JPS63317218A - Production of high frequency bending pipe of low hardness as it is worked - Google Patents
Production of high frequency bending pipe of low hardness as it is workedInfo
- Publication number
- JPS63317218A JPS63317218A JP15291487A JP15291487A JPS63317218A JP S63317218 A JPS63317218 A JP S63317218A JP 15291487 A JP15291487 A JP 15291487A JP 15291487 A JP15291487 A JP 15291487A JP S63317218 A JPS63317218 A JP S63317218A
- Authority
- JP
- Japan
- Prior art keywords
- bending
- pipe
- bent
- low hardness
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 238000005452 bending Methods 0.000 title abstract description 50
- 238000001816 cooling Methods 0.000 claims abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 8
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 6
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052782 aluminium Inorganic materials 0.000 claims abstract 4
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract 4
- 229910052710 silicon Inorganic materials 0.000 claims abstract 4
- 238000000034 method Methods 0.000 claims description 20
- 239000012535 impurity Substances 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 abstract description 26
- 229910000975 Carbon steel Inorganic materials 0.000 abstract description 9
- 239000010962 carbon steel Substances 0.000 abstract description 9
- 229910000831 Steel Inorganic materials 0.000 description 31
- 239000010959 steel Substances 0.000 description 31
- 230000000694 effects Effects 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910000926 A-3 tool steel Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Landscapes
- Bending Of Plates, Rods, And Pipes (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
【発明の詳細な説明】
(a業上の利用分野)
本発明は発電・化学プラント用の配管系に使用する高周
波曲げ管の製造方法に係わるものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing high-frequency bent pipes used in piping systems for power generation and chemical plants.
(従来の技術)
従来、発電・化学プラント用に用いられる1、0〜2.
OX (管の外径)の小曲げ半径の炭素鋼曲げ管として
は日本工業規格JIS B 2311゜2312等に規
定されている溶接式管継手(以下、エルボと云う)が用
いられている。エルボの加工は日本鉄鋼協会編第3版鉄
鋼便覧VI P、179に掲載されている通常ハンブル
ク加工として知られる高温での拡管曲げ加工で、材質的
には素管と曲げ管とはほぼ同等の性質を有する。しかし
ながら、その製品形状は180度迄0曲げ角度を有する
曲がり部のみの製品であることから、配管施工時おいて
溶接工数が多くなること、また、これにともない溶接部
の検査工数も増加し、工期が長くなり工事費も高くなる
という問題がある。(Prior art) Conventionally, 1, 0 to 2.
As a carbon steel bent pipe having a small bending radius of OX (outer diameter of the pipe), welded pipe joints (hereinafter referred to as elbows) specified in Japanese Industrial Standards JIS B 2311°2312, etc. are used. The processing of the elbow is a high-temperature pipe expansion bending process known as Hamburg processing, which is published in the 3rd edition Steel Handbook VI P, 179, compiled by the Japan Iron and Steel Institute.In terms of materials, the raw pipe and the bent pipe are almost the same. have a property. However, since the product shape is only a bent part with a 0 bend angle up to 180 degrees, the number of welding steps increases during piping construction, and the number of inspection steps for welded parts also increases. The problem is that the construction period becomes longer and the construction cost becomes higher.
そこで、溶接部を少なくする、即ち、曲げ部の両端に直
管部を有する曲げ管(以下、エルボレスと云う)が要望
されている。Therefore, there is a demand for a bent pipe (hereinafter referred to as "elbowless") with fewer welded parts, that is, a bent pipe having straight pipe parts at both ends of the bent part.
エルボレスの製造法として、ひとつは、冷間曲げがある
が、小曲げ半径のエルボレスを得ようとすると曲がり部
の断面形状寸法公差の内、偏平率の寸法公差を満足しな
いため実用に適さないものとなる。One method for manufacturing elbow braces is cold bending, but when trying to obtain an elbow brace with a small bending radius, it is not suitable for practical use because it does not satisfy the dimensional tolerance of the aspect ratio among the cross-sectional shape and dimensional tolerances of the bent part. becomes.
もうひとつは、例えば特開昭53−135870号、特
開昭53−135871号公報で知られる高周波曲げ加
工がある。この加工方法では、曲げ半径が3×(管の外
径)超の場合には強制空冷により加熱曲げ加工域をせま
くすることで座屈することなく加工できるので、曲がり
部の材質的な問題は生じない、しかしながら、要望され
るような1.0〜3.OX (管の外径)の小曲げ半径
の場合には、座屈防止のため更に加熱曲げ加工域を狭め
る強制冷却が必要になる。そのために曲げ加工部の外表
面層(表面下1〜2mmまで)の冷却速度が速くなり、
曲げ加工部の外表面層の硬化が避けられない。通常、炭
素鋼鋼管の配管溶接において、破壊に対する安全性の見
地から実用に供しつる最高硬さとしてt(v248以下
が望まれるが、前述の成分範囲では高周波曲げ加工のま
まではこの硬さ規定を満足できないという問題がある。Another method is high-frequency bending known from, for example, Japanese Patent Laid-Open No. 53-135870 and Japanese Patent Laid-Open No. 53-135871. With this processing method, if the bending radius exceeds 3 x (outer diameter of the pipe), the heated bending area is narrowed by forced air cooling, which allows processing without buckling, so there are no problems with the material of the bent part. No, however, 1.0-3. In the case of a small bending radius of OX (outer diameter of the pipe), forced cooling is required to further narrow the heated bending area to prevent buckling. Therefore, the cooling rate of the outer surface layer of the bent part (up to 1 to 2 mm below the surface) becomes faster.
