JPS6222384B2 - - Google Patents

Info

Publication number
JPS6222384B2
JPS6222384B2 JP56128509A JP12850981A JPS6222384B2 JP S6222384 B2 JPS6222384 B2 JP S6222384B2 JP 56128509 A JP56128509 A JP 56128509A JP 12850981 A JP12850981 A JP 12850981A JP S6222384 B2 JPS6222384 B2 JP S6222384B2
Authority
JP
Japan
Prior art keywords
water supply
water
temperature
hot water
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56128509A
Other languages
Japanese (ja)
Other versions
JPS5828950A (en
Inventor
Shinichi Nakane
Hiroshi Fujeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56128509A priority Critical patent/JPS5828950A/en
Publication of JPS5828950A publication Critical patent/JPS5828950A/en
Publication of JPS6222384B2 publication Critical patent/JPS6222384B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • F23N1/085Regulating fuel supply conjointly with another medium, e.g. boiler water using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature

Description

【発明の詳細な説明】 本発明は、ガス・石油・電気等を熱源とする給
湯機の温度制御に関し、給水量の多い過大負荷時
には設定した湯温が得られないという従来の課題
を解決すべく供給水量制御器を設けるとともに、
使用開始後、一早く設定した温度の湯を供給する
ために少流量からスタートする新しい制御装置の
提供を目的とする。
[Detailed Description of the Invention] The present invention relates to temperature control of water heaters that use gas, oil, electricity, etc. as heat sources, and solves the conventional problem of not being able to obtain the set water temperature when the water supply is overloaded with a large amount of water. In addition to installing a water supply flow rate controller,
The purpose is to provide a new control device that starts with a small flow rate in order to supply hot water at a set temperature as soon as possible after the start of use.

以下、ガスを燃料とするガス給湯機を実施例に
挙げて説明する。
Hereinafter, a gas water heater that uses gas as fuel will be described as an example.

第6図は、従来のガス給湯機の構成図で、熱源
となるガスバーナ1での燃焼熱と水とを熱交換器
2で熱交換し温水を提供する。温度制御装置3で
は、出湯温度検知器4からの信号TWOと湯温設
定器5からの信号TWRを取り込み、そられの偏
差(TER=TWR−TWO)から所定の燃焼量を
決定し供給熱量制御器6を制御して湯温コントロ
ールを実施している。一般に出湯温度検知器4と
してはサーミスタが、また湯温制御アルゴリズム
にはPiD方式がよく用いられている。
FIG. 6 is a block diagram of a conventional gas water heater, in which combustion heat from a gas burner 1 serving as a heat source and water are exchanged with a heat exchanger 2 to provide hot water. The temperature control device 3 receives the signal TWO from the hot water temperature detector 4 and the signal TWR from the hot water temperature setting device 5, determines a predetermined combustion amount from the deviation between them (TER=TWR-TWO), and controls the amount of heat supplied. The water temperature is controlled by controlling the vessel 6. Generally, a thermistor is often used as the hot water temperature detector 4, and a PiD method is often used as the hot water temperature control algorithm.

第5図は、ガス給湯機の給水量W(横軸)と温
度上昇ΔT(縦軸)の関係を示す図である。同図
の太い実線は最大燃焼量QgMAXでの温度上昇特
性、つまり、給湯機の能力カーブを表している。
すなわち、最大燃焼量QgMAXと温度上昇ΔTと、
負荷である給水量Wは、燃焼効率をηとすれば、 η・QgMAX=WΔT (1) となり、さらに、 ΔT=η・QgMAX/W (2) のように書き表される。従つて各給水量Wにおい
て同図で示された実線以上の温度上昇は存在しな
い。例えば、最大燃焼量QgMAXのとき出湯量が
W1であれば、温度上昇は図示されているように
ΔT1となる。前述の温度制御装置3は、湯温設
定器5による設定温度信号TWRと、給水温度
TWiとの差、つまり温度上昇さすべき値ΔTが
ΔT1のとき、給水量WW1の流量範囲において
有効に作用する。しかし、W1よりも大きな負
荷、つまりW>W1の流量範囲では制御不可能と
なり、出湯温度TWOはいつまで経つても設定温
度TWRには達し得ない。
FIG. 5 is a diagram showing the relationship between the water supply amount W (horizontal axis) of the gas water heater and the temperature rise ΔT (vertical axis). The thick solid line in the figure represents the temperature rise characteristic at the maximum combustion amount Qg MAX , that is, the capacity curve of the water heater.
In other words, the maximum combustion amount Qg MAX and the temperature rise ΔT,
The water supply amount W, which is a load, is expressed as η·Qg MAX =WΔT (1), where η is the combustion efficiency, and further written as ΔT=η·Qg MAX /W (2). Therefore, at each water supply amount W, there is no temperature rise greater than the solid line shown in the figure. For example, when the maximum combustion amount Qg MAX , the amount of hot water released is
If W 1 , the temperature rise will be ΔT 1 as shown. The above-mentioned temperature control device 3 receives the set temperature signal TWR from the hot water temperature setting device 5 and the water supply temperature.
When the difference from TWi, that is, the value ΔT at which the temperature should be increased, is ΔT 1 , it acts effectively in the flow rate range of water supply amount WW 1 . However, in a load larger than W 1 , that is, in a flow rate range of W>W 1 , control becomes impossible, and the outlet temperature TWO will never reach the set temperature TWR no matter how long it takes.

