JPS63313615A - Production of high frequency bent pipe - Google Patents

Production of high frequency bent pipe

Info

Publication number
JPS63313615A
JPS63313615A JP15096787A JP15096787A JPS63313615A JP S63313615 A JPS63313615 A JP S63313615A JP 15096787 A JP15096787 A JP 15096787A JP 15096787 A JP15096787 A JP 15096787A JP S63313615 A JPS63313615 A JP S63313615A
Authority
JP
Japan
Prior art keywords
temperature
bending
steel pipe
cooling
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15096787A
Other languages
Japanese (ja)
Other versions
JPH0512054B2 (en
Inventor
Tadakatsu Maruyama
忠克 丸山
Seisuke Inoue
井上 靖介
Yoichi Matsubara
洋一 松原
Masaaki Takagishi
高岸 正章
Seiichi Akisawa
秋沢 清一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Nippon Steel Corp
Dai Ichi High Frequency Co Ltd
Original Assignee
JGC Corp
Nippon Steel Corp
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Nippon Steel Corp, Dai Ichi High Frequency Co Ltd filed Critical JGC Corp
Priority to JP15096787A priority Critical patent/JPS63313615A/en
Publication of JPS63313615A publication Critical patent/JPS63313615A/en
Publication of JPH0512054B2 publication Critical patent/JPH0512054B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Bending Of Plates, Rods, And Pipes (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To reduce piping cost by heating and bending a base steel pipe at a specific temperature zone and immediately after that, cooling the outer surface of the steel pipe by water from a fixed upper limit to a special lower limit of temperature. CONSTITUTION:The point of a steel pipe 1 to be bent is tightened to a clamp 5 and the steel pipe 1 is heated by a heater 3 at a temperature area from the AC3 transformation point or over to the austenite grain coarsening temperature or below to carry out a high frequency bending. Immediately after the bending is performed, the steel pipe 1 begins to be cooled in sprayed cooling water 7. The upper limit of temperature is given by a temperature by 100 deg.C lower than the bending temperature and the lower limit of temperature is a temperature given by a formula on thickness (mm) or shown by Tc=450-30Xt<1/20> deg.C. In this manner, bending operation is simplified and buckling is prevented in bending a steel pipe to a small radius. Accordingly, since elbowless piping is performed, welding operation is decreased and piping cost can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は発電・化学プラント用等の配管系に使用する高
周波曲げ管を優れた寸法精度と材質特性を持たせて製造
するための方法に係わる。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing high-frequency bent pipes with excellent dimensional accuracy and material properties for use in piping systems for power generation, chemical plants, etc. Involved.

[従来の技術] 従来発電・化学プラント用等で必要となる小曲げ半径を
有する曲げ管としては日本工業規格JIS B 231
1.2312等に規定されている溶接式管継手(以下エ
ルボと称する)が用いられている。エルボの製造は、日
本鉄鋼協会編纂3版鉄鋼便覧VI P、179に掲載さ
れている通常ハングルグ加工として知られている高温で
の拡管曲げ加工によって行なわれるのが普通である。こ
の方法によって製造されるエルボは、寸法精度が良好な
上、材質特性も素管とほぼ同等となって使用性能的には
優れたものとなっている。しかるにエルボを利用して配
管を行なう場合には、配管施工上に重大な欠点がある。
[Prior art] Japanese Industrial Standard JIS B 231 is used as a bending pipe with a small bending radius required for conventional power generation, chemical plants, etc.
A welded pipe joint (hereinafter referred to as an elbow) specified in 1.2312 etc. is used. Manufacture of elbows is usually carried out by a high temperature tube expansion bending process known as the hanging process described in the 3rd edition Steel Handbook VIP, 179 compiled by the Japan Iron and Steel Institute. The elbow manufactured by this method not only has good dimensional accuracy, but also has material properties that are almost the same as the raw pipe, making it excellent in terms of usability. However, when piping is performed using elbows, there are serious drawbacks in piping construction.

すなわちエルボは最大曲げ角度120°までの曲がり部
のみの鋼管であるため、配管施工時にはエルボ1ヶ当り
その両@2ケ所ずつを隣接する鋼管との間で溶接するこ
とが必要となる。このため配管施工時に溶接工数が多く
なるとともに、溶接部の検査工数も増加して工期、工事
費ともに不利になるところが大きな弱点となっている。
In other words, since an elbow is a steel pipe with only a bent portion up to a maximum bending angle of 120°, it is necessary to weld two parts of each elbow to adjacent steel pipes during piping construction. As a result, the number of welding steps required during piping construction increases, and the number of steps required for inspecting the welded parts also increases, resulting in a disadvantage in terms of construction time and construction costs, which is a major drawback.

