JPH0140761B2 - - Google Patents

Info

Publication number
JPH0140761B2
JPH0140761B2 JP53111372A JP11137278A JPH0140761B2 JP H0140761 B2 JPH0140761 B2 JP H0140761B2 JP 53111372 A JP53111372 A JP 53111372A JP 11137278 A JP11137278 A JP 11137278A JP H0140761 B2 JPH0140761 B2 JP H0140761B2
Authority
JP
Japan
Prior art keywords
exchange resin
solution
passing
bed
chromate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53111372A
Other languages
Japanese (ja)
Other versions
JPS5450488A (en
Inventor
Gaijaa Guriaa Jeeshii
Rei Bojizu Jiii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pennwalt Corp
Original Assignee
Pennwalt Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pennwalt Corp filed Critical Pennwalt Corp
Publication of JPS5450488A publication Critical patent/JPS5450488A/en
Publication of JPH0140761B2 publication Critical patent/JPH0140761B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • B01J47/04Mixed-bed processes

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、クロム酸イオンと多量の溶解アルカ
リ金属塩素酸塩を含有する水溶液からクロム酸イ
オンを除去する方法に係わる。更に特定するな
ら、本発明は、それぞれ特定形状を有する陰イオ
ンおよび陽イオン交換樹脂の混合層に、塩素酸塩
に富んだ塩化物水溶液を通すことによつて該水溶
液からクロム酸イオンを除去する方法に係わる。 1974年9月10日付で公示されたT.F.O′Brienの
米国特許第3835001号には、アルカリ金属塩素酸
塩―塩化物水溶液を6.5より低い好ましくは約5
の初期PHで塩化物形強塩基イオン交換樹脂層に通
して該水溶液から相当割合のクロム酸イオンを除
去する方法が開示されている。この方法は、上記
溶液からクロム酸イオンを除去するのに在来法よ
り明らかに改善されてはいるが、もつと多割合の
クロム酸イオンを除去すべく更に改良の必要があ
ることも明らかである。すなわち、溶解アルカリ
金属クロム酸塩を10重量ppm程度の少量で(一般
には約20g/未満で)含有する溶液から事実上
全てのクロム酸イオンを経済的に除去し而して該
溶液の1回処理でかなりの除去がなされ、好まし
くは該溶液からクロム酸イオンの事実上完全な除
去が、危険な二酸化塩素の形成を伴うことなくも
たらされるような方法を提供することが商業上望
ましい。 従つて、本発明は、例えば塩化ナトリウム溶液
の電気分解から得られる如き、多量の溶解アルカ
リ金属塩素酸塩を含有し且つ或る濃度の溶解アル
カリ金属クロム酸塩を有する溶液からクロム酸イ
オンを除去するに当り、塩化物形の陰イオン交換
樹脂と状態調整せる水素形の弱陽イオン交換樹脂
との均質混合物より本質上なる層に上記溶液を通
すことを包含する方法にして、しかも陽イオン交
換樹脂中に存在する交換座数が陰イオン交換樹脂
中に存在するそれよりも少くなく、また陰イオン
交換樹脂が上記溶液から除去せんとするクロム酸
イオン数に少くともほゞ等しい交換座数を供与す
るのに十分な量で存在するようにしてなるクロム
酸イオンの除去方法である。好ましい方法では、
陽イオン交換樹脂は、陰イオン交換樹脂1重量部
に対し0.5重量部以上から2.0重量部以下の量で存
在する。 工業的に実施する際、交換座数は通常、meq/
ml又はmeq/gで表わされる「総交換容量」によ
つて指定される。この量の測定方法は樹脂供給元
によつて若干異なる。アンバーライト
(Amberlite)IRC―50を製造している業者の技
術公報(1972)には次のように記されている。 「総交換容量:アンバーライトIRC―50の最大
容量は、水素形の代表的試料を過剰の0.1N水酸
化ナトリウムで平衡させることにより好都合に測
定することができる。而して、この樹脂を該過剰
の苛性アルカリと24〜48時間接触したまゝとすべ
きである。水酸化ナトリウムの中和量が交換体の
最大容量に等しいと認められる」。 本発明に有用な陽イオンおよび陰イオンの両交
換樹脂は、ゲルタイプ又はマクロ網状タイプのい
ずれであつてもよい。しかし、イオン交換作業の
多数サイクルで安定性が高いという点ではマクロ
網状タイプが好ましい。種々のイオン交換樹脂に
ついて、例えば、Kirk―Othmer Encyclopedia
of Chemical Technology、第2版、Vol、第
871頁以下に記載されている。 陰イオン交換樹脂は弱塩基、強塩基いずれの樹
脂であつてもよいが、しかし再生の際、より定量
的な回収ができるという点で弱塩基陰イオン交換
樹脂が好ましい。陰イオン交換樹脂をイオン交換
プロセスの使用段階すなわちクロム酸塩吸着工程
に用いるとき、それは初期、塩化物形をなしてい
るべきである。 本発明のための陽イオン交換樹脂は本質上弱酸
陽イオン交換樹脂であり、またそれは、使用段階
の開始時すなわち塩素酸塩に富んだ溶液からクロ
ム酸塩を除去しはじめるときに状態調整された水
素形でなければならない。 用語「状態調整された水素形」を本明細書中で
用いるとき、それは、塩素酸塩に富む溶液が使用
段階で過剰に酸性化されないように、当初完全に
水素形であつた陽イオン交換樹脂の水素イオンを
一部分アルカリ金属(Na+)イオンで置換えた陽
イオン交換樹脂形状を意味する。別のいい方をす
れば、クロム酸塩吸着工程(使用段階)による
「塩分裂(salt―splitting)」効果を低めるべく、
陽イオン樹脂の水素形を好ましくは中性PH(6〜
8)のアルカリ金属塩化物ブラインでゆすいで
(状態調整して)出口(ブライン流出物)PHを1.0
以上好ましくは約2までのPHにすることである。 塩分裂は典型的には、強塩基と強酸の塩を含有
する溶液が強酸イオン交換樹脂又は強塩基イオン
交換樹脂を通るときに生ずる。すなわち、塩の陽
イオンが強酸樹脂の水素と容易に交換し、同様に
塩の陰イオンが強塩基樹脂の水酸化物と容易に交
換する。かかる強酸―強塩基タイプに比較したと
きの弱酸―弱塩基交換体の顕著な特徴は、一般に
この塩分裂がさほどの量では生起しないというこ
とである。而して、それが生起し、またそれを本
方法で制御せねばならないということは恐らく、
非常に高濃度の塩が含まれるためであろう。 有利なことに循環プロセスである本発明の方法
は次のように概記される: 選定された交換樹脂を別個に又は混合物として
無機酸のブライン溶液で処理することにより、出
発物質が供与される。次いで、この混合物又は、
別個のときは陽イオン樹脂を中性ブライン溶液で
処理することにより、状態調整された水素形の陽
イオン樹脂が形成される。もし、これらの処理前
に交換樹脂を混合していなければ、これらを斯界
に周知の態様で例えば水の存在での空気吹込みに
より混合する。そのあと、塩素酸塩に富んだクロ
ム酸塩含有液を該混合樹脂層に通すことによつて
使用段階又はクロム酸塩吸着工程を開始する。イ
オン交換層の消耗は、PHが2に上がりまたそれと
同時に流出溶液が黄色化することによつて示され
る。そのときは、クロム酸塩含有溶液の流れを停
止させ、陰イオン交換樹脂を処理してクロム酸イ
オンを回収する。その場合、前以つて交換樹脂同
士を分離してもよく、分離しなくてもよい。 所望なら、後述の如く、若干比重の異なる樹脂
同士を分離させるのに十分な流量でブライン溶液
を樹脂層に上方向で通すことにより樹脂同士を分
離させることもできる。 クロム酸塩は、陰イオン樹脂ないし層をアルカ
リ金属塩化物のアルカリ溶液例えば12〜15%塩化
ナトリウム水溶液中約4%の水酸化ナトリウムで