このように、最大燃焼量QgMAXによつて出湯温
度制御可能な給湯量Wが制限されるのである。こ
のような従来の給湯機の欠点を解消し、常に希望
の湯温が得られると共に、使用開始後短時間で設
定温度に達する制御装置の提供が本発明の目的で
ある。
In this way, the maximum combustion amount Qg MAX limits the amount W of hot water that can be heated and whose hot water temperature can be controlled. It is an object of the present invention to provide a control device that eliminates such drawbacks of conventional water heaters, allows a desired hot water temperature to be obtained at all times, and reaches a set temperature in a short period of time after the start of use.

第1図は、本発明のガス湯沸器の構成図であ
る。第6図と同一番号のものは同一機能を有する
装置である。制御装置7では、出湯温度検知器4
の信号TWOと、給水温度検知器8の信号TWi
と、湯温設定器5の信号TWRを取り込み、TWR
とTWOの偏差TERから所定燃焼量を決定し供給
熱量制御器を制御すると共に、TWRとTWiとの
差TUPを基に第5図の特性から制御可能な給水
量(例えば、TUP=ΔT1のときには、W1が制御
可能な最大給水量)まで9の供給水量制御器で制
限するのである。この方法に依れば、必ず設定温
度の湯が得られるのである。
FIG. 1 is a block diagram of a gas water heater of the present invention. Devices with the same numbers as in FIG. 6 are devices having the same functions. In the control device 7, the hot water temperature detector 4
The signal TWO of the water supply temperature sensor 8 and the signal TWi of the water supply temperature sensor 8
, the signal TWR of the hot water temperature setting device 5 is taken in, and the TWR
The predetermined combustion amount is determined from the deviation TER between Sometimes, the water supply amount controller 9 is used to limit the amount of water supplied ( W1 is the maximum water supply amount that can be controlled). With this method, you will always get hot water at the set temperature.

ところが本発明では湯温制御の立ち上がりを早
くするために、さらに次に説明する制御方法をと
る。
However, in the present invention, in order to speed up the start-up of hot water temperature control, the following control method is adopted.

第2図では、横軸に経過時間、縦軸に出湯温度
を取り、使用開始後の過度応答特性を示してい
る。イはロよりも小さな負荷のときの応答で、そ
れぞれの給水量をWイ,Wロとすれば、Wイ<W
ロの関係がある。図から明らかなように、ロでは
目標値TUPに達するまでにかなりの時間を要し
ているのに対して、イではわずかのオーバーシユ
ートを伴つてすばやく整定していく様子が分か
る。このように流量の相違、つまり、制御対象プ
ロセスの相違によつて系のむだ時間や、遅れ時間
が異なるために、同一演算手法での差が発生して
いる。ところで、各流量に対して最適応答を実施
させる演算のパラメータ調整を行つても、系のプ
ロセスゲイン(給湯機の能力カーブによる温度上
昇値)に近いTUPの場合には、第2図ロのよう
な応答特性となり、整定までに長時間を要する。
つまり、前述の如く、供給水量制御器にて定常状
態においては必ず設定温度に到達し得るが、使用
開始から整定までに長時間を要する場合もある。
In FIG. 2, the horizontal axis represents elapsed time and the vertical axis represents hot water temperature, and shows the transient response characteristics after the start of use. A is the response when the load is smaller than B, and if the respective water supply amounts are W I and W B, then W I < W
There is a relationship between As is clear from the figure, it takes a considerable amount of time to reach the target value TUP in case B, while it quickly settles in case B with a slight overshoot. As described above, the dead time and delay time of the system differ due to the difference in flow rate, that is, the difference in the process to be controlled, which causes a difference in the same calculation method. By the way, even if you adjust the calculation parameters to achieve the optimal response for each flow rate, if the TUP is close to the process gain of the system (temperature rise value according to the water heater's capacity curve), the result will be as shown in Figure 2 (b). The response characteristics are very sharp, and it takes a long time to settle.
In other words, as described above, the water supply amount controller can always reach the set temperature in a steady state, but it may take a long time from the start of use until the temperature is stabilized.