Hardening of the outer surface layer of the bent portion is unavoidable. Normally, in pipe welding of carbon steel pipes, it is desired that the maximum hardness for practical use is t (v248 or less) from the viewpoint of safety against fracture. I have a problem with not being satisfied.
この問題の解決法として、ひとつに軟化焼鈍が有効であ
るが、エルボレスの形状からして大型炉が必要でかつ生
産性が低くコストが高いと云う問題がある。一方、本出
願人らが先に出願した特願昭62−7862号で示すよ
うに、炭素鋼においてはC◆Mn/6≦0.339gを
満足する炭素鋼を素管とし、素管の外表面が850〜9
50℃になるまで加熱し、水冷をしながら曲げ加工する
ことにより高周波曲げ加工のままで低硬さのエルボレス
を得る方法がある。しかしながら、この方法においても
、素管の肉厚が大きい場合には管外表面の温度を950
℃の上限の温度まで加熱しても管内表面の温度が低く曲
げ加工後の組織の安定化が図れないし、組織の安定化を
図ろうとすれば管外表面の温度が950℃を越えてしま
い曲げ加工後の管外表面の硬さが高くなるという欠点が
あることから、厚肉管のエルボレスは安定した品質を得
ることは困難である。One effective solution to this problem is softening annealing, but it requires a large furnace due to the shape of the elbow, and has low productivity and high cost. On the other hand, as shown in Japanese Patent Application No. 62-7862 previously filed by the present applicants, carbon steel that satisfies C◆Mn/6≦0.339g is used as the raw tube, and Surface is 850-9
There is a method of heating the material to 50° C. and bending it while cooling with water to obtain a low-hardness elbow brace while still undergoing high-frequency bending. However, even with this method, if the wall thickness of the raw pipe is large, the temperature of the outer surface of the pipe can be reduced to 950°C.
Even if the tube is heated to the upper limit of 950°C, the temperature on the inner surface of the tube is too low to stabilize the structure after bending, and if an attempt is made to stabilize the structure, the temperature on the outer surface of the tube will exceed 950°C, making it impossible to bend the tube. Since the hardness of the outer surface of the pipe increases after processing, it is difficult to obtain stable quality from thick-walled elbow braces.
(発明が解決しようとする問題点)
即ち、本発明はかかる従来の欠点を克服したもので、^
STM^106Bクラス程度の機械的性質を有する厚肉
鋼管から、高周波曲げ加工により小曲げ半径で、かつ、
加工のままでHv248以下の安価なエルボレスの製造
方法の提供を目的とするものである。(Problems to be solved by the invention) That is, the present invention overcomes these conventional drawbacks.
From thick-walled steel pipes with mechanical properties comparable to STM^106B class, high-frequency bending allows for small bending radius and
The object of the present invention is to provide an inexpensive method for manufacturing an elbow brace that has a Hv of 248 or less in the as-processed state.
(問題点を解決するための手段)
本発明者等は外表面層の硬度向上に及ぼす各種成分の影
響および高周波曲げ加工条件の影響を調査した結果、素
管の外表面温度が950℃超1050℃以下の加熱温度
においても、本発明鋼管は第1図に示すように、式C+
Mn/6+ (Cr+Mo+V) 15◆(Ni+Cu
)/15 (以下C当量という)によって与えられる
C当量と曲げ加工後の最大硬さと良い相関を示すという
知見を得た。(Means for Solving the Problems) The present inventors investigated the effects of various components and high-frequency bending conditions on improving the hardness of the outer surface layer, and found that the outer surface temperature of the raw pipe exceeded 950°C and 1050°C. Even at heating temperatures below ℃, the steel pipe of the present invention has the formula C+ as shown in FIG.
Mn/6+ (Cr+Mo+V) 15◆(Ni+Cu
)/15 (hereinafter referred to as C equivalent) and the maximum hardness after bending was found to show a good correlation.