エルボの有する上述の欠点を改良するための方法として
、溶接施工ケ所の低減を狙って、曲げ部の一端もしくは
両端に直管部を有する曲げ管(以下エルボレスという)
の実現が望まれていた。
As a method to improve the above-mentioned drawbacks of elbows, aiming at reducing the number of welding locations, bent pipes with a straight pipe section at one or both ends of the bent part (hereinafter referred to as elbowless) are proposed.
It was hoped that this would be realized.

エルボレスの製造法として冷間的げによる方法が考えら
れるが、曲げ半径の大きいものはともなく、本発明の対
象とする小半径の曲げ管は、曲がり部の断面形状寸法公
差のうち偏平率の公差を満足できず実用に適したものを
得るには至っていない。
A cold target method is considered as a method for manufacturing elbow braces, but in addition to those with a large bending radius, the bending pipe with a small radius, which is the subject of the present invention, has the aspect ratio of the dimensional tolerance of the cross-sectional shape of the bent part. The tolerances could not be satisfied and it was not possible to obtain a product suitable for practical use.

一方、高周波曲げ法を用いるエルボレスの製造に関して
も、例えば特開昭53−135870号公報や特開昭5
3−135871号公報による方法が提案されている。
On the other hand, regarding the manufacture of elbow braces using the high-frequency bending method, for example, Japanese Patent Laid-Open No. 53-135870 and Japanese Patent Laid-open No. 5
A method according to Japanese Patent No. 3-135871 has been proposed.

それらの方法では、曲げ加工後に強制空冷を行なって座
屈を防止することで曲げ半径が素管外径の3倍超の場合
には、エルボレス管製造に有効な方法となっている。し
かしながらこの方法によって、曲げ半径が素管外径の3
倍以下の小曲げ管を製造しようとすると座屈現象が発生
して形状確保が困難となって実用化には至っていない、
一方高周波曲げ加工法において加工直後に水冷すること
によって座屈防止をはかることは可能であるが、この場
合には曲げ加工後の、特に表面部硬さが著しく高くなる
ために、曲げ加工後に焼もどし、もしくは軟化焼鈍など
の熱処理が必要となって生産性も悪くコストも高くなる
という別の問題が発生する。
These methods perform forced air cooling after bending to prevent buckling, and are effective for manufacturing elbowless pipes when the bending radius is more than three times the outer diameter of the raw pipe. However, with this method, the bending radius is 3
When attempting to manufacture small bent pipes of twice the size or less, buckling occurs, making it difficult to secure the shape, and it has not been put to practical use.
On the other hand, in the high-frequency bending method, it is possible to prevent buckling by water cooling immediately after the bending process, but in this case, the hardness after the bending process, especially at the surface, becomes extremely high, so it is necessary to Another problem occurs in that heat treatment such as returning or softening annealing is required, resulting in poor productivity and high costs.

以上のような状況で曲げ半径の小さい高周波曲げ加工ま
まで使用できるエルボレス鋼管は実用化されるに至って
いなかった。
Under the above circumstances, elbowless steel pipes that can be used as they are after being subjected to high-frequency bending with a small bending radius have not been put into practical use.

[発明が解決しようとする問題点] 高周波曲げ法により製造し、曲げ加工ままで寸法形状が
良好にしてかつ加工後の熱処理が不用なエルボレスを得
るための製造方法を提供する点にある。
[Problems to be Solved by the Invention] It is an object of the invention to provide a manufacturing method for obtaining an elbow brace that is manufactured by a high-frequency bending method, has good dimensions and shape as it is bent, and does not require heat treatment after processing.

[問題点を解決するための手段] 本発明者らは高周波曲げ加工後のエルボレスの寸法形状
を確保した上で、併せて加工ままで使用上問題になるほ
どの硬化を生じさせないような高周波曲げ加工条件につ
いて検討した。
[Means for Solving the Problems] The present inventors ensured the dimensions and shape of the elbow brace after high-frequency bending, and also developed a high-frequency bending process that would not cause hardening to the extent that it would be a problem in use while still being processed. We considered the conditions.

