JPS6235578B2 - - Google Patents

Info

Publication number
JPS6235578B2
JPS6235578B2 JP56131144A JP13114481A JPS6235578B2 JP S6235578 B2 JPS6235578 B2 JP S6235578B2 JP 56131144 A JP56131144 A JP 56131144A JP 13114481 A JP13114481 A JP 13114481A JP S6235578 B2 JPS6235578 B2 JP S6235578B2
Authority
JP
Japan
Prior art keywords
water
amount
temperature
flow rate
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56131144A
Other languages
Japanese (ja)
Other versions
JPS5833051A (en
Inventor
Shinichi Nakane
Hiroshi Fujeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56131144A priority Critical patent/JPS5833051A/en
Publication of JPS5833051A publication Critical patent/JPS5833051A/en
Publication of JPS6235578B2 publication Critical patent/JPS6235578B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • F23N1/085Regulating fuel supply conjointly with another medium, e.g. boiler water using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/12Fuel valves
    • F23N2235/14Fuel valves electromagnetically operated

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Description

【発明の詳細な説明】 本発明は、ガス・石油・電気等を熱源とする温
水器の出湯温度制御に関し、過負過時には設定湯
温が得られないという従来の設置の欠点を排除し
常に希望した湯温が得られる新しい制御装置の提
供を目的とする。
[Detailed Description of the Invention] The present invention relates to hot water temperature control for water heaters using gas, oil, electricity, etc. as heat sources, and eliminates the drawback of conventional installations such as not being able to obtain the set hot water temperature when overloaded. The purpose is to provide a new control device that allows you to obtain the desired hot water temperature.

以下、ガス湯沸器を例に挙げて説明する。 The explanation will be given below using a gas water heater as an example.

第5図は従来のガス湯沸器の構成図で、バーナ
1での燃焼熱と水とを熱交換器2で熱交換し温水
を提供する。温度制御器3へは、出湯温度検出器
4からの信号TWと、温度設定器5からの信号
TWRが入力し、前記TWとTWRの差TERから
所定燃焼量を決定し、供給熱量制御器6へ制御信
号を出力し出湯温制御を実施している。ここで出
湯温度検出器4としては例えばサーミスタ、温度
制御器3としてはPiD制御器等がよく用いられ
る。
FIG. 5 is a block diagram of a conventional gas water heater, in which combustion heat in a burner 1 and water are exchanged in a heat exchanger 2 to provide hot water. The temperature controller 3 receives the signal TW from the hot water temperature detector 4 and the signal from the temperature setting device 5.
TWR is input, a predetermined combustion amount is determined from the difference TER between the TW and TWR, and a control signal is output to the supply heat amount controller 6 to control the hot water temperature. Here, as the outlet hot water temperature detector 4, for example, a thermistor is often used, and as the temperature controller 3, a PiD controller or the like is often used.

第4図は、ガス湯沸器の出湯量Fwと温度上昇
ΔTとの関係を示す図である。実線は最大燃焼量
での特性を表している。すなわち最大燃焼量Qg
maxと、温度上昇ΔTと、流量Fwは、燃焼効率
をηとすれば、 η・Qg max=Fw・ΔT ……(1) となり ΔT=η・Qg max/Fw ……(2) である。従つて実線で示された以上の温度上昇Δ
Tは存在しない。例えば、最大燃焼量Qg maxの
とき出湯量がFw1であれば温度上昇ΔTは図示さ
れているようにΔT1となる。前述の温度制御器
3は温度上昇がΔT=ΔT1のとき、出湯量Fwが
Fw1以下の場合に有効に動作する。仮に、Fw>
Fw1では制御不可能となり、出湯温度TWは設
定温度に達し得ない。
FIG. 4 is a diagram showing the relationship between the hot water output amount Fw of the gas water heater and the temperature rise ΔT. The solid line represents the characteristics at the maximum combustion amount. In other words, the maximum combustion amount Qg
max, temperature rise ΔT, and flow rate Fw are as follows, where η is the combustion efficiency, η・Qg max=Fw・ΔT (1), and ΔT=η・Qg max/Fw (2). Therefore, the temperature rise Δ above that indicated by the solid line
T does not exist. For example, if the hot water output amount is Fw 1 when the maximum combustion amount Qg max is reached, the temperature rise ΔT becomes ΔT 1 as shown in the figure. The temperature controller 3 mentioned above controls the amount of hot water Fw when the temperature rise is ΔT=ΔT 1 .
It works effectively when Fw is 1 or less. If Fw>
At Fw 1 , control becomes impossible and the hot water temperature TW cannot reach the set temperature.