本発明は、上記の知見を基にして成されたもので、即ち
、その要旨は、
(1) 曲率半径が管外径の3倍以下の高周波曲げ管
の製造方法において、
重量%で、
C0.05〜0.309g
Si 0.10〜0.50k
Mn 0.30〜1.50%
P ≦0.03!k
S ≦0.03k
A! 0.005〜0.05零
N ≦0.015に
残部はFeおよび不可避不純物からなり、C+Mn/6
+ (Cr+Mo+V)15+ (Ni+Cu)15≦
0.38% を満足する炭素鋼を素管とし、素管の外表
面が850〜1050℃になるまで加熱し、水冷をしな
がら曲げ加工することを特徴とする加工のままで低硬さ
の高周波曲げ管の製造方法。The present invention has been made based on the above knowledge, and the gist thereof is as follows: (1) A method for manufacturing a high-frequency bent pipe whose radius of curvature is three times or less the outside diameter of the pipe, in which: in weight %, C0 .05~0.309g Si 0.10~0.50k Mn 0.30~1.50% P≦0.03! k S ≦0.03k A! 0.005 to 0.05 zero N ≦ 0.015, the remainder consists of Fe and unavoidable impurities, C + Mn/6
+ (Cr+Mo+V)15+ (Ni+Cu)15≦
Carbon steel that satisfies 0.38% is used as a raw tube, heated until the outer surface of the raw tube reaches 850 to 1050℃, and then bent while cooling with water. A method for manufacturing high-frequency bent pipes.
(2) 曲率半径が管外径の3倍以下の高周波曲げ管
の製造方法において、
重量%で、
G 0.05〜0.30%
St 0.10〜0.50k
Mn 0.30〜1.50!k
P ≦0.03亀
S ≦0.03零
^交 0.005〜0.05k
N ≦0.0154k
かつ、
Cr ≦0.50k
Nl ≦0.50零
MO≦0.50零
V ≦0.10k
Ti ≦0.05k
Nb ≦0.05零
B ≦0.003k
Cu ≦0.50零
Zr ≦0.05零
Ca ≦0.005%F
のうちの一種もしくは二種以上、
残部はFeおよび不可避不純物からなり、C+Mn/6
+ (Cr+Mo+V) 15十(N i+Cu) 1
5≦0.389gを満足する炭素鋼を素管とし、素管の
外表面が850〜1050℃になるまで加熱し、水冷を
しながら曲げ加工することを特徴とする加工のままで低
硬さの高周波曲げ管の製造方法にある。(2) In a method for manufacturing a high-frequency bent pipe whose radius of curvature is three times or less the outside diameter of the pipe, in weight %, G 0.05-0.30% St 0.10-0.50k Mn 0.30-1. 50! k P ≦ 0.03 S ≦ 0.03 zero^cross 0.005 to 0.05 k N ≦ 0.0154 k and Cr ≦ 0.50 k Nl ≦ 0.50 zero MO ≦ 0.50 zero V ≦ 0. 10k Ti ≦0.05k Nb ≦0.050B ≦0.003k Cu ≦0.500Zr ≦0.050Ca ≦0.005%F One or more of the following, the remainder being Fe and unavoidable Consisting of impurities, C+Mn/6
+ (Cr+Mo+V) 150 (N i+Cu) 1
Carbon steel that satisfies 5≦0.389g is used as a raw tube, heated until the outer surface of the raw tube reaches 850 to 1050℃, and then bent while cooling with water. In the manufacturing method of high frequency bent pipe.
なお本発明では曲げ管の素管として用いている炭素am
管は継目無鋼管が好適であるが、電縫鋼管、uO鋼管等
の適用も可能である。In addition, in the present invention, the carbon am used as the raw pipe of the bent pipe
The pipe is preferably a seamless steel pipe, but electric resistance welded steel pipes, uO steel pipes, etc. can also be used.
(作 用)
第2図は本発明曲げ加工法の実施に使用する管曲げ装置
の一例を示すもので、1は曲げ加工すべき鋼管、2は該
鋼管を支持案内する案内ローラー、3は環状で前記鋼管
1をその外周から局部的に狭幅に加熱し冷却タンクを有
する高周波誘導子からなる加熱装置、4は先端部にクラ
ンプ5を備えた回転自在の曲げアーム、6は管端部支持
台、7の矢印は3の加熱装置からスプレーされる冷却水
、斜線部の8は加熱加工域である。装置はクランプ5に
鋼管1の先端部を緊締し、鋼管1を加熱装置3により局
部的に高温加熱すると共に適宜手段により矢印方向に推
進させることにより鋼管1を曲げ加工できるようになっ
ている。(Function) Fig. 2 shows an example of a pipe bending device used to carry out the bending method of the present invention, in which 1 is a steel pipe to be bent, 2 is a guide roller that supports and guides the steel pipe, and 3 is an annular pipe. , a heating device consisting of a high-frequency inductor that locally heats the steel pipe 1 from its outer periphery in a narrow width and has a cooling tank; 4 is a rotatable bending arm equipped with a clamp 5 at the tip; 6 is a tube end support The arrow on the table 7 is the cooling water sprayed from the heating device 3, and the shaded area 8 is the heating processing area. The apparatus is capable of bending the steel pipe 1 by tightening the distal end of the steel pipe 1 with a clamp 5, heating the steel pipe 1 locally at a high temperature with a heating device 3, and propelling the pipe in the direction of the arrow with an appropriate means.
以下に本発明の限定理由について説明する。The reasons for the limitations of the present invention will be explained below.