処理することにより容易に且つ完全に除去(スト
リツピング)される。陰イオン交換樹脂からクロ
ム酸塩を除去したのち、樹脂が有用プロセスをも
たらすのにもはや十分な吸着をし得なくなるまで
上記諸工程に従つて多数サイクルにわたりイオン
交換プロセスを反復する。 該プロセスの諸工程およびかかる効果の理解に
資するべく樹脂分離を行うプロセスと行わないプ
ロセスについて理論上の交換機構を次表に示す。
The present invention relates to a method for removing chromate ions from aqueous solutions containing chromate ions and large amounts of dissolved alkali metal chlorates. More specifically, the invention removes chromate ions from an aqueous chloride solution by passing it through a mixed layer of anion and cation exchange resins, each having a specific shape. It concerns the method. TFO'Brien, U.S. Pat.
A method is disclosed in which a significant proportion of chromate ions are removed from the aqueous solution by passing it through a layer of strong base ion exchange resin in the chloride form at an initial pH of . Although this method is clearly an improvement over conventional methods in removing chromate ions from the solution, it is clear that further improvements are needed to remove a large proportion of chromate ions. be. That is, it is possible to economically remove virtually all chromate ions from a solution containing dissolved alkali metal chromates in as little as 10 ppm by weight (generally less than about 20 g/m) and to It would be commercially desirable to provide a process in which processing results in significant removal, preferably virtually complete removal of chromate ions from the solution, without the formation of hazardous chlorine dioxide. The present invention therefore provides a method for removing chromate ions from solutions containing large amounts of dissolved alkali metal chlorate and having a concentration of dissolved alkali metal chromate, such as obtained from electrolysis of sodium chloride solutions. The method comprises passing the solution through a layer consisting essentially of a homogeneous mixture of an anion exchange resin in the chloride form and a weak cation exchange resin in the hydrogen form to be conditioned; The number of exchange sites present in the resin is not less than that present in the anion exchange resin, and the anion exchange resin has a number of exchange sites at least approximately equal to the number of chromate ions that are to be removed from the solution. This is a method for removing chromate ions such that they are present in a sufficient amount to donate chromate ions. In a preferred method,
The cation exchange resin is present in an amount of 0.5 parts by weight or more and 2.0 parts by weight or less per part by weight of the anion exchange resin. In industrial practice, the number of exchange loci is usually meq/
It is specified by the "total exchange volume" expressed in ml or meq/g. The method for measuring this amount varies slightly depending on the resin supplier. The technical bulletin (1972) of the manufacturer of Amberlite IRC-50 states as follows: Total Exchange Capacity: The maximum capacity of Amberlite IRC-50 can be conveniently determined by equilibrating a representative sample of the hydrogen form with excess 0.1N sodium hydroxide. It should remain in contact with the excess caustic for 24 to 48 hours. It is observed that the neutralizing amount of sodium hydroxide is equal to the maximum capacity of the exchanger. Both cation and anion exchange resins useful in the present invention can be either gel type or macroreticular type. However, the macroreticular type is preferred in terms of its high stability over multiple cycles of ion exchange operations. For various ion exchange resins, see, for example, the Kirk-Othmer Encyclopedia.
of Chemical Technology, 2nd edition, Vol.
