JPH0132903B2 - - Google Patents

Info

Publication number
JPH0132903B2
JPH0132903B2 JP58047007A JP4700783A JPH0132903B2 JP H0132903 B2 JPH0132903 B2 JP H0132903B2 JP 58047007 A JP58047007 A JP 58047007A JP 4700783 A JP4700783 A JP 4700783A JP H0132903 B2 JPH0132903 B2 JP H0132903B2
Authority
JP
Japan
Prior art keywords
water supply
temperature
air conditioning
conditioning load
supply temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58047007A
Other languages
Japanese (ja)
Other versions
JPS59173646A (en
Inventor
Kazuyuki Kamimura
Shinichi Okato
Junichi Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP58047007A priority Critical patent/JPS59173646A/en
Publication of JPS59173646A publication Critical patent/JPS59173646A/en
Publication of JPH0132903B2 publication Critical patent/JPH0132903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、空調用の熱源装置を空調負荷量に応
じて制御する方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in a method for controlling an air conditioning heat source device according to an air conditioning load amount.

〔従来技術〕[Prior art]

第1図は、熱源装置の例として示す冷凍装置の
構成図であり、冷凍機R1,R2およびポンプP1
P2等により冷凍装置が構成され、ポンプP1,P2
により圧送された給水は、冷凍機R1,R2により
冷却されたうえ、ヘツダH1を介し送水としてフ
アンコイルユニツト等の空調負荷ALへ供給され、
これを介してH2へ還水として還流し、循環を反
復するものとなつているが、送水量を流量計Fに
より検出する一方、冷凍機R1,R2からの送水温
度を温度センサT1により検出すると共に、還水
温度を温度センサT2により検出し、これらの検
出々力に基づき、制御器CTにおいては、還水温
度と送水温度との温度差に送水量を乗じて空調負
荷量を算出のうえ、空調負荷量に応じて還水温度
がほゞ一定となる様、冷凍機R1,R2の冷却能力
を同時に制御すると共に、ポンプP1,P2の回転
数を50%または100%として同時に制御している。
FIG. 1 is a block diagram of a refrigeration system shown as an example of a heat source device, in which refrigerators R 1 , R 2 and pumps P 1 ,
A refrigeration system is composed of P 2, etc., and pumps P 1 and P 2
The feed water pumped by
Through this, water is returned to H 2 as return water, and the circulation is repeated.While the amount of water sent is detected by a flowmeter F, the temperature of water sent from refrigerators R 1 and R 2 is measured by a temperature sensor T. 1 , and the return water temperature is detected by temperature sensor T 2. Based on these detection forces, the controller CT calculates the air conditioning load by multiplying the temperature difference between the return water temperature and the water supply temperature by the water supply amount. After calculating the amount, the cooling capacity of refrigerators R 1 and R 2 is simultaneously controlled, and the rotation speed of pumps P 1 and P 2 is adjusted to 50% so that the return water temperature is almost constant according to the air conditioning load. Controlled as % or 100% at the same time.

したがつて、空調負荷量LAと送水温度θ0との関
係を第2図に示すとおり、空調負荷量LAが0〜
50%では、ポンプP1,P2の回転数が50%に設定
され、空調負荷量LAの増加に応じ、送水温度θ0
10℃から5℃へ変化するのに対し、空調負荷量
LAが50〜100℃では、ポンプP1,P2の回転数が
100%となり、送水量が50%回転時に対して2倍
となるため、送水温度θ0は、空調負荷量LAの増加
に応じ7.5℃から5℃へ変化するものとなる。
Therefore, as shown in Figure 2, the relationship between the air conditioning load L A and the water supply temperature θ 0 shows that when the air conditioning load L A is 0 to
At 50%, the rotation speed of pumps P 1 and P 2 is set to 50%, and the water supply temperature θ 0 increases as the air conditioning load L A increases.
Air conditioning load changes from 10℃ to 5℃
When L A is 50 to 100℃, the rotation speed of pumps P 1 and P 2 is
100%, and the water supply amount is twice that at 50% rotation, so the water supply temperature θ 0 changes from 7.5°C to 5°C as the air conditioning load L A increases.