まず曲げ加工条件であるが、通常の曲げ加工条件におい
ては、高周波加熱コイルで加熱する場合に加熱曲げ加工
域を狭くするために、できるだけ幅の狭いコイルを使用
する。そのために、肉厚全体の均一加熱は難しく外表面
に比べて内表面の温度は低くなる。管の肉厚が12.5
mm〜50.4m+++になると、組織の安定化を図る
ために、外表面の加熱温度範囲は950〜1050℃で
操業する必要がある。即ち、最低加熱温度は内表面の加
熱温度をAC3以上とするためである。管の肉厚が12
.5mm未満であれば外表面の加熱温度範囲は850〜
950℃で操業できる。First, regarding bending conditions, under normal bending conditions, when heating with a high-frequency heating coil, a coil as narrow as possible is used in order to narrow the heating bending area. Therefore, it is difficult to uniformly heat the entire wall thickness, and the temperature of the inner surface is lower than that of the outer surface. The wall thickness of the tube is 12.5
mm to 50.4 m+++, the heating temperature range of the outer surface needs to be 950 to 1050° C. in order to stabilize the structure. That is, the minimum heating temperature is to set the heating temperature of the inner surface to AC3 or higher. The wall thickness of the tube is 12
.. If it is less than 5mm, the heating temperature range of the outer surface is 850~
Can operate at 950°C.
曲げ半径の小さい高周波曲げ管を製造するときに引張り
加工を受ける曲げ部の肉厚が減少するために強制的に十
分な軸方向圧縮力を負荷することが必要になる。このと
きに加熱加工幅が広くなると、曲げ加工開始後内側にし
わが発生し、更には、座屈をおこし加工不能になる。When manufacturing a high-frequency bent pipe with a small bending radius, it is necessary to forcibly apply a sufficient axial compressive force to reduce the wall thickness of the bent portion subjected to tensile processing. At this time, if the width of the heating process becomes wide, wrinkles will occur on the inside after the bending process starts, and furthermore, buckling will occur, making it impossible to process.
従って、できるだけ加熱加工幅を狭めるために加熱加工
直後に強制空冷よりは冷却効果のあるスプレー水冷を行
い、この水冷により水冷域の変形抵抗を加熱加工域の変
形抵抗よりも大幅に大きくして、上記諸問題を解決しよ
うとするものである。このスプレー水冷は従来からの焼
きいれを目的とした強制水冷よりは冷却速度の遅いもの
である。Therefore, in order to narrow the heating processing width as much as possible, spray water cooling, which has a cooling effect rather than forced air cooling, is performed immediately after heating processing, and this water cooling makes the deformation resistance in the water cooling area much larger than the deformation resistance in the heating processing area. This is an attempt to solve the above problems. This spray water cooling has a slower cooling rate than the conventional forced water cooling for the purpose of hardening.
次に本発明に使用する素管の成分の限定理由について述
べる。Next, the reason for limiting the components of the raw pipe used in the present invention will be described.
Cは鋼管の強度を確保する上で必要な元素でありその機
能を発揮するに必要な量0.05零以上である。しかし
、Cの含有量が0.30%を超えると鋼管の溶接作業性
を著しく損ねる上曲げ加工後の硬さが著しく高くなるの
で上限を0.30にとした。C is an element necessary to ensure the strength of the steel pipe, and the amount necessary to exhibit its function is 0.05 zero or more. However, if the C content exceeds 0.30%, the welding workability of the steel pipe will be significantly impaired and the hardness after top bending will become significantly high, so the upper limit was set at 0.30.
Stは脱酸元素として使用される外高温強度確保にも有
効な元素であり、少なくとも脱酸機能を発揮するために
はo、to%以上必要である。しかし、多量の含有は高
周波曲げ加工性を損なうので上限をQ、50%とした。St is an element that is used as a deoxidizing element and is also effective in securing external high temperature strength, and in order to exhibit at least the deoxidizing function, it is necessary to have an amount of o, to % or more. However, since a large amount of content impairs high-frequency bending property, the upper limit was set to Q, 50%.
MnはCについで有効な強化元素でありその機能を発揮
するに必要な量は0.3ON以上である。Mn is the most effective reinforcing element next to C, and the amount required to exhibit its function is 0.3ON or more.
しかし、過度の添加は曲げ加工後の最高硬さを高める上
溶接作業性をも損なうのでその上限を1.50亀に規制
した。However, excessive addition increases the maximum hardness after bending and impairs welding workability, so the upper limit was regulated to 1.50 mm.
P、Sは不純物として混入する元素であるが、高温曲げ
加工時の割れ発生防止のため、各々の上限を0.03%
以下に規制した。P and S are elements that are mixed as impurities, but the upper limit of each is set at 0.03% to prevent cracking during high-temperature bending.
It is regulated as below.