第3図では、給水量と整定時間の関係を示し、
A,B,Cの特性は温度上昇がそれぞれTUPA
TUPB,TUPCの場合である。また、それぞれ
は、TUPA>TUPB>TUPCの関係があり、同一流
量に対して温度上昇値が高い程整定時間を要して
いることが分かる。実際の機器仕様から、整定時
間を出来るだけ短くして一早く設定温度の湯を得
る方法が望まれている。例えば、整定時間をt1
したとき、設定された温度上昇値がTUPAのと
き、WWA〓では仕様を満足する応答となり得
るが、W>WA〓では整定時間がt1より長くなつ
てしまう。
Figure 3 shows the relationship between water supply amount and settling time.
The characteristics of A, B, and C are that the temperature rise is TUP A , respectively.
This is the case for TUP B and TUP C. Furthermore, it can be seen that there is a relationship of TUP A > TUP B > TUP C , and the higher the temperature rise value for the same flow rate, the longer the settling time is required. From the actual specifications of the equipment, it is desirable to shorten the settling time as much as possible to obtain hot water at the set temperature as quickly as possible. For example, if the settling time is t 1 , and the set temperature rise value is TUP A , then WW A 〓 may result in a response that satisfies the specifications, but if W > W A 〓, the settling time will be longer than t 1 . I end up.

そこで第4図に示すように、使用開始時に既知
であるTUPAの値と、第3図で示した特性図から
整定時間t1を満たす範囲の第1の所定給水量、例
えばWA〓まで給水量を制限すべく、供給水量制
御器を制御して燃焼を開始し湯温コントロールを
行い、前述の偏差TERが所定値以内に収束した
時点で、第2の所定給水量WAになるように供給
水量制御器を制御すれば、立ち上がりを早くする
ことが出来る上、設定温度をも得ることが出来る
のである。ここで、第1の所定給水量から第2の
所定給水量への変更は、プロセスの遅れ時間を考
慮して所定時間をかけて変更させれば、流量変化
への湯温コントロール追随が可能であり、目標値
から大きくずれることなくWA〓→WAの変化が行
える。これは、目標値変更時、つまり、TUP増
大時にも適要可能である。
Therefore, as shown in Fig. 4, from the value of TUP A known at the start of use and the characteristic diagram shown in Fig. 3, the first predetermined water supply amount within the range that satisfies the settling time t 1 , for example, up to W A 〓 In order to limit the water supply amount, the water supply amount controller is controlled to start combustion and control the hot water temperature, so that the second predetermined water supply amount W A is reached when the aforementioned deviation TER converges within a predetermined value. By controlling the water supply amount controller accordingly, not only can the start-up be made faster, but also the set temperature can be achieved. Here, when changing from the first predetermined water supply amount to the second predetermined water supply amount, if the change is made over a predetermined time taking into account the process delay time, it is possible to control the hot water temperature to follow the flow rate change. There is a change in W A 〓 → W A without significantly deviating from the target value. This can also be applied when changing the target value, that is, when increasing TUP.

以上の説明から明らかなように、本発明の給湯
機制御装置に依れば、給水量を常に制御可能な範
囲に限定するので希望の湯温がいつでも得られる
と共に、給水量を所定値まで絞つた状態からスタ
ートさせるので短時間で設定温度に達するという
大きなメリツトを使用者に与えることが出来るの
である。
As is clear from the above explanation, according to the water heater control device of the present invention, the water supply amount is always limited to a controllable range, so the desired hot water temperature can be obtained at any time, and the water supply amount is throttled to a predetermined value. Since the temperature is started from a cold state, the set temperature can be reached in a short period of time, giving the user a great advantage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すガス給湯機の
構成図、第2図は同給湯機の湯温特性図、第3図
は温度上昇をパラメータに取つた整定時間特性
図、第4図は本発明の制御装置による給水量制御
図、第5図は給湯機の能力特性図、第6図は従来
のガス給湯機の構成図である。 1……熱源、2……熱交換器、4……給水温度
検知器、5……湯温設定器、6……供給熱量制御
器、7……制御装置、8……給水温度検知機、9
……供給水量制御器。
Fig. 1 is a configuration diagram of a gas water heater showing an embodiment of the present invention, Fig. 2 is a hot water temperature characteristic diagram of the same water heater, Fig. 3 is a settling time characteristic diagram using temperature rise as a parameter, and Fig. 4 is a diagram of settling time characteristics using temperature rise as a parameter. The figure is a water supply amount control diagram by the control device of the present invention, FIG. 5 is a capacity characteristic diagram of a water heater, and FIG. 6 is a configuration diagram of a conventional gas water heater. 1... Heat source, 2... Heat exchanger, 4... Water supply temperature detector, 5... Hot water temperature setting device, 6... Supply heat amount controller, 7... Control device, 8... Water supply temperature detector, 9
...Water supply controller.