このように、最大燃焼量Qg maxによつて出湯
温度制御可能な出湯量Fwが制限されるのであ
る。この現象は、ガス湯沸器に限らず他の燃料を
用いる温水器においても同様である。
In this way, the amount of hot water Fw that can control the hot water temperature is limited by the maximum combustion amount Qg max. This phenomenon is not limited to gas water heaters, but also applies to water heaters using other fuels.

本発明は、上述従来の温水器の湯温制御に見ら
れるような欠点を解消した温温制御装置を提供す
るもので、常に設定温度TWRに等しい出湯温度
TWが得られるものである。
The present invention provides a temperature control device that eliminates the drawbacks seen in the hot water temperature control of the conventional water heater mentioned above.
TW is what you get.

第1図は本発明のガス湯沸器の構成図である。
第5図と同一番号のものは、同一機能を有する装
置である。水量制御器7では、出湯温度検出器4
からの信号TWと、温度設定器5からの信号
TWR、及び、温度制御器3の出力を入力し、前
述の信号TWとTWRの差TERから変更すべき
流量を演算し該流量にすべく供給水量を制御する
信号を所定時間出力し、供給水量制御装置8を制
御する。ガス湯沸器使用開始時は、最大流量Fw
maxが得られるように供給水量制御装置8を初期
化しておき、湯温制御が定常状態に達した時点
で、温水器供給熱量が最大であり、しかも温度偏
差TERが所定値以上のとき、偏差TERの値と、
第4図に示した出湯量と温度上昇の関係を示す特
性から変更すべき出湯量を水量制御器7で演算
し、その出湯量にすべく供給水量制御装置8を操
作し、TERが零に近づくように水量を制御す
る。上記の湯温制御が定常状態に達した時点は、
プロセスの遅れが大きい系においては特に重要な
問題であり、タイマー要素で判定することが出来
る。また定常状態において供給熱量が最大でな
く、しかも供給水量がFw maxでない場合には、
供給水量を増加すべく供給水量制御装置8を動作
させ、給湯箇所での操作による最大流量で設定湯
温が得られるようにする。
FIG. 1 is a block diagram of a gas water heater according to the present invention.
Devices with the same numbers as in FIG. 5 are devices having the same functions. In the water flow controller 7, the hot water temperature detector 4
signal TW from and signal from temperature setting device 5
TWR and the output of the temperature controller 3 are input, the flow rate to be changed is calculated from the difference TER between the signals TW and TWR, and a signal is output for a predetermined period of time to control the amount of water supplied to maintain the flow rate. Controls the control device 8. When starting to use a gas water heater, the maximum flow rate Fw
The supply water amount control device 8 is initialized to obtain the maximum value, and when the water temperature control reaches a steady state, the amount of heat supplied to the water heater is the maximum, and the temperature deviation TER is greater than a predetermined value, the deviation The value of TER and
The water flow rate controller 7 calculates the amount of hot water that should be changed based on the characteristics showing the relationship between the hot water flow rate and temperature rise shown in Figure 4, and the supply water flow rate control device 8 is operated to achieve that hot water flow rate until the TER reaches zero. Control the amount of water to get closer. When the above hot water temperature control reaches a steady state,
This is a particularly important problem in systems with large process delays, and can be determined using timer elements. In addition, if the amount of heat supplied is not the maximum in steady state and the amount of water supplied is not Fw max,
The supplied water amount control device 8 is operated to increase the supplied water amount so that the set hot water temperature can be obtained at the maximum flow rate by operation at the hot water supply point.