^! は細粒化元素としても有効な元素であり、この添
加によって、C,51およびMnの上限含有量の拡大を
図ることができた。この機能を発揮するためにはo、o
os零以上の含有を必要とするが、多量の含有は鋼管の
靭性を損なうので0.050零とした。^! is an effective element as a grain refining element, and by its addition, it was possible to increase the upper limit content of C, 51, and Mn. In order to perform this function, o, o
The content of os is required to be 0.050 or more, but since a large amount of content impairs the toughness of the steel pipe, it is set to 0.050.
Nは溶接性に支障を生じない範囲のQ、QISkを上限
とした。The upper limit of N was set at Q and QISk within a range that did not cause any problem in weldability.
以上の基本成分に加えて選択使用成分についても以下の
規制を設定した。In addition to the above basic ingredients, the following regulations have been established for selectively used ingredients.
Nb、TL、Zrはともに結晶粒微細化効果を有する元
素であるが、その効果の飽和しない各々の添加量0.0
5%を上限とした。Nb, TL, and Zr are all elements that have a crystal grain refining effect, but the addition amount of each 0.0 does not saturate the effect.
The upper limit was set at 5%.
Vは細粒化と強化作用を有するが0.IH超では効果が
飽和するので、o、toxを上限とした。V has a grain refining and reinforcing effect, but 0. Since the effect is saturated above IH, o, tox was set as the upper limit.
Cr、Mo、Ni、Cuは強化元素として有効であるが
何れも多量の添加は曲げ加工後の硬さを上昇させるので
各々の上限をo、soxに規制した。Cr, Mo, Ni, and Cu are effective as reinforcing elements, but addition of large amounts of any of them increases the hardness after bending, so the upper limits of each are regulated to o and sox.
Caは硫化物の形態制御を通じて靭性改善に寄与するが
、過度の添加は溶接性の劣化をもたらすのでo、oos
xを上限とした。Ca contributes to improving toughness by controlling the form of sulfides, but excessive addition causes deterioration of weldability, so o, oos
x is the upper limit.
Bは微量添加によって鋼管の強度を上昇させる効果があ
るがQ、QQ3kを超えた多量の添加では効果が飽和す
るため上限を0.003%とした。B has the effect of increasing the strength of steel pipes when added in a small amount, but the effect is saturated when added in a large amount exceeding Q, QQ3k, so the upper limit was set at 0.003%.
C当量の上限値は、前記高周波曲げ加工における条件に
て曲げ加工後の外表面側の最大硬さとC当量とがよい相
関を示すことから、)IV248以下とするために0.
38%以下とした。The upper limit value of the C equivalent is set to 0.0 to lower than IV248, since the maximum hardness of the outer surface side after bending shows a good correlation with the C equivalent under the conditions of the high-frequency bending process.
It was set to 38% or less.
次に本発明鋼管の特徴を比較材と比べて実施例で示す。Next, the characteristics of the steel pipe of the present invention will be shown in Examples in comparison with comparative materials.
(実 施 例)
第1表は、いずれも曲げ加工に供した鋼管の化学成分を
示すものである。Al−A3鋼管は比較鋼管で、C当量
が0.38!6超の圧延のままの炭素tI4tI4管で
、81〜B12鋼管は本発明鋼管で、C当量が0.38
に以下の圧延のままの鋼管である。(Example) Table 1 shows the chemical composition of the steel pipes subjected to bending. The Al-A3 steel pipe is a comparison steel pipe and is an as-rolled carbon tI4tI4 pipe with a C equivalent of more than 0.38!6, and the 81 to B12 steel pipes are steel pipes of the present invention and have a C equivalent of 0.38.
Below is the as-rolled steel pipe.
第2表は、第1表の鋼管の素管の機械的性質及び曲げ加
工条件および曲げ加工後の曲げ部の最大硬さを示したも
のである。Table 2 shows the mechanical properties and bending conditions of the raw steel pipes in Table 1, and the maximum hardness of the bent portion after bending.
第 2 表
機械的性質についてはJIS 12号試験片を用いて、
引張強さ、伸びを測定した。For mechanical properties in Table 2, JIS No. 12 test pieces were used.
Tensile strength and elongation were measured.
第2表に示すように、全ての供試管の最大加熱温度は8
50 N1050℃で、スプレー水冷による高周波曲げ
加工を行っている。かかる条件で曲げ加工を行ったとき
のC当量と最大硬さとの関係を第1図に示す、第1図よ
り明らかなように、C当量が0.313%超のA1〜A
8鋼管の比較鋼管はいずれも最大硬さ)lv248以上
となり実用に供し得ないことは明らかである。As shown in Table 2, the maximum heating temperature for all test tubes is 8
High frequency bending is performed at 50N and 1050°C using spray water cooling. Figure 1 shows the relationship between C equivalent and maximum hardness when bending is performed under these conditions.As is clear from Figure 1, A1 to A with a C equivalent of more than 0.313%
It is clear that the comparison steel pipes of 8 steel pipes all have a maximum hardness of lv248 or more and cannot be put to practical use.
