
げ温度で15mm厚の圧延鋼板とした。
(Example) Comparative steels 1 to 6° and invention steels 7 to 10 containing the chemical components shown in Table 1 were melted into 100 kg steel ingots by vacuum melting, cut into slab steel pieces with a thickness of 110 mm, and then 115° After heating to C, a rolled steel plate with a thickness of 15 mm was obtained by controlled rolling at a finishing temperature of 730°C.

この圧延鋼板を供試材として950℃、1100℃に加
熱後、直ちに800〜400℃の冷却速度が3℃/s+
10℃となる冷却を施した。これは38mm厚鋼管を外
面冷却した時の管内表面と外表面の冷却速度に相当する
冷却である。
After heating this rolled steel plate as a test material to 950°C and 1100°C, the cooling rate from 800 to 400°C was 3°C/s+.
Cooling was performed to 10°C. This cooling rate corresponds to the cooling rate of the inner and outer surfaces of a 38 mm thick steel pipe when the outer surface is cooled.

その後500℃、600℃で40分間の焼きもどし処理
を行った。この誘導加熱曲げ成形を想定した熱サイクル
付与の鋼板から、丸棒引張試験片とシャルピー衝撃試験
片を採取し材質比較を行った。
Thereafter, tempering treatment was performed at 500°C and 600°C for 40 minutes. A round bar tensile test piece and a Charpy impact test piece were taken from the steel plate subjected to heat cycles assuming induction heating bending, and the materials were compared.

この確性試験結果を表2に示す。The results of this accuracy test are shown in Table 2.

比較鋼1は、clが低すぎるため所定の強度が確保でき
ない。比較鋼2.3,4.6はこの発明の成分系でない
ため950℃と1100℃との双方の加熱温度で強度、
靭性の変化が大きくなっていることがわかる。さらに、
比較鋼5は、この発明の成分範囲ではあるがPc5(!
を高めにしたものであるため、発明鋼に比べて靭性値が
低く、また、PCMが高いため溶接性も低下している。
Comparative Steel 1 has a too low cl, so it is not possible to secure the desired strength. Comparative steels 2.3 and 4.6 do not have the compositional system of this invention, so they have strength and strength at both heating temperatures of 950°C and 1100°C.
It can be seen that the change in toughness is large. moreover,
Comparative steel 5 is within the composition range of this invention, but has Pc5 (!
Since the steel has a higher toughness, its toughness value is lower than that of the invention steel, and its weldability is also lower due to its high PCM.

ただし各熱処理間による材質変動は他の比較鋼に比べて
小さく、この発明による成分系の特色の一部があられれ
ている。
However, the material quality variation between each heat treatment is smaller than that of other comparative steels, and some of the characteristics of the composition system according to the present invention are lost.

これらに対して発明鋼7〜10は、添加合金の元素量の
変動に拘らずいずれも×60グレードで高溶接性、高靭
性を、各熱処理後に具備していることがわかる。なお、
500℃焼きもどしではY、S、が所定の強度(42,
7kgf/n+m”)ギリギリの値となることがあり、
焼きもどし温度は550℃〜650℃とすることの必要
性が明らかである。
On the other hand, it can be seen that invention steels 7 to 10 all have high weldability and high toughness in the x60 grade after each heat treatment, regardless of the variation in the element content of the added alloy. In addition,
In tempering at 500℃, Y and S have the specified strength (42,
7kgf/n+m”) may be at the very limit,
It is clear that the tempering temperature should be between 550°C and 650°C.

さらに、PcM値がほぼ同等な比較鋼4と発明鋼9を用
いて曲管製造後材質調査を行った。
Furthermore, a material investigation was conducted after the bent pipe was manufactured using Comparative Steel 4 and Inventive Steel 9, which have approximately the same PcM value.

画調とも通常の熱間圧延法により、0.5インチ厚鋼板
とし、υOE製造法にて外直径22インチ長さ6mのU
OE鋼管をつくった。この鋼管を誘導加熱法で加熱し曲
げ加工して曲管を製造した。なお、この加熱温度はパイ
ロメータで測温し、管外表面で1100℃とした。
A 0.5-inch thick steel plate was made using the normal hot rolling method, and a U with an outer diameter of 22 inches and a length of 6 m was made using the υOE manufacturing method.
We made OE steel pipes. This steel pipe was heated using an induction heating method and bent to produce a bent pipe. The heating temperature was measured using a pyrometer and was set at 1100° C. on the outer surface of the tube.