まず、高周波曲げ加工によって素管外径の特に3倍以下
の小半径の曲げ加工を行なった時に座屈をおこさず寸法
形状の良好な曲げ管を得るために必要な条件は、素管を
いったん完全なオーステナイト化状態に加熱したのち曲
げ加工を行ない、曲げ加工直後に水冷を実施することが
必要である。この水冷は、曲げ加工が終了した部分の変
形抵抗を、後続の現在曲げ加工進行中の部分の変形抵抗
に対して高めとすることによって、変形領域を曲げ加工
進行中の微少領域のみに限定するために必要となるもの
で、その目的から、できるだけ曲げ加工終了直後の領域
を水冷して早くに十分な変形抵抗差が付与される温度域
まで冷却することが要求される。本発明者らは、これら
の点について詳細に調査を行ない、そこでこの事実を踏
まえてもう一方の、曲げ加工後に硬化をおこさせないた
めの条件について検討した。水冷によって硬化する原因
は、冷却過程で焼きが入る(マルテンサイト組織に変態
する)か、焼きが入るまでには至らずともベイナイトな
どの急冷組織に変態するためである。従って硬化を防ぐ
ためには、マルテンサイトやベイナイトなどの急冷組織
への変態を防止するか、やむを得ずこれらの急冷組織が
生じた場合には、冷却過程中の適当な温度以上で水冷か
ら空冷に切り替えることによって冷却中に焼きもどしく
オートテンパー)をおこさせることが有効である。
First, the conditions necessary to obtain a bent pipe with good dimensions and shape without buckling when bending a small radius, especially less than three times the outside diameter of the raw pipe, by high-frequency bending are as follows: It is necessary to perform the bending process after heating to a completely austenitized state, and to perform water cooling immediately after the bending process. This water cooling limits the deformation area to only the minute area where the bending process is in progress by making the deformation resistance of the part where the bending process has been completed higher than that of the subsequent part that is currently being bent. For this purpose, it is necessary to water-cool the area immediately after bending as soon as possible to a temperature range that provides a sufficient deformation resistance difference. The present inventors conducted a detailed investigation on these points, and based on this fact, examined the other condition for preventing hardening after bending. The reason for hardening due to water cooling is that the material undergoes hardening during the cooling process (transforms into a martensitic structure), or transforms into a rapidly cooled structure such as bainite even if it does not become hardened. Therefore, in order to prevent hardening, it is necessary to prevent the transformation into quenched structures such as martensite and bainite, or, if these quenched structures are unavoidable, switch from water cooling to air cooling at an appropriate temperature or higher during the cooling process. It is effective to cause auto-tempering during cooling.

以上のような考え方に従って、硬化を最少限度におさえ
るための冷却条件を検討したところ、急冷組織を発生さ
せないか、又は発生した急冷組織をその後の冷却中のオ
ートテンパー効果によって硬さを低く保つために必要な
水冷を停止すべき鋼管表面温度T (tl:)は、鋼管
の肉厚t (mm)によって変わり、厚肉材では低温度
範囲まで許容されるが薄肉材の場合にはとくに水冷を停
止する温度を高めにとどめる必要のあることが判明した
。この水冷を停止すべき鋼管表面温度Tと鋼管の肉厚t
との関係を定量的に調べた結果、以下のことが明らかに
なった。
Based on the above ideas, we investigated the cooling conditions to minimize hardening and found that either the quenched structure is not generated, or the quenched structure that has been generated is kept at a low hardness by the auto-tempering effect during subsequent cooling. The steel pipe surface temperature T (tl:) at which water cooling must be stopped varies depending on the wall thickness t (mm) of the steel pipe. For thick walled materials, a low temperature range is allowed, but for thin walled materials, water cooling is particularly important. It was found that it was necessary to keep the stopping temperature high. Steel pipe surface temperature T and steel pipe wall thickness t at which this water cooling should be stopped
As a result of quantitatively examining the relationship between

加工後水冷された鋼管の温度降下は第1図に定性的に示
すようになる。すなわち水冷ゾーン通過中に鋼管は外表
面から冷却されるため、外表面部は内表面側に比べて低
い温度まで冷却される。水冷ゾーンを通過した後再び空
冷に移ると、温度の高い内表面側の保有熱によって外表
面側の温度はいったん上昇する。この上昇は内外表面部
の温度差が平衡状態に近づくまで続いたのち、やがては
肉厚全体が厚みに応じた冷却速度で自然冷却される過程
に移行していく。先に述べた、冷却中に急冷組織を発生
させないためには水冷ゾーン通過中の鋼管外表面部の冷
却速度を一定以下の徐冷側におさえる必要がある。−万
一時的に急冷組織が発生しても、その後の冷却中にオー
トテンパーをおこさせて硬度低下を達成するためには、
水冷ゾーン通過後の復熱によって到達する温度が一定値
以上の高温域に入ることが必要である。いずれの場合に
も水冷ゾーン通過後の、鋼管外表面温度(T)が重要な
因子となるので、実験室におけるシミュレーション実験
によって、水冷停止温度と最高硬さとの関係を詳細に調
べた。
The temperature drop of the steel pipe water-cooled after processing is qualitatively shown in Figure 1. That is, since the steel pipe is cooled from the outer surface while passing through the water cooling zone, the outer surface portion is cooled to a lower temperature than the inner surface side. When the air cools again after passing through the water cooling zone, the temperature on the outer surface side increases once due to the heat retained on the higher temperature inner surface side. This increase continues until the temperature difference between the inner and outer surfaces approaches an equilibrium state, and then eventually the entire wall thickness shifts to a process where it is naturally cooled at a cooling rate commensurate with the thickness. In order to prevent the rapid cooling structure from occurring during cooling, as mentioned above, it is necessary to suppress the cooling rate of the outer surface of the steel pipe while passing through the water cooling zone to a certain level or less on the slow cooling side. - Even if a quenched structure occurs temporarily, in order to cause auto-tempering during subsequent cooling and achieve hardness reduction,
It is necessary that the temperature reached by recuperation after passing through the water cooling zone enters a high temperature range above a certain value. In either case, the outer surface temperature (T) of the steel pipe after passing through the water-cooling zone is an important factor, so the relationship between the water-cooling stop temperature and the maximum hardness was investigated in detail through simulation experiments in the laboratory.