なお、50%回転時の送水温度5℃と、100%回
転時の送水温度7.5℃とでは、送水温度θ0が異な
つても、送水量が100%回転により2倍となるた
め、送水の熱量は変化しない。
Furthermore, even if the water supply temperature θ 0 is different between the water supply temperature of 5℃ at 50% rotation and the water supply temperature of 7.5℃ at 100% rotation, the amount of water conveyed is doubled due to 100% rotation, so the calorific value of the water supply is does not change.

しかし、空調負荷ALの弁開度は、室温設定値
と室温とに応じて制御されており、送水温度θ0
急激に変化しても弁開度は直ちに応答せず、直前
の開度を維持するものとなつている。
However, the valve opening of the air conditioning load AL is controlled according to the room temperature set value and the room temperature, and even if the water supply temperature θ 0 suddenly changes, the valve opening does not respond immediately, and the valve opening does not respond immediately to the previous opening. It has become something to maintain.

このため、空調負荷量LAの増加に応じて100%
回転となり、送水温度θ0が5℃から7.5℃へ変化
しても、弁開度は5℃に対する小開度のまゝであ
り、実際に空調負荷ALを流通する流量が少なく、
7.5℃の送水が殆んど温度上昇を来さずに還水と
なることにより、見掛上、空調負荷量LAが減少
したものと制御器CTが判断し、実際には空調負
荷量LAが50%を越えているにもかゝわらず、50
%回転の状態へ復帰させるものとなる。
Therefore, 100% as the air conditioning load L A increases.
Even if the water supply temperature θ 0 changes from 5°C to 7.5°C, the valve opening remains small relative to 5°C, and the actual flow rate flowing through the air conditioning load AL is small.
The controller CT determines that the air conditioning load amount L A has apparently decreased because the water sent at 7.5℃ becomes return water with almost no temperature rise, and in reality the air conditioning load amount L A has decreased. Even though A is over 50%, 50
It will return to the state of % rotation.

また、空調負荷量LAの減少に応じて50%回転
となり、送水温度θ0が7.5℃から5℃へ変化して
も、弁開度は7.5℃に対する大開度のまゝであり、
実際に空調負荷ALを流通する流量が必要以上に
多く、5℃の送水が過剰に温度上昇を来して還水
となることにより、見掛上、空調負荷量LAが増
加したものと制御器CTが判断し、実際には空調
負荷量LAが50%以下となつているにもかゝわら
ず、再び100%回転の状態へ復帰させるものとな
る。
In addition, even if the air conditioning load L A decreases, the rotation will be 50%, and the water supply temperature θ 0 changes from 7.5°C to 5°C, the valve opening will remain at the large opening relative to 7.5°C.
The actual flow rate flowing through the air conditioning load AL is higher than necessary, and the 5°C water supply causes an excessive temperature rise and becomes return water, which is assumed to have increased the air conditioning load L A. The controller CT determines that the air conditioning load L A is actually less than 50%, but it returns to 100% rotation again.

したがつて、従来においては、空調負荷量LA
が50%近傍において増減した場合、ポンプP1
P2が50%回転と100%回転との状態を往復的に制
御状況が不安定となる欠点を生じていた。
Therefore, in the past, the air conditioning load amount L A
increases or decreases around 50%, pump P 1 ,
P2 had the disadvantage that the control situation became unstable as it reciprocated between 50% rotation and 100% rotation.