これに対して、本発明に使用する鋼管であるB1−B1
2@管はC当量を0.38零以下とすることにより、最
大硬さHv24a以下を満足する高周波曲げ管を製造す
ることを可能ならしめたものである。On the other hand, B1-B1, which is the steel pipe used in the present invention,
By setting the C equivalent to 0.38 or less, the 2@ tube makes it possible to manufacture a high-frequency bent tube that satisfies a maximum hardness of Hv24a or less.
(発明の効果)
本発明によれば、従来エルボにより構成される発電・化
学プラント用の小曲げ半径の曲げ管を、継目無鋼管或は
その他の製造法に製造された鋼管を素管として高周波曲
げによるエルボレスを製造しうることとなり、大幅なコ
スト削減及び硬度が低く安全性に寄与するという利点が
ある。(Effects of the Invention) According to the present invention, bent pipes with a small bending radius for power generation and chemical plants, which are conventionally configured with elbows, can be bent at high frequency using seamless steel pipes or steel pipes manufactured by other manufacturing methods as raw pipes. It becomes possible to manufacture elbow braces by bending, which has the advantages of significant cost reduction and low hardness, which contributes to safety.
第1図はC当量と曲げ加工後の最大硬さ)lvとの関係
を示すグラフであり、このときの曲げ加工条件は外表面
の最大加熱温度は850〜1050℃、スプレー水冷で
ある。
第2図は本発明の実施例に使用する曲げ機の一例の平面
図である。
1・・・鋼管 2・・・案内ローラー3・・
・加熱装置 4・・・曲げアーム5・・・クラン
プ 6・・・管端部支持台フ・・・スプレー冷却
水 8・・・加熱加工域最大硬さくHV)
第2図
1:鋼管
2:案内ローラー
3:加熱装置
4:曲げアーム
5:クランプ
6:管端部支持台
7:スプレー冷却水
8:加熱加工域
手続補正書
昭和4λ年フ 月4日
特許庁長官 小川邦夫 殿 損゛1、13件の
表示
昭和6λ年特許願 第822/−苛
性 所 東京都千代田区丸の内2丁目6番2号丸の内
へ重洲ビル3308、補正の内容 別紙のとおり
補 正 書
本願明細書中下記事項を、補正致します。
記
1、特許請求の範囲を別紙の如く訂正する。
2、第8頁3行目及び第9頁10行目にr C+Mn/
6+ (Cr+Mo+V) 15+ (Ni+Cu)
15≦0.38o4Jとあるをそれぞれ
r C+Mn/6+ (Cr+Mo+V) 15+ (
Ni+Cu) /Is≦0.38!l; Jと訂正する
。
特許請求の範囲
(1) 曲率半径が管外径の3倍以下の高周波曲げ管
の製造方法において、
重量%で、
G 0.05〜0.30零
St 0.10〜0.50%
Mn 0.30〜1.50%
P ≦0.03′4
S ≦0.03c*
A文 0.005〜0.05堀
N ≦o、ots%
残部はFeおよび不可避不純物からなり、c+Mn7’
a+ (Cr+Mo+V) 15+ (Ni+Cu)
/15≦0.38*を満足する炭素鋼を素管とし、素管
の外表面が850〜1050℃になるまで加熱し、水冷
をしながら曲げ加工することを特徴とする加工のままで
低硬さの高周波曲げ管の製造方法。
(2) 曲率半径が管外径の3倍以下の高周波曲げ管
の製造方法において、
重量%で、
G 0.05〜0.30k
Si 0.10〜0.50!k
Mn 0.30〜1.50%P
≦0.03%
S ≦0.034k
A又 0.005 〜0.054k
N ≦0.O15*
かつ、
Cr ≦0.50零
Ni ≦0.50零
Mo ≦0.50!に
■ ≦0.10!6
Ti ≦0.05%
Nb ≦0.05零
B ≦0.003零
Cu ≦0.50!6
Zr ≦0.05I
Ca ≦0.005%
のうちの一種もしくは二種以上、
残部はFeおよび不可避不純物からなり、C+Mn/6
+ (Cr+Mo+V)15+ (Ni+Cu)/15
≦0.38!4を満足する炭素鋼を素管とし、素管の外
表面が850〜1050℃になるまで加熱し、水冷をし
ながら曲げ加工することを特徴とする加工のままで低硬
さの高周波曲げ管の製造方法。FIG. 1 is a graph showing the relationship between the C equivalent and the maximum hardness (lv) after bending, and the bending conditions at this time were that the maximum heating temperature of the outer surface was 850 to 1050°C, and spray water cooling. FIG. 2 is a plan view of an example of a bending machine used in an embodiment of the present invention. 1... Steel pipe 2... Guide roller 3...