その後、630℃で焼きもどし処理を行ったのち、曲管
の各部位から試験片を採取し材料試験を行った。その結
果を表3に示す。
After that, a tempering treatment was performed at 630° C., and then test pieces were taken from each part of the bent pipe and a material test was conducted. The results are shown in Table 3.

表3 比較鋼に比べ、発明鋼は各部位による材質変動が少なく
高強度高靭性曲管となることがわかる。
Table 3 It can be seen that compared to the comparative steel, the invented steel has less variation in material quality depending on each part, resulting in a high-strength, high-toughness curved pipe.

表3の試験片採取位置A−CとD−Fとで、曲げ加工の
外側と内側を区別し、A、Fは曲管の外表面、C,Dが
同じく内表面、そしてB、Eが肉厚中心からの採取試験
片を示している。
The test piece sampling positions A-C and D-F in Table 3 distinguish between the outside and inside of the bending process, with A and F being the outside surface of the bent pipe, C and D being the inside surface, and B and E being the inside surface. A test piece taken from the center of the wall thickness is shown.

(発明の効果) この発明の厚肉高強度#、pcM曲管は熱間曲げ加工で
特別の配慮を必要とせずして曲げ加工後の材料の均質性
に優れまた溶接性も良好で実地溶接の実施工時における
メリットも大きい。
(Effects of the invention) The thick-walled, high-strength #, pcM curved pipe of the present invention does not require special consideration during hot bending, has excellent material homogeneity after bending, and has good weldability, and can be welded in practice. It also has great benefits during construction.

またこの発明゛の方法は厳密な加熱温度制御、温度ばら
つきに対する配慮が不要なため、作業性の向上、生産性
の向上がもたらされる。
Furthermore, since the method of the present invention does not require strict heating temperature control or consideration for temperature variations, it improves workability and productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はオーステナイト粒径と加熱温度線図、第2図は
加熱温度による材質変化線図、第3図は誘導加熱曲げ想
定実験によるPCMと材質の関係グラフである。 第2図
Fig. 1 is a graph of austenite grain size and heating temperature, Fig. 2 is a graph of material change depending on heating temperature, and Fig. 3 is a graph of the relationship between PCM and material based on an induction heating bending simulation experiment. Figure 2

Claims (1)