〔発明の概要〕[Summary of the invention]

本発明は、従来の欠点を根本的に解決する目的
を有し、空調負荷量に応じて熱源機器用ポンプの
回転数を段階的に制御する一方、還水温度θiを示
す信号Siと還水温度θiの設定値SPiとの差に基づ
き還水温度θiがその設定値SPiとほゞ等しくなる
ように送水温度θ0の指令値を演算し、ポンプの回
転数に応じて送水温度θ0の制限を定め、この制限
値よりも上記指令値が高い場合にはその制限値に
応じて送水温度θ0の制御を行い、ポンプの回転数
の切り換え時に送水温度θ0を連続的に変化させる
ようにした極めて効果的な、熱源装置の制御方法
を提供するものである。
The purpose of the present invention is to fundamentally solve the conventional drawbacks, and while controlling the rotation speed of a pump for heat source equipment in stages according to the air conditioning load, the present invention Based on the difference between the temperature θi and the set value SPi, the command value of the water supply temperature θ 0 is calculated so that the return water temperature θi is almost equal to the set value SPi, and the command value of the water supply temperature θ 0 is calculated according to the pump rotation speed. A limit is set, and if the command value is higher than this limit value, the water supply temperature θ 0 is controlled according to the limit value, and the water supply temperature θ 0 is continuously changed when the pump rotation speed is changed. The present invention provides an extremely effective control method for a heat source device.

〔実施例〕 以下、実施例を示す第3図以降により本発明の
詳細を説明する。
[Example] The details of the present invention will be explained below with reference to FIG. 3 and subsequent figures showing an example.

第3図は、制御器CTへ付加する制御回路のブ
ロツク図、第4図は、第3図の構成による制御に
よつて得られる空調負荷量LAと還水温度θiおよび
送水温度θ0との関係を示す図であり、第3図にお
いては、第1図の速度発電機TG1,TG2から得た
ポンプP1,P2の回転数を示す信号Srを係数変換
器FCVへ与え、こゝにおいて100分率へ変換のう
え、低値セレクタLSEの一方の入力へ与えてい
る。
Fig. 3 is a block diagram of the control circuit added to the controller CT, and Fig. 4 shows the air conditioning load L A , return water temperature θi, and water supply temperature θ 0 obtained by control according to the configuration shown in Fig. 3. In FIG. 3, a signal Sr indicating the rotational speed of the pumps P 1 and P 2 obtained from the speed generators TG 1 and TG 2 of FIG. 1 is applied to the coefficient converter FCV, Here, it is converted to a 100% rate and given to one input of the low value selector LSE.

一方、還水温度θiを示す信号Siは、還水温度θi
の設定値SPiと共に演算器PID1へ与えられ、こゝ
において、両入力に基づくPID(比例、積分、微
分)演算がなされ、送水温度θ0の指令値となつて
から、低値セレクタLSEの他方の入力へ与えられ
る。
On the other hand, the signal Si indicating the return water temperature θi is the return water temperature θi
It is given to the calculator PID 1 along with the set value SPi, where a PID (proportional, integral, differential) calculation is performed based on both inputs, and the command value of the water supply temperature θ 0 is obtained. given to the other input.

たゞし、送水温度θ0の指令値は、この場合、送
水温度θ0が10℃のとき0%、5℃のとき100%と
なる100分率として定められる。
However, in this case, the command value of the water supply temperature θ 0 is determined as a 100% ratio, which is 0% when the water supply temperature θ 0 is 10°C and 100% when it is 5°C.