・Heating device 4...Bending arm 5...Clamp 6...Pipe end support stand...Spray cooling water 8...Maximum hardness in heating processing area HV) Figure 2 1: Steel pipe 2: Guide roller 3: Heating device 4: Bending arm 5: Clamp 6: Pipe end support 7: Spray cooling water 8: Heating processing area procedural amendment document dated February 4, 1927, Kunio Ogawa, Commissioner of the Patent Office, loss 1. Display of 13 items Patent Application No. 822/- Caustic Location: 3308 Marunouchi Shigesu Building, 2-6-2 Marunouchi, Chiyoda-ku, Tokyo Contents of the Amendment The following matters in the specification of the present application have been amended as shown in the attached sheet. We will correct it. Note 1: The scope of claims is amended as shown in the attached sheet. 2. r C+Mn/ on page 8, line 3 and page 9, line 10
6+ (Cr+Mo+V) 15+ (Ni+Cu)
15≦0.38o4J and r C+Mn/6+ (Cr+Mo+V) 15+ (
Ni+Cu) /Is≦0.38! l; Correct as J. Claim (1) A method for manufacturing a high-frequency bent pipe having a radius of curvature of 3 times or less of the outside diameter of the pipe, in which the following is achieved by weight%: G 0.05 to 0.30 Zero St 0.10 to 0.50% Mn 0 .30-1.50% P ≦0.03'4 S ≦0.03c* A text 0.005-0.05 Hori N ≦o, ots% The remainder consists of Fe and inevitable impurities, c + Mn7'
a+ (Cr+Mo+V) 15+ (Ni+Cu)
Carbon steel that satisfies /15≦0.38* is used as a raw tube, heated until the outer surface of the raw tube reaches 850 to 1050℃, and then bent while cooling with water. Manufacturing method of hard high frequency bent pipe. (2) In a method for manufacturing a high-frequency bent pipe whose radius of curvature is three times or less the outer diameter of the pipe, in weight %, G 0.05 to 0.30k Si 0.10 to 0.50! k Mn 0.30 to 1.50% P ≦0.03% S ≦0.034k A or 0.005 to 0.054k N ≦0. O15* and Cr ≦0.50 zero Ni ≦0.50 zero Mo ≦0.50! ■ One or two of the following: ≦0.10!6 Ti ≦0.05% Nb ≦0.050B ≦0.0030Cu ≦0.50!6 Zr ≦0.05I Ca ≦0.005% The remainder consists of Fe and unavoidable impurities, C+Mn/6
+ (Cr+Mo+V)15+ (Ni+Cu)/15
Carbon steel that satisfies ≦0.38!4 is used as a raw tube, and the outer surface of the raw tube is heated until the temperature reaches 850 to 1050℃, and then bent while cooling with water. A manufacturing method for high-frequency bent pipes.
Claims (2)
造方法において、 重量%で、 C 0.05〜0.30% Si 0.10〜0.50% Mn 0.30〜1.50% P≦0.03% S≦0.03% Al 0.005〜0.05% N≦0.015% 残部はFeおよび不可避不純物からなり、 C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu
)/5≦0.38%を満足する炭素鋼を素管とし、素管
の外表面が 850〜1050℃になるまで加熱し、水冷をしながら
曲げ加工することを特徴とする加工のままで低硬さの高
周波曲げ管の製造方法。(1) In a method for manufacturing a high-frequency bent pipe whose radius of curvature is three times or less the outer diameter of the pipe, in weight %, C 0.05-0.30% Si 0.10-0.50% Mn 0.30-1 .50% P≦0.03% S≦0.03% Al 0.005-0.05% N≦0.015% The remainder consists of Fe and inevitable impurities, C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu
)/5≦0.38% is used as a raw tube, heated until the outer surface of the raw tube reaches 850 to 1050℃, and then bent while cooling with water. A method for manufacturing high-frequency bent pipes with low hardness.
造方法において、 重量%で、 C 0.05〜0.30% Si 0.10〜0.50% Mn 0.30〜1.50% P≦0.03% S≦0.03% Al 0.005〜0.05% N≦0.015% かつ、 Cr≦0.50% Ni≦0.50% Mo≦0.50% V≦0.10% Ti≦0.05% Nb≦0.05% B≦0.003% Cu≦0.50% Zr≦0.05% Ca≦0.005% のうちの一種もしくは二種以上、 残部はFeおよび不可避不純物からなり、 C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu
)/5≦0.38%を満足する炭素鋼を素管とし、素管
の外表面が 850〜1050℃になるまで加熱し、水冷をしながら
曲げ加工することを特徴とする加工のままで低硬さの高
周波曲げ管の製造方法。(2) In a method for manufacturing a high-frequency bent pipe whose radius of curvature is 3 times or less the outer diameter of the pipe, the following is determined by weight%: C 0.05 to 0.30% Si 0.10 to 0.50% Mn 0.30 to 1 .50% P≦0.03% S≦0.03% Al 0.005-0.05% N≦0.015% and Cr≦0.50% Ni≦0.50% Mo≦0.50% One or more of the following: V≦0.10% Ti≦0.05% Nb≦0.05% B≦0.003% Cu≦0.50% Zr≦0.05% Ca≦0.005% , the remainder consists of Fe and unavoidable impurities, C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu
)/5≦0.38% is used as a raw tube, heated until the outer surface of the raw tube reaches 850 to 1050℃, and then bent while cooling with water. A method for manufacturing high-frequency bent pipes with low hardness.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15291487A JPS63317218A (en) | 1987-06-19 | 1987-06-19 | Production of high frequency bending pipe of low hardness as it is worked |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15291487A JPS63317218A (en) | 1987-06-19 | 1987-06-19 | Production of high frequency bending pipe of low hardness as it is worked |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63317218A true JPS63317218A (en) | 1988-12-26 |