It is described from page 871 onwards. The anion exchange resin may be either a weak base resin or a strong base resin, but a weak base anion exchange resin is preferred since it allows more quantitative recovery during regeneration. When an anion exchange resin is used in the use stage of the ion exchange process, ie the chromate adsorption step, it should initially be in the chloride form. The cation exchange resin for the present invention is essentially a weak acid cation exchange resin, and it is conditioned at the beginning of the use phase, i.e. when it begins to remove chromate from a chlorate-rich solution. Must be in hydrogen form. When the term "conditioned hydrogen form" is used herein, it refers to a cation exchange resin that is initially completely in hydrogen form so that the chlorate-rich solution is not overly acidified during use. refers to a cation exchange resin form in which hydrogen ions are partially replaced with alkali metal (Na + ) ions. In other words, in order to reduce the "salt-splitting" effect caused by the chromate adsorption process (use stage),
The hydrogen form of the cationic resin is preferably at a neutral pH (6 to
8) Rinse (condition) with alkali metal chloride brine to bring the outlet (brine effluent) pH to 1.0.
It is preferable to adjust the pH to about 2 or less. Salt splitting typically occurs when a solution containing a salt of a strong base and a strong acid is passed through a strong acid ion exchange resin or a strong base ion exchange resin. That is, the cations of the salt easily exchange with the hydrogen of the strong acid resin, and similarly the anions of the salt easily exchange with the hydroxide of the strong base resin. A distinctive feature of weak acid-weak base exchangers as compared to such strong acid-strong base types is that this salt splitting generally does not occur in appreciable amounts. Therefore, the fact that it occurs and that it must be controlled by this method probably means that
This is probably because it contains a very high concentration of salt. The method of the invention, which is advantageously a cyclic process, is outlined as follows: The starting material is provided by treating selected exchange resins, either separately or as a mixture, with a brine solution of an inorganic acid. . This mixture or
By treating the cationic resin with a neutral brine solution, the conditioned hydrogen form of the cationic resin is formed. If the exchange resins have not been mixed prior to their treatment, they are mixed in a manner well known in the art, such as by blowing air in the presence of water. The use stage or chromate adsorption step is then initiated by passing a chlorate-enriched chromate-containing liquid through the mixed resin layer. Depletion of the ion exchange layer is indicated by an increase in the pH to 2 and a simultaneous yellowing of the effluent solution. At that time, the flow of the chromate-containing solution is stopped and the anion exchange resin is treated to recover the chromate ions. In that case, the exchanged resins may or may not be separated in advance. If desired, the resins can be separated by passing a brine solution upward through the resin layer at a flow rate sufficient to separate resins of slightly different specific gravity, as described below. Chromate is easily and completely removed (stripped) by treating the anionic resin or layer with an alkaline solution of an alkali metal chloride, such as about 4% sodium hydroxide in a 12-15% aqueous sodium chloride solution. . After removing the chromate from the anion exchange resin, the ion exchange process is repeated for a number of cycles according to the steps described above until the resin can no longer adsorb enough to produce a useful process. The following table shows theoretical exchange mechanisms for processes with and without resin separation in order to contribute to understanding the various steps of the process and their effects.