このため、ポンプP1,P2が共に50%回転であ
れば、係数変換器FCVの出力は50%、同様に100
%回転であれば、同様の出力は100%となり、50
%回転時には演算器PID1からの指令値が0〜50
%未満のとき、低値セレクタLSEが指令値を選択
し、演算器PID2へ設定値として送出するのに対
し、指令値が50%以上になると、低値セレクタ
LSEが係数変換器FCVの出力を選択し、これを
演算器PID2へ設定値として送出するものとなり、
この設定値および、温度センサT1からの送水温
度θ0を示す信号S0に基づき、演算器PID2がPID演
算を行ないい、送水温度θ0を制御する信号Scを冷
凍機R1,R2へ送出することにより、第4図のと
おり送水温度θ0が制御され、空調負荷量LAが0〜
ほヾ25%では、送水温度θ0が空調負荷量LAに応じ
て低下するのに対し、空調負荷量LAがほヾ25%
〜50%では、送水温度θ0がほゞ7.5℃の一定値に
保たれ、これによつて50%回転時の制限値LV1
定められる。
Therefore, if both pumps P 1 and P 2 rotate at 50%, the output of the coefficient converter FCV will be 50%, and likewise 100%.
% rotation, the similar output would be 100%, and 50
During % rotation, the command value from the calculator PID 1 is 0 to 50.
When the command value is less than 50%, the low value selector LSE selects the command value and sends it to the calculator PID 2 as a set value, whereas when the command value is 50% or more, the low value selector LSE
The LSE selects the output of the coefficient converter FCV and sends it to the arithmetic unit PID 2 as a set value,
Based on this set value and the signal S 0 indicating the water supply temperature θ 0 from the temperature sensor T 1 , the calculator PID 2 performs PID calculation and sends the signal Sc for controlling the water supply temperature θ 0 to the refrigerators R 1 , R 2 , the water supply temperature θ 0 is controlled as shown in Figure 4, and the air conditioning load L A is controlled from 0 to
At 25%, the water supply temperature θ 0 decreases according to the air conditioning load L A , while the air conditioning load L A decreases by 25%.
~50%, the water supply temperature θ 0 is kept at a constant value of approximately 7.5° C., which determines the limit value LV 1 at 50% rotation.

また、100%回転時には、係数変換器FCVの出
力が100%となり、演算器PID1からの指令値が
100%未満の間は、低値セレクタLSEが常に指令
値を選択し、これを設定値として演算器PID2
与えるため、第4図のとおり、空調負荷量LA
50〜100%未満では、送水温度θ0が空調負荷量LA
に応じて低下し、空調負荷量LAの100%において
100%回転時の制限値LV2へ達する。
Also, at 100% rotation, the output of the coefficient converter FCV is 100%, and the command value from the calculator PID 1 is
When it is less than 100%, the low value selector LSE always selects the command value and gives it to the calculator PID 2 as the set value, so as shown in Figure 4, the air conditioning load L A is
Below 50% to 100%, the water supply temperature θ 0 is the air conditioning load L A
At 100% of the air conditioning load L A
Reach limit value LV 2 at 100% rotation.

なお、第4図においては、空調負荷量LA
ほゞ25〜50%のとき、還水温度θiに変化を生ずる
が、還水温度θiと送水温度θ0との温度差は、空調
負荷量LAに応じて増大するため、空調負荷量LA
と対応した冷房が行なわれる。
In addition, in Fig. 4, when the air conditioning load L A is approximately 25 to 50%, the return water temperature θi changes, but the temperature difference between the return water temperature θi and the water supply temperature θ 0 is determined by the air conditioning load. Since it increases according to the amount L A , the air conditioning load amount L A
Cooling is performed accordingly.

したがつて、空調負荷量LAが50%近傍におい
て増減しても、送水温度θ0が連続的に制御される
ものとなり、空調負荷ALの弁開度が送水温度θ0
の変化に即応しなくとも、制御器CTが空調負荷
量LAを誤判断することがなくなり、ポンプP1
P2に対する回転数の制御が安定なものとなる。
Therefore, even if the air conditioning load amount L A increases or decreases around 50%, the water supply temperature θ 0 is continuously controlled, and the valve opening degree of the air conditioning load AL changes to the water supply temperature θ 0
Controller CT will no longer misjudge the air conditioning load L A even if it does not respond immediately to changes in pump P 1 ,
Control of the rotation speed with respect to P 2 becomes stable.

また、負荷が減少して台数制御の判断がなされ
1台運転になると、1台の定格能力を100%とし
たうえ、負荷がその半分の50%に変わるときにも
同様にリミツト制御が行なわれる。
Also, when the load decreases and a decision is made to control the number of units and one unit is operated, the rated capacity of one unit is set to 100%, and when the load changes to half of that, 50%, limit control is performed in the same way. .