第2図は本発明の水量制御装置8の駆動手段を
示している。横軸に出力時間、縦軸に流量を表わ
し、駆動時間に比例して流量が変化している様子
が分かる。つまり、流量変化範囲Fw max〜Fw
min内では、ある所定時間出力されれば、どの流
量にあつても同一の変化流量ΔFwが得られるの
である。これにより、第4図で示した能力特性に
沿つて定常時の偏差TERから絞るべき流量を演
算し、その結果から定まる所定時間だけ前記水量
制御装置8を駆動させればよいのである。
FIG. 2 shows the driving means of the water flow control device 8 of the present invention. The horizontal axis represents the output time and the vertical axis represents the flow rate, and it can be seen that the flow rate changes in proportion to the driving time. In other words, the flow rate change range Fw max ~ Fw
Within min, the same changing flow rate ΔFw can be obtained no matter what the flow rate is if it is output for a certain predetermined time. Thereby, it is only necessary to calculate the flow rate to be throttled from the steady state deviation TER in accordance with the capacity characteristics shown in FIG. 4, and to drive the water amount control device 8 for a predetermined time determined from the result.

ここでは出力時間と流量変化が比例関係にある
場合を示したが、特に比例関係でなくとも定まつ
た関係があれば、それに応じて出力時間を選択す
ることはもちろん可能である。
Although the case where the output time and the flow rate change are in a proportional relationship is shown here, it is of course possible to select the output time accordingly if there is a fixed relationship, even if it is not a proportional relationship.

第3図では本発明の具体例を示す。ここでは、
各種演算及びシーケンス制御にマイクロコンピユ
ータ9を採用した例を挙げ、特に本発明の中心で
ある水量制御について具体的に表わしている。
4,5,6,8は前述同様に、出湯温度検知器と
してのサーミスタ、温度設定器、供給熱量制御
器、供給水量制御装置を示す。
FIG. 3 shows a specific example of the present invention. here,
An example is given in which the microcomputer 9 is used for various calculations and sequence control, and in particular, water flow control, which is the center of the present invention, is specifically described.
4, 5, 6, and 8 indicate a thermistor as a hot water temperature detector, a temperature setting device, a supply heat amount controller, and a supply water amount control device, as described above.

まず偏差TERの取り込みを説明する。設定温
度TWRは、前記温度設定器5の可変抵抗と直列
接続された抵抗10との分圧VTERとして、抵抗
11を介して演算増幅器12に入力している。さ
らに、出湯温度TWは、前記サーミスタ4と直
列接続された抵抗13との分圧VTWOとして、抵
抗14を介して前述の演算増幅器12のTWR電
位と同一入力部に印加されている。この演算増幅
器12ではいわゆる加算器を形成しており、その
基準電位は抵抗15,16の分圧で決まり、増幅
率を定める抵抗17によりVTWOとVTWRの差が出
力として現われ、次段の比較例18の反転入力と
なつている。この比較器18はTERの値、つま
り電位変換されたVTERをA/D変換して前述の
マイコン9の入力P1とするもので、基準入力側は
マイコン出力部P2によつて制御されるD/Aコン
バータ19の出力である。このようにして、偏差
TERをマイコンが取り込んでいる。
First, we will explain how to capture the deviation TER. The set temperature TWR is input to the operational amplifier 12 via a resistor 11 as a partial voltage V TER between the variable resistor of the temperature setting device 5 and a resistor 10 connected in series. Further, the tapped water temperature TW is applied as a partial voltage V TWO between the thermistor 4 and the resistor 13 connected in series through the resistor 14 to the same input section as the TWR potential of the operational amplifier 12 described above. This operational amplifier 12 forms a so-called adder, the reference potential of which is determined by the voltage division of resistors 15 and 16, and the difference between V TWO and V TWR appears as an output by the resistor 17 that determines the amplification factor. This is the inverting input of Comparative Example 18. This comparator 18 A/D converts the value of TER, that is, the potential-converted VTER , and outputs it as the input P1 of the microcomputer 9 mentioned above.The reference input side is controlled by the microcomputer output section P2 . This is the output of the D/A converter 19. In this way, the deviation
The microcomputer is importing TER.