第2図がその結果の一例であるが、二種類の綱種の肉厚
10wmの鋼管を用いて水冷停止温度の影響を調べたも
のである。表面下1mmの点で調べた最高硬さは水冷停
止温度によって変化し、水冷停止温度が低温になると著
しく上昇することがわかる。硬さの変化は連続的である
が、ひとつの基準として、水冷停止温度の高温側と低温
側との中間的な硬さを示す水冷停止温度(第2図のTC
)を採用すると、このTcは特にバイブの肉厚によって
変化することが見出された。
Figure 2 shows an example of the results, in which the influence of the water-cooling stop temperature was investigated using two types of steel pipes with a wall thickness of 10 wm. It can be seen that the maximum hardness measured at a point 1 mm below the surface changes depending on the water cooling stop temperature, and increases significantly as the water cooling stop temperature becomes lower. Although the change in hardness is continuous, one criterion is the water cooling stop temperature (TC
), it has been found that this Tc changes particularly depending on the wall thickness of the vibrator.

Tcの肉厚依存性を調べた結果は、近似的に下記 (1
)式で表現することができた。
The results of investigating the wall thickness dependence of Tc are approximately as follows (1
) could be expressed by the formula.

T c−450−30x FT(t: ) −(1)t
:■ 以上のことから、肉厚t (IIm)の素管を用いて曲
げ半径が素管直径の3倍以下の高周波曲げ管を製造する
に当っては、素管をオーステナイト化したのち曲げ加工
を加え、加工後直ちに外表面部を水冷して、外表面温度
が曲げ加工温度より 100℃低い温度を上限とじ (
1)式で与えられるTcを下限とする温度範囲の間で水
冷ゾーンをぬけ出すような条件を選ぶことによって寸法
形状も優れ尚かつ硬さも低い高周波曲げ管を得られるこ
とが明らかになった。
T c-450-30x FT(t: ) -(1)t
:■ From the above, when manufacturing high-frequency bent pipes with a bending radius of 3 times or less of the diameter of the raw pipe using a raw pipe with a wall thickness of t (IIm), the raw pipe should be austenitized and then bent. The outer surface is cooled with water immediately after processing, and the upper limit is set at a temperature where the outer surface temperature is 100℃ lower than the bending temperature (
It has become clear that a high-frequency bent tube with excellent dimensions and shape and low hardness can be obtained by selecting conditions that allow the tube to exit the water cooling zone within the temperature range with the lower limit of Tc given by formula 1).

本発明は上記新知見に基づいて成されたもので、その要
旨は、高周波曲げ管の製造方法において、母鋼管Ac3
変態点以上でオーステナイト粒粗大化温度以下の温度領
域に加熱後曲げ加工を行ない、加工直後から鋼管の外表
面温度が曲げ加工温度より 100℃5低い温度を上限
とし、(1)式から定まる温度TCを下限とする温度範
囲内になるまで水冷することを特徴とする高周波曲げ管
の製造方法にある。
The present invention has been made based on the above-mentioned new knowledge, and the gist thereof is to provide a method for manufacturing a high-frequency bent pipe, in which a base steel pipe Ac3
Bending is performed after heating in a temperature range above the transformation point and below the austenite grain coarsening temperature, and immediately after processing, the outer surface temperature of the steel pipe is set to a temperature 100°C5 lower than the bending temperature, and the temperature is determined from equation (1). The present invention provides a method for manufacturing a high frequency bent pipe, characterized by water cooling until the temperature falls within a temperature range having a lower limit of TC.