なお、第4図において、制限値LV2はあまり効
果的でないものと認められるが、回転数の設定が
3段階以上の場合は制限値LV1と同様に作用し、
効果的となる。
In addition, in Fig. 4, it is recognized that the limit value LV 2 is not very effective, but when the rotation speed is set in three or more stages, it acts in the same way as the limit value LV 1 ,
Be effective.

たゞし、第3図の構成は、マイクロプロセツサ
等による演算機能により実現してもよく、第4図
に示す制御状態を実現するものであれば、具体的
構成の選定は任意であり、冷凍機R1,R2の台数、
送水温度θ0、還水温度θiおよび制限値LV1,LV2
等は、条件に応じて定めればよく、冷凍装置のみ
ならず、ボイラ等を含む温水供給装置へ適用して
も同様であり、種々の変形が自在である。
However, the configuration shown in FIG. 3 may be realized by the arithmetic function of a microprocessor or the like, and the specific configuration can be selected arbitrarily as long as the control state shown in FIG. 4 is realized. Number of refrigerators R 1 and R 2 ,
Water supply temperature θ 0 , return water temperature θi and limit values LV 1 , LV 2
etc., may be determined according to the conditions, and the same applies not only to refrigeration equipment but also to hot water supply equipment including boilers and the like, and various modifications are possible.

なお、ボイラ等を含む温水供給装置へ適用する
場合には、第3図に示した演算器PID1からの指
令値が、例えば還水温度θiを5℃に保つものとし
て分り易く考えた場合、送水温度θ0が5℃のとき
0%、10℃のとき100%として定められるものと
なる。
When applied to a hot water supply device including a boiler etc., the command value from the calculator PID 1 shown in Fig. 3 can be easily understood by assuming that the return water temperature θi is maintained at 5°C, for example. It is defined as 0% when the water supply temperature θ 0 is 5°C, and 100% when it is 10°C.

〔発明の効果〕〔Effect of the invention〕

以上の説明により明らかなとおり本発明によれ
ば、ポンプの回転数の切り換え時に送水温度が連
続的に制御されるため、空調負荷の弁開度が送水
温度に即応せずとも、制御上空調負荷量の誤判断
を生ずることがなく、ポンプの回転数制御が安定
に行なわれ、空調用熱源装置の制御において顕著
な効果が得られる。
As is clear from the above explanation, according to the present invention, the water supply temperature is continuously controlled when the pump rotation speed is changed, so even if the valve opening degree of the air conditioning load does not immediately respond to the water supply temperature, the air conditioning load The rotation speed of the pump can be controlled stably without causing any erroneous determination of the quantity, and a remarkable effect can be obtained in controlling the air conditioning heat source device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は熱源装置の一例を示す冷凍装置の構成
図、第2図は従来における空調負荷量と送水温度
との関係を示す図、第3図以降は本発明の実施例
を示し、第3図は制御回路のブロツク図、第4図
は空調負荷量と還水温度および送水温度との関係
を示す図である。 R1,R2……冷凍機、P1,P2……ポンプ、CT…
…制御器、F……流量計、T1〜T2……温度セン
サ、TG……速度発電機、FCV……係数変換器、
PID1,PID2……演算器、LSE……低値セレクタ、
θ0……送水温度、θi……還水温度、LA……空調負
荷量、LV1,LV2……制限値。
FIG. 1 is a configuration diagram of a refrigeration system showing an example of a heat source device, FIG. 2 is a diagram showing the relationship between air conditioning load and water supply temperature in the conventional system, and FIG. 3 and subsequent figures show embodiments of the present invention. The figure is a block diagram of the control circuit, and FIG. 4 is a diagram showing the relationship between the air conditioning load amount, the return water temperature, and the water supply temperature. R 1 , R 2 ... Refrigerator, P 1 , P 2 ... Pump, CT...
...Controller, F...Flowmeter, T1 - T2 ...Temperature sensor, TG...Speed generator, FCV...Coefficient converter,
PID 1 , PID 2 ...Arithmetic unit, LSE...Low value selector,
θ 0 ... water supply temperature, θi ... return water temperature, L A ... air conditioning load, LV 1 , LV 2 ... limit value.