前述の偏差TERから、例えばPiD制御演算方式
に沿つて計算された供給熱量制御装置への出力
が、この例では前記D/Aコンバータ19からア
ナログスイツチ20と駆動部21を介して、供給
熱量制御器6へ伝達されている。マイコン出力P3
で制御される前記アナログスイツチ20は、D/
Aコンバータを入出力に共用するために設けたも
のである。
In this example, the output to the supply heat amount control device calculated from the above-mentioned deviation TER according to the PiD control calculation method, for example, is output from the D/A converter 19 via the analog switch 20 and the drive section 21 to control the supply heat amount. The signal is transmitted to the device 6. Microcomputer output P 3
The analog switch 20 controlled by D/
This is provided to share the A converter for input and output.

さらに、本発明の水量制御では、前記TERか
ら演算された所定時間だけ、供給水量制御装置を
駆動すべく出力信号を発するのであるが、流量を
絞るときマイコン出力P4をLOWレベルにし、抵
抗22,23を介してトランジスタ24をオンさ
せ、25のリレーRy1を駆動して、流量を絞り方
向に操作するモータコイル26に通電すべく、リ
レー接点27を導通させる。この導通させる時間
によつてモータの回転角が定まり、変速器等の機
構部28を介して供給水量制御装置8を駆動して
いる。前記28及び8の組み合わせは、例えば第
2図の特性を得るために設けられている。同様の
操作手段によつて流量を増加させるときには、抵
抗29,30、トランジスタ31、リレーRy2
2を介して、モータコイル33に通電するため、
リレー接点34を閉じるのである。本図の細線で
囲んだ35の部分は、温度制御器3と水量制御器
7を含んでいる。
Furthermore, in the water flow control of the present invention, an output signal is issued to drive the water supply flow control device for a predetermined time calculated from the TER, and when reducing the flow rate, the microcomputer output P4 is set to LOW level, and the resistor 22 , 23 to turn on the transistor 24, drive the relay Ry 1 of 25, and make the relay contact 27 conductive in order to energize the motor coil 26 that controls the flow rate in the throttle direction. The rotation angle of the motor is determined by this conduction time, and the supplied water amount control device 8 is driven via a mechanism section 28 such as a transmission. The combination of 28 and 8 is provided, for example, to obtain the characteristics shown in FIG. When increasing the flow rate using similar operating means, resistors 29, 30, transistor 31, relay Ry 2 3
In order to energize the motor coil 33 via 2,
This closes the relay contact 34. A portion 35 surrounded by a thin line in this figure includes the temperature controller 3 and the water amount controller 7.

以上述べたように本発明の温水器制御装置に依
れば、出湯量Fwを常に出湯温度制御可能な範囲
に限定するので、希望した温度の湯がいつでも得
られるという優れた効果が得られる。そして、供
給水量制御装置の駆動時間と供給水量可変特性が
単純な比例関係になつているので、構成自体も複
雑なものでなくてよい上、水量制御器は所定の温
水器の能力特性から演算した時間管理だけで制御
できるのである。
As described above, according to the water heater control device of the present invention, the hot water output amount Fw is always limited to a range where the hot water temperature can be controlled, so an excellent effect can be obtained in that hot water at a desired temperature can be obtained at any time. In addition, since the drive time of the water supply flow rate control device and the water supply flow rate variable characteristics are in a simple proportional relationship, the configuration itself does not need to be complicated, and the water flow rate controller is calculated based on the performance characteristics of the predetermined water heater. This can be controlled simply by managing your time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すガス湯沸器の
制御装置の構成図、第2図は本発明の駆動手段を
示す出力時間と流量変化の関係図、第3図は本発
明の一実施例の回路図、第4図はガス湯沸器の出
湯量と温度上昇との関係を示す特性図、第5図は
従来のガス湯沸器の構成図である。 3……温度制御器、4……出湯温度検出器、5
……温度設定器、6……供給熱量制御器、7……
水量制御器、8……供給水量制御装置。
FIG. 1 is a configuration diagram of a control device for a gas water heater showing an embodiment of the present invention, FIG. 2 is a diagram showing the relationship between output time and flow rate change showing the driving means of the present invention, and FIG. A circuit diagram of one embodiment, FIG. 4 is a characteristic diagram showing the relationship between hot water output amount and temperature rise of a gas water heater, and FIG. 5 is a configuration diagram of a conventional gas water heater. 3... Temperature controller, 4... Hot water temperature detector, 5
... Temperature setting device, 6 ... Supply heat amount controller, 7 ...
Water flow rate controller, 8... Supply water flow rate control device.