なお、本発明法では曲げ管の素管としては継目無鋼管、
電縫鋼管、Uo鋼管等を用いることができる。
In addition, in the method of the present invention, seamless steel pipes,
An electric resistance welded steel pipe, a Uo steel pipe, etc. can be used.

[作   用] 第3図は本発明による曲げ加工を実施するための設備の
一例を示すもので、1は曲げ加工すべき鋼管、2は該鋼
管を支持案内する案内ローラー、3は環状で前記鋼管1
をその外周から局部的に狭幅に加熱するとともに曲げ加
工直後の部分を水冷するための冷却設備を備えた加熱コ
イル、4は先端部にクランプ5を備えた回転自在の曲げ
アーム、6は管端支持台、7の矢印は3の加熱コイルか
らスプレーされる冷却水、斜線部の8は加熱加工域であ
る。装置はクランプ5に鋼管1の先端部を緊締し、鋼管
1を加熱装置3により局部的に高温加熱するとともに適
宜手段により矢印方向に推進させることにより鋼管1を
曲げ加工できるようになっている。
[Function] Fig. 3 shows an example of equipment for carrying out bending according to the present invention, in which 1 is a steel pipe to be bent, 2 is a guide roller that supports and guides the steel pipe, and 3 is an annular roller that supports the above-mentioned steel pipe. steel pipe 1
4 is a rotatable bending arm equipped with a clamp 5 at the tip; 6 is a tube; On the end support stand, the arrow 7 indicates the cooling water sprayed from the heating coil 3, and the shaded area 8 indicates the heating processing area. The apparatus is capable of bending the steel pipe 1 by tightening the distal end of the steel pipe 1 with a clamp 5, locally heating the steel pipe 1 to a high temperature with a heating device 3, and propelling it in the direction of the arrow with an appropriate means.

次に本発明の限定理由について説明する。Next, the reasons for the limitations of the present invention will be explained.

まず曲げ加工条件であるが、加工温度を確保するために
オーステナイト−相でかつ結晶粒の粗大化しない温度範
囲内の加熱にとどめることが必要である。結晶粒の粗大
化を防止し得る加熱温度は鋼種成分によって異なるが一
般的には950〜1100℃を上限とする。
First, regarding the bending conditions, in order to ensure the working temperature, it is necessary to keep the heating within the temperature range that maintains the austenite phase and does not cause coarsening of crystal grains. The heating temperature that can prevent coarsening of crystal grains varies depending on the steel type and composition, but generally the upper limit is 950 to 1100°C.

曲げ加工後の水冷は、極力曲げ加工直後であることが望
ましく、水冷までの時間的遅れが生じると形状不良の原
因となる。しかし水冷を長時間続けすぎると硬さ上昇を
起すので、適正範囲内で水冷ゾーンを通過するように送
り速度もしくは水冷ゾーン長さを加減することが必要で
ある。曲げ加工後の水冷は外表面温度が一定の温度範囲
内に収まるように配慮することが本発明の最も重要なポ
イントである。その温度範囲の上限は、寸法形状を損な
わないために必要な制限で、曲げ加工温度より 100
℃低い温度となる。また温度範囲の下限は、曲げ加工後
の硬さを低くおさえるために必要な制限でT c−45
0−30X FTによって素管肉厚tに応じて限定され
る温度となる。
It is desirable that water cooling after bending be performed immediately after bending as much as possible; any time delay before water cooling may cause shape defects. However, if water cooling is continued for too long, the hardness will increase, so it is necessary to adjust the feed rate or the length of the water cooling zone so that the material passes through the water cooling zone within an appropriate range. The most important point of the present invention is to ensure that the outer surface temperature falls within a certain temperature range during water cooling after bending. The upper limit of the temperature range is the limit necessary to not damage the dimensions and shape, and is 100% higher than the bending temperature.
℃ lower temperature. The lower limit of the temperature range is Tc-45, which is the limit necessary to keep the hardness after bending low.
By 0-30X FT, the temperature is limited according to the wall thickness t of the raw pipe.

次に本発明を適用するための!I1成分範囲について述
べる。本発明法は基本的には適用鋼種成分に絶対的な規
制を要求するものではなく汎用性の広い技術であるが、
エルボレスという特殊形状の鋼管を必要とする使用分野
からみた適正成分範囲例を挙げる。
Next, to apply the present invention! The I1 component range will be described. The method of the present invention basically does not require absolute regulations on the applicable steel type components, and is a widely versatile technology.
Here are some examples of appropriate component ranges from the perspective of fields of use that require steel pipes with a special shape: elbowless.