Claims (1)

【特許請求の範囲】[Claims] 1 熱源と、熱交換器と、給水温度検知器と、出
湯温度検知器と、湯温設定器と、供給熱量制御器
と供給水量制御器を具備し、前記湯温設定器の信
号と前記出湯温度検知器の信号の偏差(TER)
に依存して前記供給熱量制御器を制御し、前記湯
温設定器の信号と前記給水温度検知器の信号の差
(TUP)に依存して前記供給水量制御器を制御す
るとともに、給湯機使用開始時あるいは前述の信
号の差(TUP)変化時には第1の所定給水量に
前記供給水量制御器を設定して制御開始後、前述
の偏差(TER)が所定値以内に達した時点で前
記第1の所定給水量よりも多い第2の所定給水量
に前記供給水量制御器を設定する制御装置を具備
する給湯機制御装置。
1 A heat source, a heat exchanger, a water supply temperature detector, a hot water temperature detector, a hot water temperature setting device, a supply heat quantity controller, and a supply water quantity controller, and the signal of the hot water temperature setting device and the hot water supply temperature detector are provided. Temperature detector signal deviation (TER)
The supplied heat amount controller is controlled depending on the temperature of the water supply, and the water supply amount controller is controlled depending on the difference (TUP) between the signal of the hot water temperature setting device and the signal of the water supply temperature detector, and the water heater is used. At the time of starting or when the difference (TUP) of the above-mentioned signals changes, the supply water amount controller is set to the first predetermined water supply amount, and after the control is started, when the above-mentioned deviation (TER) reaches within a predetermined value, the above-mentioned A water heater control device comprising: a control device that sets the water supply amount controller to a second predetermined water supply amount that is larger than the first predetermined water supply amount.
JP56128509A 1981-08-17 1981-08-17 Controlling device of hot water supplier Granted JPS5828950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56128509A JPS5828950A (en) 1981-08-17 1981-08-17 Controlling device of hot water supplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56128509A JPS5828950A (en) 1981-08-17 1981-08-17 Controlling device of hot water supplier

Publications (2)

Publication Number Publication Date
JPS5828950A JPS5828950A (en) 1983-02-21
JPS6222384B2 true JPS6222384B2 (en) 1987-05-18

Family

ID=14986499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56128509A Granted JPS5828950A (en) 1981-08-17 1981-08-17 Controlling device of hot water supplier

Country Status (1)

Country Link
JP (1) JPS5828950A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114675A (en) * 1989-09-27 1991-05-15 Aisin Takaoka Ltd Joining structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104453A (en) * 1981-12-16 1983-06-21 Matsushita Electric Ind Co Ltd Controlling device of hot water feeder
JPS60159554A (en) * 1984-01-30 1985-08-21 Matsushita Electric Ind Co Ltd Control device for hot-water supplier
JPS61114047A (en) * 1984-11-07 1986-05-31 Toto Ltd Hot-water supply device
JPS62162849A (en) * 1986-01-13 1987-07-18 Toto Ltd Gas instantaneous type hot water supplier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114675A (en) * 1989-09-27 1991-05-15 Aisin Takaoka Ltd Joining structure

Also Published As

Publication number Publication date
JPS5828950A (en) 1983-02-21

Similar Documents

Publication Publication Date Title
EP1321836A1 (en) Controller, temperature controller and heat processor using same
JPS6222384B2 (en)
JPS6235579B2 (en)
JPS6235575B2 (en)
JPS6235573B2 (en)
JPS6222382B2 (en)
JPS6235576B2 (en)
JPH0480307B2 (en)
CN111912117A (en) Constant temperature control method of gas water heater
JPS6222383B2 (en)
JPS6235578B2 (en)
JPS58106357A (en) Controller for hot water supplying device
JPS6222386B2 (en)
JPS6220465B2 (en)
JPS61289266A (en) Flow amount control of hot-water supplier
JPH0142764Y2 (en)
JPS6225945B2 (en)
JPH0622857U (en) Water heater
JP2600777B2 (en) Hot water temperature control device
JPS58160762A (en) Apparatus for controlling hot water supply apparatus
JP3097430B2 (en) Water heater
JPS6314266B2 (en)
JP2600915B2 (en) Water heater
JPH0123070Y2 (en)
JPS6235577B2 (en)