【表】【table】

【表】 本発明の方法において、樹脂交換層を通るクロ
ム酸塩含有溶液の流量は、吸着前部が広がるため
単位平方ft当り約1.0ガロン/min好ましくは0.75
ガロン/minを上回るべきでない。 本発明の方法は、アルカリ金属塩素酸塩を、PH
約0.5〜1.0への酸性化で分解するのに十分な濃度
で含有する水溶液であればいずれにも適する。ア
ルカリ金属塩素酸塩の濃度又は該塩素酸塩と塩化
物の濃度は、交換層又は交換カラム内の条件下で
塩析を惹起するほど高くすべきでない。例えば、
80〓(26.7℃)の、塩素酸ナトリウムに富む塩化
ナトリウム溶液の濃度について受容される上限
は、約120g/の塩化ナトリウムと550g/の
塩素酸ナトリウムである。 本発明方法を例示するために下記例を示す。 例 内径1.25cmのガラス製カラムに、ゲルタイプの
強塩基性陰イオン交換樹脂(Rohm&Haas社製
品アンバーライトIRA400)と同じゲルタイプの
弱酸性交換樹脂(同社製品アンバーライト
IRC84)を等重量部均質混合で加えた。このカラ
ム内の混合樹脂層は約80cmの高さと100c.c.の容量
を有した。該カラムに塩酸25meqを通す状態調整
工程を行つて、確実に両交換樹脂が夫々部分的に
塩化物形と水素形になるようにした。この工程の
あと、脱イオン水によるゆすぎを行つた。 クロム酸ナトリウムを含有する塩素酸塩水溶液
供給物(塩素酸ナトリウム600g/、重クロム
酸ナトリウム5.9g/)を2c.c./minの流量でカ
ラムに上方向で通した。上方向にした理由は、塩
素酸塩溶液の比重が樹脂のそれより高かつたから
である。 カラムからの流出液部分(試料)を順次PHと、
比色計によるクロム酸塩含量について分析した。
カラム内での交換の上方移動前部の進行は樹脂の
色変化から観察し得た。引続く流出液部分の観察
および分析結果を次表に示す。クロム酸塩除去工
程の終りにアルカリ性塩化ナトリウムを層に通す
ことによつて、クロム酸塩の完全な回収が達成さ
れた。
Table: In the process of the present invention, the flow rate of the chromate-containing solution through the resin exchange bed is about 1.0 gallons/min per square foot due to the spread of the adsorption front, preferably 0.75
Should not exceed gallons/min. The method of the present invention involves converting alkali metal chlorate into PH
Any aqueous solution containing a concentration sufficient to decompose on acidification to about 0.5 to 1.0 is suitable. The concentration of alkali metal chlorate or the chlorate and chloride should not be so high as to cause salting out under the conditions in the exchange bed or exchange column. for example,
The accepted upper limit for the concentration of sodium chloride-enriched sodium chloride solution at 80㎓ (26.7°C) is about 120 g/d sodium chloride and 550 g/d sodium chlorate. The following examples are provided to illustrate the method of the invention. Example: In a glass column with an inner diameter of 1.25 cm, a gel-type strongly basic anion exchange resin (Rohm & Haas product Amberlite IRA400) and a gel-type weakly acidic exchange resin (Rohm & Haas product Amberlite IRA400) are used.
IRC84) was added in equal parts by weight and homogeneously mixed. The mixed resin bed in this column had a height of about 80 cm and a capacity of 100 c.c. A conditioning step was performed to pass 25 meq of hydrochloric acid through the column to ensure that both exchange resins were partially in the chloride and hydrogen forms, respectively. This step was followed by a deionized water rinse. An aqueous chlorate feed containing sodium chromate (600 g sodium chlorate/5.9 g sodium dichromate) was passed upward through the column at a flow rate of 2 c.c./min. The reason for the upward direction was that the specific gravity of the chlorate solution was higher than that of the resin. The effluent part (sample) from the column is sequentially measured as PH and
It was analyzed for chromate content by colorimeter.
The progress of the upward movement front of exchange within the column could be observed from the color change of the resin. The subsequent observation and analysis results of the effluent portion are shown in the table below. Complete recovery of chromate was achieved by passing alkaline sodium chloride through the bed at the end of the chromate removal step.

【表】【table】

【表】 例 マクロ網状タイプの弱陽イオン交換樹脂
(Rohm&Haas社のAmberlite IRC50)とマクロ
網状タイプの弱陰イオン交換樹脂との均質混合物
(重量比60:40)を1.9cm径カラムに132cmの高さ
まで充填した。 このカラムに先ず、4%の水酸化ナトリウム水
溶液を下方向に通し次いでPHが1.5より低くなる
まで4%の塩酸水溶液を通すことによつて、上記
混合樹脂層を予め状態調整した。最後に、流出物
のPHが1.5に上がるまでほゞ飽和せる中性塩化ナ
トリウム水溶液で下方向の洗浄を行つて陽イオン
交換樹脂の水素形を状態調整した。 クロム酸塩の吸着は、重クロム酸ナトリウムを
1.02g/含有する塩素酸塩(塩素酸ナトリウム
450g/)溶液(供給液)を樹脂層に5c.c./min
の流量で通すことにより遂行された。流出物が肉
眼で黄色にならないうちに1850c.c.の無色生成物が
収集された。この間、流出物のPHは着実に1.6か
ら2.05に上昇した。更に150c.c.流したあとの流出
物に重クロム酸ナトリウム(Na2Cr2O7
24.6ppmが含まれ、そして流出物のPHは2.15であ
つた。 例1のように、流出物の試料を相継ぎ採取して
PHを調べた。また、クロム酸塩含量の指標として
各試料の色に注意した。無色の試料は事実上クロ
ム酸塩の不在を示した。次表に、各試料のPHと観
察データを掲載する:
[Table] Example: A homogeneous mixture (weight ratio 60:40) of a macroreticular type weak cation exchange resin (Rohm &Haas's Amberlite IRC50) and a macroreticular type weak anion exchange resin (weight ratio 60:40) was placed in a 1.9cm diameter column with a height of 132cm. It was filled up to the maximum. The mixed resin layer was preconditioned by first passing a 4% aqueous sodium hydroxide solution downward through the column followed by a 4% aqueous hydrochloric acid solution until the PH was below 1.5. Finally, the hydrogen form of the cation exchange resin was conditioned by washing downwards with a nearly saturated aqueous neutral sodium chloride solution until the effluent pH rose to 1.5. For adsorption of chromate, use sodium dichromate.
1.02g/containing chlorate (sodium chlorate
450g/) solution (supply liquid) to the resin layer at 5c.c./min
This was accomplished by passing it through at a flow rate of . 1850 c.c. of colorless product was collected before the effluent turned yellow to the naked eye. During this time, the effluent pH steadily increased from 1.6 to 2.05. Sodium dichromate (Na 2 Cr 2 O 7 ) was added to the effluent after 150 c.c.
It contained 24.6 ppm and the PH of the effluent was 2.15. As in Example 1, take successive samples of the effluent.
I checked the pH. We also noted the color of each sample as an indicator of chromate content. Colorless samples showed virtually no chromate. The following table lists the PH and observation data for each sample:

【表】【table】

【表】 平衡前は高い。
例 連続イオン交換プロセスを循環させるために特
に配管した10in径カラムの中で、弱陽イオン樹脂
(アンバーライトIRC84)1重量部と弱陰イオン
樹脂(アンバーライトIRA94)2重量部とを水の
存在下空気混合することによつて混合樹脂層を調
製し、而してこの混合物は全体でカラム中35inの
高さに達した。 該樹脂層に、流出物のPHが1.5になるまでNaCl
ブライン中4%のHCl溶液を下方向に通すことに
よつて、該層を処理した。次いで、飽和NaClブ
ライン(PH9.5)を下方向に通すことによつて、
状態調整工程を実施した。PHは、塩分裂によつて
初期0.4に下がつたあと1.0より高くなつた。そこ
で、ブラインによるゆすぎを停止した。 次いで、塩素酸ナトリウム450g/と
Na2Cr2O73.1g/を含有する液を0.25ガロン/
minで上方向に流すことにより、クロム酸塩吸着
工程を開始した。64ガロンが処理されるまで流出
物は無色のまゝであつた。最初の黄色流出流れが
現出したとき、該流出物のPHは2.05〜2.2の間で
あつた。ストリツピングによる交換樹脂からのク
ロム酸塩脱着は、半飽和(12%)Naclブライン
中4%のNaOHを下方向流れで通すことにより
遂行された。
[Table] High before equilibrium.
Example: 1 part by weight of a weak cation resin (Amberlite IRC84) and 2 parts by weight of a weak anionic resin (Amberlite IRA94) in the presence of water in a 10 inch diameter column specifically plumbed for circulating continuous ion exchange process. A mixed resin layer was prepared by under-air mixing, and the mixture reached a total height of 35 inches in the column. Add NaCl to the resin layer until the pH of the effluent is 1.5.
The layer was treated by passing down a 4% HCl solution in brine. Then by passing saturated NaCl brine (PH9.5) downwards.
A conditioning process was performed. The pH initially dropped to 0.4 due to salt splitting and then rose above 1.0. Therefore, rinsing with brine was stopped. Next, sodium chlorate 450g/and
0.25 gallons of liquid containing 3.1 g of Na 2 Cr 2 O 7
The chromate adsorption step was started by flowing upward at min. The effluent remained colorless until 64 gallons had been treated. When the first yellow effluent stream appeared, the PH of the effluent was between 2.05 and 2.2. Chromate desorption from the exchange resin by stripping was accomplished by passing 4% NaOH in half-saturated (12%) NaCl brine in a downward flow.