JPH0331523B2 JPH0331523B2 (en) | 1991-05-07 |
Family
ID=15550905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15291487A Granted JPS63317218A (en) | 1987-06-19 | 1987-06-19 | Production of high frequency bending pipe of low hardness as it is worked |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63317218A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115027069A (en) * | 2022-04-22 | 2022-09-09 | 宜宾天亿新材料科技有限公司 | Production system and method for polyvinyl chloride molecular directional pipe fitting or connecting piece |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS537372A (en) * | 1976-07-09 | 1978-01-23 | Seiko Koki Kk | Clock circuit for compensating for time error produced when reset is released |
JPS59232225A (en) * | 1983-06-13 | 1984-12-27 | Nippon Kokan Kk <Nkk> | Manufacture of bent pipe with high tension and toughness |
JPS61117223A (en) * | 1984-11-14 | 1986-06-04 | Nippon Kokan Kk <Nkk> | Manufacture of bent pipe made of high toughness welding metal |
JPS6367525A (en) * | 1986-08-28 | 1988-03-26 | シエル・インタ−ナシヨナル・リサ−チ・マ−トスハツペイ・ベ−・ヴエ− | Method and device for detecting liquid level in tank during filling |
-
1987
- 1987-06-19 JP JP15291487A patent/JPS63317218A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS537372A (en) * | 1976-07-09 | 1978-01-23 | Seiko Koki Kk | Clock circuit for compensating for time error produced when reset is released |
JPS59232225A (en) * | 1983-06-13 | 1984-12-27 | Nippon Kokan Kk <Nkk> | Manufacture of bent pipe with high tension and toughness |
JPS61117223A (en) * | 1984-11-14 | 1986-06-04 | Nippon Kokan Kk <Nkk> | Manufacture of bent pipe made of high toughness welding metal |
JPS6367525A (en) * | 1986-08-28 | 1988-03-26 | シエル・インタ−ナシヨナル・リサ−チ・マ−トスハツペイ・ベ−・ヴエ− | Method and device for detecting liquid level in tank during filling |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115027069A (en) * | 2022-04-22 | 2022-09-09 | 宜宾天亿新材料科技有限公司 | Production system and method for polyvinyl chloride molecular directional pipe fitting or connecting piece |
CN115027069B (en) * | 2022-04-22 | 2023-06-13 | 宜宾天亿新材料科技有限公司 | Polyvinyl chloride molecular directional pipe fitting or connecting piece production system and method |
Also Published As
Publication number | Publication date |
---|---|
JPH0331523B2 (en) | 1991-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5499733B2 (en) | Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same | |
JP4608739B2 (en) | Manufacturing method of steel pipe for automobile door reinforcement | |
WO2013094179A1 (en) | High-strength seamless steel pipe with excellent resistance to sulfide stress cracking for oil well, and process for producing same | |
WO2010128545A1 (en) | High‑strength stainless steel pipe | |
TWI743724B (en) | Angular steel pipe, its manufacturing method and building structure | |
US20220373108A1 (en) | Electric resistance welded steel pipe, method for producing the same, line pipe, and building structure | |
JP2006299414A (en) | Method for producing low yield-ratio electric-resistance welded steel tube excellent in low temperature toughness | |
WO2020170774A1 (en) | Rectangular steel tube and method for manufacturing same, and building structure | |
BR112013000687B1 (en) | STEEL PIPE WITH A DOUBLE PHASE STRUCTURE AND PRODUCTION METHOD | |
JP5224780B2 (en) | High strength stainless steel pipe | |
JPS58113318A (en) | Manufacture of case hardening steel | |
JPS63317218A (en) | Production of high frequency bending pipe of low hardness as it is worked | |
JPH02115318A (en) | Manufacture of seamless tube of high rigidity | |
JPS58123858A (en) | Steel for electric welded steel pipe for hollow stabilizer | |
JP2007016311A (en) | Ferrite stainless steel sheet for bellows stock pipe | |
JP3804087B2 (en) | Manufacturing method of hot-bending steel pipe | |
JP3510787B2 (en) | High strength and high toughness stainless steel sheet with excellent bendability | |
JPS63317217A (en) | Production of high frequency bending pipe of low hardness as it is worked | |
JP7276641B1 (en) | Electric resistance welded steel pipe and its manufacturing method | |
JPS63313615A (en) | Production of high frequency bent pipe | |
JPS63177925A (en) | Manufacture of high frequency bent tube having low hardness as worked | |
JP2013185164A (en) | Method for manufacturing steel tube | |
JP3951481B2 (en) | Steel pipe manufacturing method | |
JP6210171B2 (en) | Hardened steel manufacturing method | |
JPS63171220A (en) | Method for bending steel pipe |