まずCは鋼管の強度を確保する上で必要な元素であるが
その含有量が0.30%を超えると溶接作業性を損ねる
上曲げ加工後の硬さが著しく高くなるので上限を0.2
5%とする。
First, C is an element necessary to ensure the strength of steel pipes, but if its content exceeds 0.30%, the hardness after top bending will significantly increase, impairing welding workability, so the upper limit should be set at 0.2%.
5%.

Siは脱酸元素として使用される他、高温強度確保にも
有効な元素であるが多量の含有は高周波曲げ加工性を損
なうので上限を0.50%とする。
In addition to being used as a deoxidizing element, Si is also an effective element for ensuring high-temperature strength, but since a large amount of Si impairs high-frequency bending properties, the upper limit is set at 0.50%.

MnはCについで有効な強化元素であるが、過度の添加
は曲げ加工後の最高硬さを高める上溶接施工上も問題と
なるのでその上限を1.50%に規制する。
Mn is an effective reinforcing element next to C, but excessive addition increases the maximum hardness after bending and also poses a problem in welding, so the upper limit is regulated to 1.50%.

P、Sは不純物として混入する元素であるが高温曲げ加
工時の割れ発生防止のため、各々を0.03%以下に規
制する。
P and S are elements mixed as impurities, but each is regulated to 0.03% or less to prevent cracking during high temperature bending.

A又は脱酸元素として必要な範囲の使用にとどめるため
上限を0.05%とする。
The upper limit is set at 0.05% in order to limit the use of A or as a deoxidizing element within the necessary range.

Nは溶接性に支障を生じない範囲の0.015%を上限
とする。
The upper limit of N is 0.015%, which is within a range that does not affect weldability.

以上の基本成分に加えて選択使用成分についての以下の
規制を設定した。
In addition to the basic ingredients listed above, the following regulations have been established for selectively used ingredients.

Nb、Ti、Zrはともに結晶微粒子化効果を有する元
素であるがその効果の飽和しない0.05%を各々の添
加量の上限とする。
Nb, Ti, and Zr are all elements that have the effect of making crystal grains finer, but the upper limit of the amount of each added is set at 0.05% so that the effect is not saturated.

■は細粒化と強化作用を有するが、0.10%超では効
果が飽和するので0.1θ%以下とする。
(2) has a grain refining and reinforcing effect, but if it exceeds 0.10%, the effect is saturated, so it should be kept at 0.1θ% or less.

Cr、Mo、Ni、(:uは強化元素として有効である
が、いずれも多量の添加は曲げ加工後の硬さを上昇させ
るので各々の上限を0.50%に定めた。
Cr, Mo, Ni, and (:u) are effective as reinforcing elements, but since adding a large amount of any of them increases the hardness after bending, the upper limit of each was set at 0.50%.

Caは硫化物の形態コントロールを通じて靭性改善に寄
与するが、過度の添加は溶接性の劣化をもたらすので5
0ppmを上限とする。
Ca contributes to improving toughness by controlling the form of sulfides, but excessive addition causes deterioration of weldability, so 5
The upper limit is 0 ppm.

Bは微量添加によって母材強度を上昇させる効果がある
が30ppmを超えた多量の添加では効果が飽和するた
め上限を30ppmとする。
B has the effect of increasing the strength of the base material when added in a small amount, but the effect is saturated when added in a large amount exceeding 30 ppm, so the upper limit is set at 30 ppm.

[実 施 例] 第1表は高周波曲げ加工試験に供した鋼管の成分と曲げ
加工条件を示したものである。7種類の供試鋼管を用い
て第1表内に示された曲げ加工条件でエルボレスを製作
した。水冷停止温度を3種類ずつ変化させた結果、本発
明法の範囲に入る条件と水冷停止温度が高め側に外れた
条件と、同じく低め側に外れた条件とをつくり分けた。
[Example] Table 1 shows the components and bending conditions of the steel pipes subjected to the high frequency bending test. Elbow restraints were manufactured using seven types of test steel pipes under the bending conditions shown in Table 1. As a result of changing the water-cooling stop temperature in three types, we created conditions that fell within the range of the method of the present invention, conditions in which the water-cooling stop temperature deviated to the higher side, and conditions in which the water-cooling stop temperature deviated to the lower side.

これらの結果を本発明法を満足する条件をO△などの記
号で、水冷停止温度が高め側に外れたものを◎マなどの
二重記号でまた低めに外れたものをム■などの黒塗りの
記号で表わして整理した。第4図は横軸に母管の引張強
度(TS)を、縦軸には曲げ加工後のビッカース硬さ 
(Hv)をとって上記の結果を図示したものである。
These results indicate the conditions that satisfy the method of the present invention with symbols such as O△, those where the water-cooling stop temperature deviates from the high side are indicated by double symbols such as ◎, and those where the water cooling stop temperature deviates from the low side are indicated by black symbols such as M■. Organized by representing them with colored symbols. Figure 4 shows the tensile strength (TS) of the main tube on the horizontal axis and the Vickers hardness after bending on the vertical axis.
(Hv) is taken to illustrate the above results.