【表】【table】

【表】 以上の例は、クロム酸塩吸着工程に関する本発
明の方法を例示したものである。例および例
では、クロム酸塩吸着工程のあと、交換樹脂層に
半飽和(12〜15%NaCl)ブライン中4%の水酸
化ナトリウム溶液を通すことによつて、弱塩基陰
イオン樹脂からクロム酸塩が容易にストリツピン
グされる。次いで、該層に塩酸溶液を通すことに
より層が再生され、またわずかにアルカリ性又は
中性のNaCl溶液を用いることによつて1〜2の
PHに状態調整される。しかるのち、クロム酸塩吸
着工程を反復することができる。 本発明の別の具体化は次のように概記される: 交換カラムに入れた塩化物形のときの陰イオン
交換樹脂約35〜65重量部と水素形のときの弱陽イ
オン交換樹脂約65〜35重量部とに水の存在下空気
を吹込むことによつて、既述せるイオン交換樹脂
の混合層を調整する。 カラムを排出させたのち、層をアルカリ金属塩
化物の無機酸溶液で処理し、次いでこの層にアル
カリ金属塩化物の中性溶液を通して流出物PHを既
述の如く調節することにより陽イオン樹脂を状態
調整する。約20g/未満好ましくは10g/未
満のアルカリ金属クロム酸塩を含有する、アルカ
リ金属塩素酸塩に富んだアルカリ金属塩化物水溶
液を混合交換層に該層の単位平方ft当り約0.5ガ
ロン/minの流量で上方向に通しながら、その間
流出流れのPHをモニターする。PHが約2を上回
り、流出物が黄色になつたとき、塩素酸塩液流れ
を停止する。 交換樹脂層から塩素酸塩液を排出させ、そして
該層に、好ましくは中性PH(7〜8)を有する半
飽和(12〜15%)塩化ナトリウムブラインを上方
向で通す。このときの流量は、2種の交換樹脂を
上層(陰イオン樹脂)と下層(陽イオン樹脂)と
に分離させるのに十分なものとする。ブライン流
れを停止させたのち、陰イオン交換樹脂に、流出
流れがアルカリ性になつて樹脂からの吸着クロム
酸塩除去を示すまで、12〜15%塩化ナトリウム中
4%の水酸化ナトリウムを下方向に通す。次い
で、再生のため、交換樹脂に、半飽和塩化ナトリ
ウムブライン中の塩酸を、流出物のPHが1.0に下
がるまで通す。陽イオン樹脂の状態調整は、該樹
脂に半飽和塩化ナトリウムブラインを上方向又は
下方向で、流出物PHが1.5〜2になるまで通すこ
とにより遂行される。そのあと、クロム酸塩の吸
着工程が反復される。
TABLE The above example illustrates the method of the present invention for a chromate adsorption step. In the Examples and Examples, chromate is removed from a weak base anionic resin by passing a 4% sodium hydroxide solution in half-saturated (12-15% NaCl) brine through the exchange resin layer after the chromate adsorption step. Salt is easily stripped. The layer is then regenerated by passing a hydrochloric acid solution through the layer and 1-2 by using a slightly alkaline or neutral NaCl solution.
Condition adjusted to PH. The chromate adsorption step can then be repeated. Another embodiment of the present invention is outlined as follows: about 35 to 65 parts by weight of an anion exchange resin in chloride form and about 35 to 65 parts by weight of a weak cation exchange resin in hydrogen form placed in an exchange column. A mixed layer of the ion exchange resin described above is prepared by blowing air into 65 to 35 parts by weight of the ion exchange resin in the presence of water. After draining the column, the cationic resin is removed by treating the bed with an inorganic acid solution of alkali metal chloride and then passing through this bed a neutral solution of alkali metal chloride and adjusting the effluent PH as described above. Adjust the condition. An alkali metal chlorate-enriched aqueous alkali metal chloride solution containing less than about 20 g/min of alkali metal chromate is added to the mixed exchange bed at a rate of about 0.5 gallons/min per square foot of said bed. While passing upward at the flow rate, monitor the PH of the effluent stream. When the PH is above about 2 and the effluent turns yellow, stop the chlorate fluid flow. The chlorate solution is drained from the exchange resin bed and a semi-saturated (12-15%) sodium chloride brine, preferably having a neutral PH (7-8), is passed upwardly through the bed. The flow rate at this time is sufficient to separate the two types of exchange resins into an upper layer (anion resin) and a lower layer (cation resin). After stopping the brine flow, the anion exchange resin was charged with 4% sodium hydroxide in 12-15% sodium chloride in a downward direction until the effluent became alkaline, indicating adsorbed chromate removal from the resin. Pass. For regeneration, the exchange resin is then passed with hydrochloric acid in half-saturated sodium chloride brine until the effluent pH drops to 1.0. Conditioning of the cationic resin is accomplished by passing half-saturated sodium chloride brine through the resin upwardly or downwardly until the effluent PH is between 1.5 and 2. The chromate adsorption step is then repeated.

【特許請求の範囲】[Claims]

1 主にガラス状炭素と黒鉛よりなる炭素成形体
であつて、該炭素成形体の残留水素が0.02重量%
以下であり且つ真比重が1.9以下であることを特
徴とする不透過性炭素成形体。
1 A carbon molded body mainly composed of glassy carbon and graphite, with residual hydrogen of 0.02% by weight.
An impermeable carbon molded article having the following properties and a true specific gravity of 1.9 or less.

Claims (1)