Claims (1)

【特許請求の範囲】[Claims] 1 空調負荷量に応じて熱源機器用ポンプの回転
数を段階的に制御する一方、還水温度θiを示す信
号Siと還水温度θiの設定値SPiとの差に基づき還
水温度θiがその設定値SPiとほゞ等しくなるよう
に送水温度θ0の指令値を演算し、前記ポンプの回
転数に応じて送水温度θ0の制限値を定め、この制
限値よりも前記指令値が高い場合にはその制限値
に応じて送水温度θ0の制御を行い、前記ポンプの
回転数の切り換え時に送水温度θ0を連続的に変化
させるようにしたことを特徴とする熱源装置の制
御方法。
1 The rotation speed of the heat source equipment pump is controlled in stages according to the air conditioning load, while the return water temperature θi is controlled based on the difference between the signal Si indicating the return water temperature θi and the set value SPi of the return water temperature θi. A command value for the water supply temperature θ 0 is calculated so that it is approximately equal to the set value SPi, and a limit value for the water supply temperature θ 0 is determined according to the rotation speed of the pump, and when the command value is higher than this limit value. A method for controlling a heat source device, characterized in that the water supply temperature θ 0 is controlled according to the limit value, and the water supply temperature θ 0 is continuously changed when switching the rotation speed of the pump.
JP58047007A 1983-03-23 1983-03-23 Controlling method of heat source device Granted JPS59173646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58047007A JPS59173646A (en) 1983-03-23 1983-03-23 Controlling method of heat source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58047007A JPS59173646A (en) 1983-03-23 1983-03-23 Controlling method of heat source device

Publications (2)

Publication Number Publication Date
JPS59173646A JPS59173646A (en) 1984-10-01
JPH0132903B2 true JPH0132903B2 (en) 1989-07-11

Family

ID=12763106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58047007A Granted JPS59173646A (en) 1983-03-23 1983-03-23 Controlling method of heat source device

Country Status (1)

Country Link
JP (1) JPS59173646A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3854586B2 (en) * 2002-10-18 2006-12-06 株式会社三菱地所設計 Heat source system, control method of heat source system, heat source, and control method of heat source

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56940A (en) * 1979-06-15 1981-01-08 Hitachi Ltd Operation control device for air conditioning system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56940A (en) * 1979-06-15 1981-01-08 Hitachi Ltd Operation control device for air conditioning system

Also Published As

Publication number Publication date
JPS59173646A (en) 1984-10-01

Similar Documents

Publication Publication Date Title
US4364237A (en) Microcomputer control for inverter-driven heat pump
US5736823A (en) Constant air flow control apparatus and method
US5447414A (en) Constant air flow control apparatus and method
US3815813A (en) Hot water heating system
US3761018A (en) Electronic temperature control apparatus having a space thermostat with outdoor temperature compensation
JPH0132903B2 (en)
JPS5921933A (en) Air conditioner
JP2819476B2 (en) Air-conditioner delivery pressure control method
JP2982322B2 (en) Automatic temperature control device for absorption refrigerator
JPS60105933A (en) Control of wind tunnel testing equipment
JPH10311589A (en) Cold/hot thermal unit
JPH0245778B2 (en)
JP3030169B2 (en) Control system for the number of absorption chillers
JPS59164837A (en) Method for controlling air conditioning system
JPS6018899B2 (en) Air conditioner capacity control method
JPH0145005Y2 (en)
JPS5878043A (en) Control system of air conditioning machine
JP3073090B2 (en) Mixing ratio control method just before re-watering in instantaneous water heater
JPS6011044A (en) Control system for air-conditioning
JPS6235578B2 (en)
JPS61190194A (en) Method of controlling pump
JPH0524417B2 (en)
JPS599719A (en) Operation controlling method of pump
JP2607734Y2 (en) Water heater control device
JPH0663668B2 (en) Refrigerant flow controller