Claims (1)

【特許請求の範囲】[Claims] 1 温水器の出湯温度検出器と、温度設定器と、
前記出湯温度検出器の信号と前記温度設定器の信
号の偏差(TER)に依存して前記温水器の供給
熱量を制御する信号を出力する温度制御器と、前
記温度制御器の出力に応動する温水器の供給熱量
制御器と、前記温度偏差(TER)から変更すべ
き流量を演算し該流量にすべく供給水量を制御す
る信号を所定時間出力する水量制御器と、前記水
量制御器の出力時間に比例して前記温水器への水
の供給量を制御する供給水量制御装置とからなる
温水器の制御装置。
1 Water heater outlet temperature detector, temperature setting device,
a temperature controller that outputs a signal for controlling the amount of heat supplied to the water heater depending on a deviation (TER) between a signal of the hot water temperature detector and a signal of the temperature setter; and a temperature controller that is responsive to the output of the temperature controller. A water heater supply heat amount controller, a water amount controller that calculates a flow rate to be changed from the temperature deviation (TER) and outputs a signal for a predetermined period of time to control the supplied water amount to maintain the flow rate, and an output of the water amount controller. A water heater control device comprising: a water supply amount control device that controls the amount of water supplied to the water heater in proportion to time.
JP56131144A 1981-08-20 1981-08-20 Controlling device of water heater Granted JPS5833051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56131144A JPS5833051A (en) 1981-08-20 1981-08-20 Controlling device of water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56131144A JPS5833051A (en) 1981-08-20 1981-08-20 Controlling device of water heater

Publications (2)

Publication Number Publication Date
JPS5833051A JPS5833051A (en) 1983-02-26
JPS6235578B2 true JPS6235578B2 (en) 1987-08-03

Family

ID=15051024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56131144A Granted JPS5833051A (en) 1981-08-20 1981-08-20 Controlling device of water heater

Country Status (1)

Country Link
JP (1) JPS5833051A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069449A (en) * 1983-09-22 1985-04-20 Omron Tateisi Electronics Co Temperature controller of gas water heater
JPH0823442B2 (en) * 1987-12-09 1996-03-06 松下電器産業株式会社 Water amount control device for water heater
JPH0529708U (en) * 1991-09-30 1993-04-20 株式会社日光製作所 Ceramic-based siding material cutting blade
JP2540470Y2 (en) * 1993-07-22 1997-07-02 天龍製鋸株式会社 Rotary saw for metal cutting

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848A (en) * 1981-06-23 1983-01-05 Matsushita Electric Ind Co Ltd Water heater controlling device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848A (en) * 1981-06-23 1983-01-05 Matsushita Electric Ind Co Ltd Water heater controlling device

Also Published As

Publication number Publication date
JPS5833051A (en) 1983-02-26

Similar Documents

Publication Publication Date Title
US4585165A (en) Means for setting the switching on and off periods of a burner of a hot water heating installation
US4671457A (en) Method and apparatus for controlling room temperature
JPS6235578B2 (en)
US4489882A (en) Variable time constant anticipation thermostat
CA1133608A (en) Time proportional control means with a variable time constant
JPS6157529B2 (en)
JPS6222384B2 (en)
JPS6235575B2 (en)
JPS61289266A (en) Flow amount control of hot-water supplier
JPS6034010B2 (en) gas water heater
JPS6220465B2 (en)
JPS6220464B2 (en)
JPS6222382B2 (en)
SU1444731A1 (en) System for automatic control of water main temperature
JPS6222383B2 (en)
JPS6056967B2 (en) water heater
JPS6235576B2 (en)
JP2002195508A (en) Feed water control device and method of steam boiler
KR890003217Y1 (en) Regulator thermostatic direction
JPH0338590Y2 (en)
SU721799A1 (en) Device for regulating heat carrier consumption
JPS6235579B2 (en)
JPS6235577B2 (en)
JPH0132907B2 (en)
JP2530700B2 (en) Method for controlling outlet temperature of PID-controlled gas instantaneous water heater