【特許請求の範囲】 1 多量の溶解アルカリ金属塩素酸塩を含有し且
つ或る濃度の溶解アルカリ金属クロム酸塩を有す
る溶液からクロム酸イオンを除去するに当り、前
記溶液を、塩化物形の陰イオン交換樹脂と状態調
整せる水素形の弱陽イオン交換樹脂との均質混合
物より本質上なる層に通すことを包含する方法で
あつて、しかも前記陽イオン交換樹脂中に存在す
る交換座数が前記陰イオン交換樹脂中に存在する
それよりも少くなり、また前記陰イオン交換樹脂
が前記溶液から除去せんとするクロム酸イオン数
より多い交換座数を供与するのに十分な量で存在
するようにしてなるクロム酸イオンの除去方法。 2 溶液が、層の単位平方ft当り0.75ガロン/
minを越えない流量で該層に通される特許請求の
範囲第1項記載の方法。 3 陰イオン交換樹脂が弱塩基樹脂である特許請
求の範囲第1項記載の方法。 4 2種の交換樹脂がいずれもマクロ網状である
特許請求の範囲第3項記載の方法。 5 陽イオン交換樹脂が陰イオン交換樹脂1重量
部当り0.5重量部より少くなくしかも2.0重量部よ
り多くない量で存在する特許請求の範囲第4項記
載の方法。 6 混合イオン交換樹脂層を通過する溶液の流出
流れのPHが約1より低くなく約2より高くない範
囲にある特許請求の範囲第1項記載の方法。 7 溶液が溶解塩素酸ナトリウムおよび塩化ナト
リウムを多割合で含有する特許請求の範囲第5項
記載の方法。 8 混合イオン交換樹脂層に溶液流れを通し終え
たあと該層に希アルカリ水溶液を通すことによつ
て、陰イオン交換樹脂から吸着クロム酸イオンが
回収される特許請求の範囲第7項記載の方法。 9 アルカリ溶液が塩化ナトリウム水溶液中の水
酸化ナトリウムである特許請求の範囲第8項記載
の方法。 10 クロム酸イオンの回収後混合イオン交換樹
脂に無機酸の希水溶液を通すことによつて両イオ
ン交換樹脂が処理される特許請求の範囲第8項記
載の方法。 11 無機酸の水溶液が塩化ナトリウム水溶液中
の塩酸である特許請求の範囲第10項記載の方
法。 12 少くとも陽イオン交換樹脂を実質上中性の
塩化ナトリウム水溶液で処理することにより水素
イオンが或る程度ナトリウムイオンで置換えられ
る特許請求の範囲第10項記載の方法。 13 中性塩化ナトリウム溶液を混合イオン交換
樹脂層に通すことによつて処理を行う特許請求の
範囲第12項記載の方法。 14 希アルカリ水溶液を層に通す前に陽イオン
交換樹脂を陰イオン交換樹脂から分離し、而して
前記アルカリ溶液を該陰イオン交換樹脂のみに通
し、また陽イオン交換樹脂には中性塩化ナトリウ
ム水溶液を通したのち、両イオン交換樹脂をクロ
ム酸イオンの回収後再混合する特許請求の範囲第
10項記載の方法。
[Scope of Claims] 1. In removing chromate ions from a solution containing a large amount of dissolved alkali metal chlorate and having a concentration of dissolved alkali metal chromate, the solution is treated in the chloride form. A method comprising passing through a layer consisting essentially of a homogeneous mixture of an anion exchange resin and a weak cation exchange resin in hydrogen form to be conditioned, wherein the number of exchange sites present in the cation exchange resin is less than that present in the anion exchange resin and in an amount sufficient for the anion exchange resin to provide a number of exchange sites greater than the number of chromate ions that are to be removed from the solution. A method for removing chromate ions. 2 The solution is 0.75 gallons per square foot of bed.
2. The method of claim 1, wherein the bed is passed through the bed at a flow rate not exceeding min. 3. The method according to claim 1, wherein the anion exchange resin is a weak base resin. 4. The method according to claim 3, wherein both of the two exchange resins are macroreticular. 5. The method of claim 4, wherein the cation exchange resin is present in an amount of not less than 0.5 parts by weight and not more than 2.0 parts by weight per part by weight of anion exchange resin. 6. The method of claim 1, wherein the PH of the solution effluent stream passing through the mixed ion exchange resin bed is in the range of no less than about 1 and no more than about 2. 7. The method of claim 5, wherein the solution contains a high proportion of dissolved sodium chlorate and sodium chloride. 8. The method of claim 7, wherein the adsorbed chromate ions are recovered from the anion exchange resin by passing a dilute aqueous alkaline solution through the mixed ion exchange resin bed after passing the solution stream through the bed. . 9. The method according to claim 8, wherein the alkaline solution is sodium hydroxide in an aqueous sodium chloride solution. 10. The method of claim 8, wherein both ion exchange resins are treated by passing a dilute aqueous solution of an inorganic acid through the mixed ion exchange resin after recovery of the chromate ions. 11. The method according to claim 10, wherein the aqueous solution of inorganic acid is hydrochloric acid in an aqueous sodium chloride solution. 12. The method of claim 10, wherein hydrogen ions are replaced to some extent with sodium ions by treating at least the cation exchange resin with a substantially neutral aqueous sodium chloride solution. 13. The method of claim 12, wherein the treatment is carried out by passing a neutral sodium chloride solution through a bed of mixed ion exchange resins. 14 Separate the cation exchange resin from the anion exchange resin before passing the dilute aqueous alkaline solution through the bed, so that the alkaline solution is passed only through the anion exchange resin, and the cation exchange resin is filled with neutral sodium chloride. 11. The method according to claim 10, wherein after passing through the aqueous solution, both ion exchange resins are remixed after recovery of the chromate ions.
JP11137278A 1977-09-13 1978-09-12 Removal of chromic acid ion from chlorate solution Granted JPS5450488A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US83286677A 1977-09-13 1977-09-13

Publications (2)

Publication Number Publication Date
JPS5450488A JPS5450488A (en) 1979-04-20
JPH0140761B2 true JPH0140761B2 (en) 1989-08-31

Family

ID=25262810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11137278A Granted JPS5450488A (en) 1977-09-13 1978-09-12 Removal of chromic acid ion from chlorate solution

Country Status (20)

Country Link
JP (1) JPS5450488A (en)
AR (1) AR219127A1 (en)
AU (1) AU522562B2 (en)
BE (1) BE870214A (en)
BR (1) BR7805948A (en)
CA (1) CA1112379A (en)
DD (1) DD138303A5 (en)
DE (1) DE2839894A1 (en)
DK (1) DK157360C (en)
FI (1) FI67494C (en)
FR (1) FR2402623A1 (en)
GB (1) GB2004262B (en)
HU (1) HU182557B (en)
IT (1) IT1107755B (en)
MX (1) MX150616A (en)
NL (1) NL187051C (en)
NO (1) NO151999C (en)
PL (1) PL112445B1 (en)
SE (1) SE431440B (en)
YU (1) YU216578A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176056A (en) * 1978-04-27 1979-11-27 Pennwalt Corporation Cyclic operation of a bed of mixed ion exchange resins
US4259297A (en) * 1979-09-04 1981-03-31 Olin Corporation Chromate removal from concentrated chlorate solution by chemical precipitation
US4547291A (en) * 1983-12-13 1985-10-15 The Graver Company Method for treating aqueous solutions with weakly acidic cation exchange resins
CA1247761A (en) * 1983-12-13 1988-12-28 Robert Kunin Method for treating aqueous solutions with weakly acidic cation exchange resins
US7907987B2 (en) 2004-02-20 2011-03-15 University Of Florida Research Foundation, Inc. System for delivering conformal radiation therapy while simultaneously imaging soft tissue