これらのうち二重記号で表わされた水冷停止温度が高め
側に外れた場合のエルボレスは、いずれも鋼管内面部に
しゃばら状の形状不良が発生した。従ってこれらの水冷
停止温度が曲げ加工温度より 100℃以内にとどまる
条件では、硬さは十分低下するものの形状的に不合格と
なり、実用には供せないことが証明された。
Of these, all of the elbow braces in which the water-cooling stop temperature indicated by the double symbol was on the high side had irregular shape defects on the inner surface of the steel pipe. Therefore, under conditions where the water cooling stop temperature remains within 100°C of the bending temperature, although the hardness is sufficiently reduced, the shape is rejected and it has been proven that it cannot be put to practical use.

形状的に問題のないエルボレスが得られた条件の中では
、本発明法による条件を満足する場合の結果が、母材強
度の同一のものの中では著しく低い硬さとなっており、
使用特性上望ましい特性を有していることが第4図から
明らかに認められる。すなわち、母管の強度が高(なれ
ば曲げ加工後の硬さも高めになる傾向は避は得ないが本
発明法を°採用することによって、与えられた母管の強
度に対しては曲げ加工後、硬さの低いエルボレスを製造
することが可能となり得たわけである。
Among the conditions under which an elbow break with no problems in shape was obtained, the results obtained when the conditions according to the method of the present invention were satisfied were significantly lower than those with the same base material strength.
It is clearly recognized from FIG. 4 that it has desirable characteristics in terms of usage characteristics. In other words, if the strength of the main tube is high (there is an unavoidable tendency for the hardness after bending to be high, but by adopting the method of the present invention, bending can be performed for a given strength of the main tube. After that, it became possible to manufacture elbow braces with low hardness.

[発明の効果] 本発明法によれば従来エルボにより構成された発電・化
学プラント用等の小曲げ半径の曲げ管を、高周波曲げに
よるエルボレスにおきかえることが可能となり、溶接ケ
所の削減を通じて大幅なコスト削減が達成され、硬度が
低く溶接線の短い安全なプラントの建設に大きな寄与を
及ぼすことができる。
[Effects of the Invention] According to the method of the present invention, it is possible to replace bent pipes with small bending radii for use in power generation and chemical plants, which were conventionally constructed with elbows, with elbowless pipes using high-frequency bending, resulting in a significant reduction in the number of welding locations. Cost reductions can be achieved and a significant contribution can be made to the construction of safe plants with low hardness and short weld lines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高周波曲げ加工工程における鋼管の温度推移の
模式図、第2図は高周波曲げ加工直後から水冷を行ない
、水冷停止した温度に対して外表面下1 mmの部分の
硬さの変化を示す図である。 第3図は本発明の実施に使用する曲げ機の一例の平面図
、第4図は本発明法と従来法によって製造したエルボレ
スの最高硬さと母管の強度との関係を示す図である。 1・・・鋼管       2・・・案内ローラー3・
・・加熱装置     4・・・曲げアーム5・・・ク
ランプ     6・・・管端部支持台7・・・スプレ
ー冷却水  8・・・加熱加工域巧  さ 表面1mmの硬さ Hv 第3図 1:鋼管 2:案内ローラー 3:加熱装置 4:曲げアーム 5:クランプ 6:管端部支持台 7:スプレー冷却水 8:加熱加工域 最高硬さ Hv
Figure 1 is a schematic diagram of the temperature transition of a steel pipe during the high-frequency bending process, and Figure 2 shows the change in hardness of a portion 1 mm below the outer surface with respect to the temperature at which water cooling was stopped immediately after high-frequency bending. FIG. FIG. 3 is a plan view of an example of a bending machine used in carrying out the present invention, and FIG. 4 is a diagram showing the relationship between the maximum hardness of elbow braces manufactured by the method of the present invention and the conventional method and the strength of the main tube. 1... Steel pipe 2... Guide roller 3.
... Heating device 4 ... Bending arm 5 ... Clamp 6 ... Pipe end support stand 7 ... Spray cooling water 8 ... Hardness of 1 mm of heating processing area surface Hv Fig. 3 1 : Steel pipe 2: Guide roller 3: Heating device 4: Bending arm 5: Clamp 6: Pipe end support 7: Spray cooling water 8: Maximum hardness in heating processing area Hv