【特許請求の範囲】 1、C:0.04〜0.12wt%、Si:0.20〜
0.60wt%Mn:0.80〜1.60wt%、Ni
:0.05〜0.50wt%Mo:0.10〜0.25
wt%、V:0.030〜0.100wt%Ti:0.
005〜0.050wt% Nb:0.020〜0.080wt% Cu:0.05〜0.50wt% Al:0.010〜0.100wt%及び N :0.0020〜0.0060wt% を、下記式で与えられるP_C_M値0.19%以下で
含み、残部鉄及び不純物から成る厚肉高強度低P_C_
M曲管。 記 P_C_M =C+(Si/30)+(1/20)(Mn+Cu+C
r)+(Ni/60)+(MO/15)+(V/10)
+5B(%)2、C:0.04〜0.12wt%、Si
:0.20〜0.60wt%Mn:0.80〜1.60
wt%、Ni:0.05〜0.50wt%Mo:0.1
0〜0.25wt%、V:0.030〜0.100wt
%Ti:0.005〜0.050wt% Nb:0.020〜0.080wt% Cu:0.05〜0.50wt% Al:0.010〜0.100wt%及び N :0.0020〜0.0060wt% を下記式で与えられるP_C_M値0.19%以下で含
有する組成になる厚肉鋼管をA_C_3点温度以上で1
100℃以下に加熱し、該温度で曲げ加工した後、冷却
し、550〜650℃で焼もどしを施すことを特徴とす
る厚肉高強度低P_C_M曲管の製造方法。 記 P_C_M =C+(Si/30)+(1/20)(Mn+Cu+C
r)+(Ni/60)+(Mo/15)+(V/10)
+5B(%)
[Claims] 1. C: 0.04~0.12wt%, Si: 0.20~
0.60wt%Mn: 0.80-1.60wt%, Ni
:0.05~0.50wt%Mo:0.10~0.25
wt%, V: 0.030 to 0.100 wt% Ti: 0.
005-0.050wt% Nb: 0.020-0.080wt% Cu: 0.05-0.50wt% Al: 0.010-0.100wt% and N: 0.0020-0.0060wt% as follows. Thick-walled, high-strength, low-P_C_ containing the P_C_M value given by the formula 0.19% or less, with the balance consisting of iron and impurities.
M curved pipe. P_C_M =C+(Si/30)+(1/20)(Mn+Cu+C
r) + (Ni/60) + (MO/15) + (V/10)
+5B(%)2, C: 0.04-0.12wt%, Si
:0.20~0.60wt%Mn:0.80~1.60
wt%, Ni: 0.05-0.50 wt% Mo: 0.1
0-0.25wt%, V: 0.030-0.100wt
%Ti: 0.005-0.050wt% Nb: 0.020-0.080wt% Cu: 0.05-0.50wt% Al: 0.010-0.100wt% and N: 0.0020-0. 0060wt% with a P_C_M value of 0.19% or less given by the following formula at a temperature of A_C_3 points or higher.
A method for manufacturing a thick-walled, high-strength, low-P_C_M curved pipe, which comprises heating to 100°C or lower, bending at that temperature, cooling, and tempering at 550 to 650°C. P_C_M =C+(Si/30)+(1/20)(Mn+Cu+C
r) + (Ni/60) + (Mo/15) + (V/10)
+5B (%)
JP29075585A 1985-12-25 1985-12-25 Thick-walled, high-strength, low-pcm bended steel pipe and its production Granted JPS62151545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29075585A JPS62151545A (en) 1985-12-25 1985-12-25 Thick-walled, high-strength, low-pcm bended steel pipe and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29075585A JPS62151545A (en) 1985-12-25 1985-12-25 Thick-walled, high-strength, low-pcm bended steel pipe and its production

Publications (2)

Publication Number Publication Date
JPS62151545A true JPS62151545A (en) 1987-07-06
JPH0567699B2 JPH0567699B2 (en) 1993-09-27

Family

ID=17760112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29075585A Granted JPS62151545A (en) 1985-12-25 1985-12-25 Thick-walled, high-strength, low-pcm bended steel pipe and its production

Country Status (1)

Country Link
JP (1) JPS62151545A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993016823A1 (en) * 1992-02-21 1993-09-02 Nkk Corporation Method of manufacturing bent pipe of high tensile steel
JPH0790375A (en) * 1993-09-28 1995-04-04 Sumitomo Metal Ind Ltd Production of thick bend steel pipe having high strength and high toughness
JP2006307245A (en) * 2005-04-26 2006-11-09 Jfe Steel Kk METHOD FOR HEAT-TREATING SEAMLESS STEEL PIPE MADE FROM Ti-ADDED LOW CARBON STEEL
WO2008007737A1 (en) 2006-07-13 2008-01-17 Sumitomo Metal Industries, Ltd. Bend pipe and process for producing the same
JP2008223134A (en) * 2007-02-13 2008-09-25 Nippon Steel Corp High strength electric resistance welded line pipe
JP2011513584A (en) * 2008-02-28 2011-04-28 ファウ・ウント・エム・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング High strength low alloy steel for seamless pipes with excellent weldability and corrosion resistance
CN103388110A (en) * 2013-07-18 2013-11-13 广东韶钢松山股份有限公司 A method for improving a thick gauge X60 pipeline steel block hammer performance
WO2018216638A1 (en) * 2017-05-22 2018-11-29 新日鐵住金株式会社 Bent steel pipe and method for producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232225A (en) * 1983-06-13 1984-12-27 Nippon Kokan Kk <Nkk> Manufacture of bent pipe with high tension and toughness

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232225A (en) * 1983-06-13 1984-12-27 Nippon Kokan Kk <Nkk> Manufacture of bent pipe with high tension and toughness