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013299A (en) * 1973-04-30 1975-02-12
JPS5148563A (en) * 1974-10-24 1976-04-26 Kurita Water Ind Ltd Kuromuganjuhaisuino shoriho
JPS5290164A (en) * 1976-01-23 1977-07-28 Kurita Water Ind Ltd Method for treating water containing 6 valment chromium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB760524A (en) * 1954-05-21 1956-10-31 Permutit Co Ltd Improvements relating to the recovery of chromic or phosphoric acid
US3972810A (en) * 1974-07-15 1976-08-03 Chemical Separations Corporation Removal of chromium, chromate, molybdate and zinc
CA1035874A (en) * 1974-11-20 1978-08-01 Huron Chemicals Limited Ion exchange chromate removal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013299A (en) * 1973-04-30 1975-02-12
JPS5148563A (en) * 1974-10-24 1976-04-26 Kurita Water Ind Ltd Kuromuganjuhaisuino shoriho
JPS5290164A (en) * 1976-01-23 1977-07-28 Kurita Water Ind Ltd Method for treating water containing 6 valment chromium

Also Published As

Publication number Publication date
FI67494B (en) 1984-12-31
FI67494C (en) 1985-04-10
DD138303A5 (en) 1979-10-24
BE870214A (en) 1979-01-02
NL7808907A (en) 1979-03-15
FR2402623A1 (en) 1979-04-06
MX150616A (en) 1984-06-11
CA1112379A (en) 1981-11-10
DE2839894C2 (en) 1988-07-21
SE431440B (en) 1984-02-06
FR2402623B1 (en) 1983-03-25
NL187051C (en) 1991-05-16
PL209536A1 (en) 1979-06-04
NO151999B (en) 1985-04-09
SE7809547L (en) 1979-03-14
DK157360C (en) 1990-05-21
GB2004262A (en) 1979-03-28
IT1107755B (en) 1985-11-25
NL187051B (en) 1990-12-17
AU3897678A (en) 1980-02-21
FI782748A (en) 1979-03-14
BR7805948A (en) 1979-05-02
DE2839894A1 (en) 1979-03-22
NO783088L (en) 1979-03-14
GB2004262B (en) 1982-03-24
PL112445B1 (en) 1980-10-31
YU216578A (en) 1982-08-31
NO151999C (en) 1985-07-17
JPS5450488A (en) 1979-04-20
HU182557B (en) 1984-02-28
DK157360B (en) 1989-12-27
AU522562B2 (en) 1982-06-17
DK398878A (en) 1979-03-14
IT7851044A0 (en) 1978-09-11
AR219127A1 (en) 1980-07-31

Similar Documents

Publication Publication Date Title
US4125594A (en) Purification of hydrofluoric acid etching solutions with weak anion exchange resins
US3454503A (en) Process for regenerating cation exchange resins
US5069884A (en) Process for the purification of an aqueous alkali metal chloride solution from ammonium and iodine compounds
JPH0140761B2 (en)
JPS6231613B2 (en)
US2738322A (en) Process for removing sulfuric acid from aqueous solutions of inorganic sulfates
US4525483A (en) Chromate ion removal from aqueous solutions
EP0228831B1 (en) Process for treating a liquid involving cation exchange and selective removal of nitrate ions from the liquid, and ion exchange resin mixtures suitable for use therein
US3342730A (en) Method for producing soft water
EP0225793B1 (en) Use of ion exchange resin mixtures in cation exchange processes
US3101250A (en) Process for sorption of bromide ion on anion exchange resins
US4335000A (en) Chromate ion removal from aqueous solutions
US4154801A (en) Process for purifying alkali metal hydroxide or carbonate solutions
RU2157339C2 (en) Method of production of lithium bromide from brines
US20030196962A1 (en) Process for selective removal of toxic ions from water
US2884310A (en) Production of alkali metal hydroxides by ion exchange
JPH07206804A (en) Purification of taurine
US3441376A (en) Process for producing an acid and a basic salt from an alkali metal halide
US3037845A (en) Process for recovering bromine adsorbed on anion-exchange resins
EP0609839B1 (en) Method for electrolyzing an alkali metal chloride
DE1910938C3 (en) Process for the purification of sulfur dioxide from hydrogen halides
RU1773866C (en) Method of obtaining calcium thiosulfate
Lindsay et al. Operating Characteristics of a Strongly Basic Anion Exchanger
RU2113402C1 (en) Method of isolating iodine from solutions
KR830001887B1 (en) Regeneration Method of Anion Exchange Resin in Sugar Liquid Refining