Claims (1)

【特許請求の範囲】 高周波曲げ管の製造において、母鋼管をA_c_3変態
点以上でオーステナイト粒粗大化温度以下の温度領域に
加熱後曲げ加工を行い、加工直後から鋼管の外表面温度
が曲げ加工温度より100℃低い温度を上限とし、母鋼
管の肉厚t(mm)に応じて下記(1)式から定まるT
_cを下限とする温度範囲内まで水冷することを特徴と
する高周波曲げ管の製造方法。 T_c=450−30×√t(℃)…(1)
[Claims] In the production of high-frequency bent pipes, the base steel pipe is heated to a temperature range above the A_c_3 transformation point and below the austenite grain coarsening temperature and then bent, and the outer surface temperature of the steel pipe is immediately after the bending process temperature. The upper limit is 100°C lower than T, which is determined by the following formula (1) depending on the wall thickness t (mm) of the base steel pipe.
A method for manufacturing a high-frequency bent pipe, characterized by water-cooling the pipe to a temperature range having a lower limit of _c. T_c=450-30×√t(℃)…(1)
JP15096787A 1987-06-17 1987-06-17 Production of high frequency bent pipe Granted JPS63313615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15096787A JPS63313615A (en) 1987-06-17 1987-06-17 Production of high frequency bent pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15096787A JPS63313615A (en) 1987-06-17 1987-06-17 Production of high frequency bent pipe

Publications (2)

Publication Number Publication Date
JPS63313615A true JPS63313615A (en) 1988-12-21
JPH0512054B2 JPH0512054B2 (en) 1993-02-17

Family

ID=15508350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15096787A Granted JPS63313615A (en) 1987-06-17 1987-06-17 Production of high frequency bent pipe

Country Status (1)

Country Link
JP (1) JPS63313615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525740A (en) * 2014-12-26 2015-04-22 哈尔滨锅炉厂有限责任公司 Drawing and twining type pipe bending mould for small bending radius and pipe bending method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835021A (en) * 1981-08-25 1983-03-01 Dai Ichi High Frequency Co Ltd Manufacture of curved tube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835021A (en) * 1981-08-25 1983-03-01 Dai Ichi High Frequency Co Ltd Manufacture of curved tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104525740A (en) * 2014-12-26 2015-04-22 哈尔滨锅炉厂有限责任公司 Drawing and twining type pipe bending mould for small bending radius and pipe bending method

Also Published As

Publication number Publication date
JPH0512054B2 (en) 1993-02-17

Similar Documents

Publication Publication Date Title
JP4819185B2 (en) Steel sheet for ultra-high strength line pipe and method for manufacturing steel pipe
JP4819186B2 (en) Steel sheet for ultra-high strength line pipe and method for manufacturing steel pipe
JP5991175B2 (en) High-strength steel sheet for line pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP2009007652A (en) Thick hot-rolled steel sheet excellent in workability and excellent in strength and toughness after heat-treatment, and method for producing the same
JP4824143B2 (en) High strength steel pipe, steel plate for high strength steel pipe, and manufacturing method thereof
JP7088417B2 (en) Electric pipe and its manufacturing method
TW202039885A (en) Square steel tube, method for manufacturing same, and building structure
US20220373108A1 (en) Electric resistance welded steel pipe, method for producing the same, line pipe, and building structure
WO2020170774A1 (en) Rectangular steel tube and method for manufacturing same, and building structure
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP5991174B2 (en) High-strength steel sheet for sour-resistant pipes with excellent material uniformity in the steel sheet and its manufacturing method
JP5020690B2 (en) High strength steel pipe for machine structure and manufacturing method thereof
JPS58123858A (en) Steel for electric welded steel pipe for hollow stabilizer
JPS63313615A (en) Production of high frequency bent pipe
JPH0567699B2 (en)
JPS63313616A (en) Production of high frequency bent pipe
US20240229200A1 (en) Electric resistance welded steel pipe and method for producing the same
JP7276641B1 (en) Electric resistance welded steel pipe and its manufacturing method
JPWO2019077725A1 (en) High strength steel plate for sour line pipe and high strength steel pipe using the same
WO2023210046A1 (en) Electric resistance welded steel pipe and method for manufacturing same
HASHIMOTO et al. High strength hot-bent pipe for arctic use
JP2004076101A (en) High-strength high-toughness steel pipe material excellent in weldability and its production method
BR102019003246B1 (en) HOMOGENIZATION PROCESS FOR SPIRAL PIPE
JPS63317218A (en) Production of high frequency bending pipe of low hardness as it is worked
JPS63241116A (en) Manufacture of high strength resistance welded steel tube having superior sulfide cracking resistance