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993016823A1 (en) * 1992-02-21 1993-09-02 Nkk Corporation Method of manufacturing bent pipe of high tensile steel
JPH0790375A (en) * 1993-09-28 1995-04-04 Sumitomo Metal Ind Ltd Production of thick bend steel pipe having high strength and high toughness
JP2006307245A (en) * 2005-04-26 2006-11-09 Jfe Steel Kk METHOD FOR HEAT-TREATING SEAMLESS STEEL PIPE MADE FROM Ti-ADDED LOW CARBON STEEL
NO341657B1 (en) * 2006-07-13 2017-12-18 Sumitomo Metal Ind Method of making hot bending tubes
EP2045348A1 (en) * 2006-07-13 2009-04-08 Sumitomo Metal Industries Limited Bend pipe and process for producing the same
EP2045348A4 (en) * 2006-07-13 2011-05-11 Sumitomo Metal Ind Bend pipe and process for producing the same
WO2008007737A1 (en) 2006-07-13 2008-01-17 Sumitomo Metal Industries, Ltd. Bend pipe and process for producing the same
JP2008223134A (en) * 2007-02-13 2008-09-25 Nippon Steel Corp High strength electric resistance welded line pipe
JP2011513584A (en) * 2008-02-28 2011-04-28 ファウ・ウント・エム・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング High strength low alloy steel for seamless pipes with excellent weldability and corrosion resistance
CN103388110A (en) * 2013-07-18 2013-11-13 广东韶钢松山股份有限公司 A method for improving a thick gauge X60 pipeline steel block hammer performance
WO2018216638A1 (en) * 2017-05-22 2018-11-29 新日鐵住金株式会社 Bent steel pipe and method for producing same
CN110662853A (en) * 2017-05-22 2020-01-07 日本制铁株式会社 Steel bent pipe and method for manufacturing same
CN110662853B (en) * 2017-05-22 2022-03-18 日本制铁株式会社 Steel bent pipe and method for manufacturing same

Also Published As

Publication number Publication date
JPH0567699B2 (en) 1993-09-27

Similar Documents

Publication Publication Date Title
US9126283B2 (en) Electric resistance welded oil country tubular goods and manufacturing method of electric resistance welded oil country tubular goods
JP2010514928A (en) Ferritic stainless steel with excellent corrosion resistance and stretch formability and method for producing the same
JP5692305B2 (en) Thick steel plate with excellent heat input welding characteristics and material homogeneity, and its manufacturing method
JPS62151545A (en) Thick-walled, high-strength, low-pcm bended steel pipe and its production
JP2009191330A (en) Electric resistance steel tube
JPS626730B2 (en)
JP2013129885A (en) Method of producing high-strength thick steel plate excellent in brittle crack propagation arrest property
JP6684905B2 (en) High-strength cold-rolled steel sheet excellent in shear workability and method for producing the same
KR102252106B1 (en) Manufacturing method of seismic-resistant steel deforemed bar having yield strength of 620mpa grade or more and seismic-resistant steel deforemed bar having yield strength of 620mpa grade or more using the same
WO2011043287A1 (en) Steel for linepipe having good strength and malleability, and method for producing the same
JP7229827B2 (en) Manufacturing method of high carbon steel sheet
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JP4026443B2 (en) High strength and high toughness steel pipe material excellent in weldability and manufacturing method thereof
JP4265583B2 (en) Cold-rolled steel sheet having excellent toughness after quenching and method for producing the same
JPH07316744A (en) Martensitic stainless steel wire rod excellent in cold workability and its production
JP2005146354A (en) Reinforcing parts for collision with high energy absorption when bend-deformed at high speed
JPH0426719A (en) Production of 13cr stainless steel having high strength and high ductility
JPH0366367B2 (en)
JPH01188652A (en) Steel for welding having excellent low temperature toughness and manufacture thereof
JP2001205351A (en) Manufacturing method for steel bent tube
JP3428286B2 (en) Manufacturing method of thick steel pipe round column
JPH03162521A (en) Manufacture of high tension steel sheet having superior toughness at low temperature
JPS5980718A (en) Manufacture of steel material for low temperature use with high toughness
JPH05171273A (en) Production of high mn nonmagnetic steel excellent in local deformability
JPS61127849A (en) Steel for pipe for working to bent pipe

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees