JPS59173646A - Controlling method of heat source device - Google Patents

Controlling method of heat source device

Info

Publication number
JPS59173646A
JPS59173646A JP58047007A JP4700783A JPS59173646A JP S59173646 A JPS59173646 A JP S59173646A JP 58047007 A JP58047007 A JP 58047007A JP 4700783 A JP4700783 A JP 4700783A JP S59173646 A JPS59173646 A JP S59173646A
Authority
JP
Japan
Prior art keywords
water temperature
air conditioning
conditioning load
water supply
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58047007A
Other languages
Japanese (ja)
Other versions
JPH0132903B2 (en
Inventor
Kazuyuki Kamimura
一幸 神村
Shinichi Okato
岡登 伸一
Junichi Ueno
上野 潤一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP58047007A priority Critical patent/JPS59173646A/en
Publication of JPS59173646A publication Critical patent/JPS59173646A/en
Publication of JPH0132903B2 publication Critical patent/JPH0132903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To stably control the delivery water temperature in accordance with the limit value and the load of an air conditioner by a method wherein the control value of a circulating water temperature is determined to every rotational frequency of a pump for a heat source apparatus. CONSTITUTION:Signals Sr, which represent the rotational frequencies of pumps P1 and P2 and are obtained from tacho-generators TG1 and TG2, are given to a factor converter FCV and, upon being converted to percentage, given to one input terminal of a low value selector LSE. On the other hand, a signal Si, which represents the return water temperature thetai, is sent together with the set value SPi of the return water temperature thetai to an operator PID1 and, after being subjected to PID (proportion, integration, differentiation) operation in order to be turned to the instruction value of a circulating water temperature theta0, given to the other input terminal of the low value selector LSE. Accordingly, the circulating water temperature can be controlled continuously, resulting in enabling to stably control the rotational frequencies of the pumps without the generation of misjudgement of the quantity of air conditioning load with respect to controlling, even under the condition that the valve opening of air conditioning load does not conform to the circulating water temperature.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、空調用の熱源装置を空調負荷量に応じて制御
する方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in a method for controlling an air conditioning heat source device according to an air conditioning load amount.

〔従来技術〕[Prior art]

第1図は、熱源装置の例として示す冷凍装置の構成図で
あり、冷凍機R1,R2およびポンプPi、Pt等によ
り冷凍装置が構成され、ポンプPi、P2により圧送さ
fLfc給水は、冷凍機R1+R2により冷却されたう
え、ヘッダH1を介し送水としてファンコイルユニット
等の空調負荷ALへ供給さ扛、こ牡を介してヘッダH2
へ還水として還流し、循環を反復するものとなっている
が、送水量を流量計Fにより検出゛する一方、冷凍機R
1,R2からの送水温度を温度センサT1により検出す
ると共に、還水温度を温度センサT2により検出し、と
牡らの検出り力に基づき、制御器CTにおいては、還水
温度と送水温度との温度差に送水量を乗じて空調負荷量
を算出のうえ、空調負荷量に応じて還水温度がtt ’
y一定となる様、冷凍機R1、R2の冷却能力を同時に
制御すると共に、ポンプPi、P20回転数を509g
または100%として同時に制御している。
FIG. 1 is a configuration diagram of a refrigeration system shown as an example of a heat source device. In addition to being cooled by R1+R2, water is supplied to the air conditioning load AL such as a fan coil unit as water via the header H1, and then to the header H2 via the header.
The water is returned to the refrigerator R as return water, and the circulation is repeated.
1. The temperature of the water fed from R2 is detected by the temperature sensor T1, and the temperature of the return water is detected by the temperature sensor T2. Based on the detection power of the two, the controller CT determines the temperature of the return water and the temperature of the feed water. The air conditioning load is calculated by multiplying the temperature difference by the water supply amount, and the return water temperature is calculated according to the air conditioning load.
The cooling capacity of refrigerators R1 and R2 is simultaneously controlled so that y is constant, and the rotation speed of pumps Pi and P20 is set to 509 g.
Or it is controlled at the same time as 100%.

したがって、空調負荷量LAと送水温度θ。との関係を
第2図に示すとおり、空調負荷量LAが0〜50%では
、ポンプP1 、P2の回転数が50%に設定さ扛、空
調負荷量LAの増加に応じ、送水温度θ。が1θ℃から
5℃へ変化するのに対し、空調負荷量LAが50〜10
0チでは、ポンプPi、P2の回転数が100%となム
送水量が50チ回転時に対して2倍となるため、送水温
度θOは、空調負荷量LAの増加に応じ7.5℃から5
℃へ変化するものとなる。
Therefore, the air conditioning load amount LA and the water supply temperature θ. As shown in FIG. 2, when the air-conditioning load LA is 0 to 50%, the rotational speed of the pumps P1 and P2 is set to 50%, and as the air-conditioning load LA increases, the water supply temperature θ increases. changes from 1θ℃ to 5℃, while the air conditioning load LA changes from 50 to 10℃.
At 0°, when the rotation speed of pumps Pi and P2 is 100%, the amount of water supplied is twice that when the pumps rotate at 50°, so the water supply temperature θO changes from 7.5°C as the air conditioning load LA increases. 5
It will change to ℃.

なお、50チ回転時の送水温度5℃と、100チ回転時
の謀水温度7.5℃とでは、送水温度θ0が異なっても
、送水量が100チ回転により2倍となるため、送水の
熱量は変化しない。
In addition, even if the water supply temperature θ0 is different between the water supply temperature of 5°C at 50 inch rotation and the water supply temperature of 7.5 °C at 100 inch rotation, the amount of water conveyed is doubled due to 100 inch rotation. The amount of heat does not change.

しかし、空調負荷ALの弁開度は、室温設定値と室温と
に応じて制御されており、送水温度θ0が急激に変化し
ても一弁開度は直ちに応答せず、直前の開度を維持する
ものとなっている。
However, the valve opening degree of the air conditioning load AL is controlled according to the room temperature set value and the room temperature, and even if the water supply temperature θ0 suddenly changes, the valve opening degree does not respond immediately, and the previous opening degree is It is to be maintained.

このため、空調負荷量LAの増加に応じて100襲回転
となり、送水温度θOが5℃から7.5℃へ変化しても
、弁開度は5℃に対する小開度のま\でちゃ、実際に空
調負荷ALを流通する流量が少な(,7,5℃の送水が
殆んど温度上昇を来さずに還水となることにより、見掛
上、空調負荷量LAが減少したものと制御器CTが判断
し、実際にはを請負荷量LAが50%を越えているにも
か\わらず、50チ回転の状態へ復帰させるものとなる
Therefore, as the air conditioning load LA increases, the rotation speed increases to 100 times, and even if the water supply temperature θO changes from 5°C to 7.5°C, the valve opening will still be a small opening relative to 5°C. The actual flow rate flowing through the air conditioning load AL is small (7.5℃ water is returned to water with almost no temperature rise, so the air conditioning load LA has apparently decreased). The controller CT makes a judgment and returns to the state of 50 inch rotation even though the contracted load LA exceeds 50%.

また、空調負荷量LAの減少に応じて50チ回転となり
、送水温度θOが7.5℃から5℃へ変化しても、弁開
度は7.5℃に対する大開度のま\てあり、実際に空調
負荷ALを流通する流量が必要以上に多く、5℃の送水
が過剰に温度上昇を来して還水となることにより、見掛
上、空調負荷量LAが増加したものと制御器CTが判断
し、実際には空調負荷量LAが50%以下となっている
にもか\わらず、再び100チ回転の状態へ復帰させる
ものとなる。
In addition, as the air conditioning load amount LA decreases, the valve rotates by 50°, and even if the water supply temperature θO changes from 7.5°C to 5°C, the valve opening remains at a large opening relative to 7.5°C. The flow rate actually flowing through the air conditioning load AL is higher than necessary, and the water sent at 5°C causes an excessive temperature rise and becomes return water, causing the apparent increase in the air conditioning load LA. The CT determines that the air conditioning load amount LA is actually less than 50%, but it returns to the state of 100 rotations.

したがって、従来においては、空調負荷量LAが50%
近傍において増減した場合、ポンプP1、P2が509
6回転と100%回転との状態を往復的に反復し、制御
状況が不安定となる欠点を生じていた。
Therefore, in the past, the air conditioning load amount LA was 50%
If there is an increase or decrease in the vicinity, pumps P1 and P2 will be 509
The state of 6 rotations and 100% rotation was repeated reciprocally, resulting in an unstable control situation.

〔発明の概要〕[Summary of the invention]

本発明は、従来のか\る欠点を根本的に解決する目的を
有し、熱源機器用ポンプの回転数毎に送水温度の制限値
を定め、この制限値および空調負荷量に応じて送出温度
を制御するものとした極めて効果的な、熱源装置の制御
方法を提供するものである。
The present invention has the purpose of fundamentally solving the drawbacks of the conventional technology, and sets a limit value for the water supply temperature for each rotation speed of the pump for heat source equipment, and adjusts the water supply temperature according to this limit value and the air conditioning load. The present invention provides an extremely effective method for controlling a heat source device.

〔実施例〕〔Example〕

以下、実施例を示す第3図以降により本発明の詳細な説
明する。
Hereinafter, the present invention will be explained in detail with reference to FIG. 3 and subsequent figures showing embodiments.

第3図は、制御器CTへ付加する制御回路のブロック図
、第4図は、第3図の構成による制御によって得ら扛る
空調負荷量LAと還水温度θIお工び送水温度θ0との
関係を示す図であり、第3図においては、第1図の速度
発電機TG、  、 ’f’G2から得たポンプPi、
P2の回転数を示す信号Sr を係数変換器FCVへ与
え、こ\において]、 O0分率へ変換のうえ、低値セ
レクタI、SEの一方の入力へ与えている。
Fig. 3 is a block diagram of a control circuit added to the controller CT, and Fig. 4 shows the air conditioning load amount LA, return water temperature θI, and water supply temperature θ0 obtained by control with the configuration shown in Fig. 3. In FIG. 3, the speed generator TG in FIG. 1, the pump Pi obtained from 'f'G2,
A signal Sr indicating the rotation speed of P2 is applied to a coefficient converter FCV, where it is converted into an O0 fraction and applied to one input of the low value selectors I and SE.

一方、還水温度θiを示す信号Stは、還水温度θiの
設定値SPi と共に演算器PID1へ与えら扛、こ\
において、両人力に基づ(PID(比例、積分、微分)
演算がなさn1送水温度θ0の指令値となってから、低
値セレクタLSEの他方の入力へ与えられる。
On the other hand, the signal St indicating the return water temperature θi is given to the calculator PID1 together with the set value SPi of the return water temperature θi.
Based on the power of both people (PID (proportional, integral, differential)
After no calculation is performed and the command value of n1 water supply temperature θ0 is obtained, it is applied to the other input of the low value selector LSE.

たソし、送水温度θ0の指令値は、この場合、送水温度
θ0が10℃のとき0チ、5℃のとき100%となる1
00分率として定めら牡る。
In this case, the command value for the water supply temperature θ0 is 0% when the water supply temperature θ0 is 10℃, and 100% when the water supply temperature θ0 is 5℃.
It is determined as a percentage of 0.00.

このため、ポンプPIIP!が共に50%回転であれば
、係数変換器FCVの出力は50%、同様に100%回
転であ扛ば、同様の出力は100チとなり、50係回転
時には演算器PID1からの指令値がθ〜50q6未満
のとき、低値セレクタLSEが指令値を選択し、演算器
PID2へ設定値として送出するのに対し、指令値が5
0%以上になると、低値セレクタLSEが係数変換器F
CVの出力を選択し、こ扛を演算器PID2へ設定値と
して送出するものとなり、この設定値および、温度セン
サTlからの送水温度θ0を示す信号S。
For this reason, pump PIIP! If both rotate at 50%, the output of the coefficient converter FCV will be 50%; similarly, if the rotation will occur at 100%, the output will be 100, and at 50% rotation, the command value from the calculator PID1 will be θ. When the command value is less than ~50q6, the low value selector LSE selects the command value and sends it to the arithmetic unit PID2 as a set value.
When the value exceeds 0%, the low value selector LSE selects the coefficient converter F.
A signal S selects the output of CV and sends this value to the calculator PID2 as a set value, and indicates this set value and the water supply temperature θ0 from the temperature sensor Tl.

に基づき、演算器PID2がPID演算を行ない、送水
温度θ0を制御する信号Sc を冷凍機R1+R2へ送
出することにより、第4図のとおり送水温度θ0が制御
さ扛、空調負荷量LAがθ〜はソ25%では、送水温度
θ0が空調負荷量LAに応じて低下するのに対し、空調
負荷量LAがはX25%〜50%では、送水温度θ0が
はソ7,5℃の一定値に保たれ、これによって50チ回
転時の制限値LV+が定めらVる〇 また、100%回転時には、係数変換器FCVの出力が
100チと゛なり、演算器PII)、からの指令値が1
00%未満の間は、低値セレクタLSgが常に指令値を
選択し、こ2tを設定値とじて演算器PID2へ与える
ため、声4図のとおり、空調負荷量LAが50〜100
チ未満では、送水温度θ0が空調負荷量T、Aに応じて
低下し、空調負荷量Lhの100%において100%回
転時の制限値LV2へ達する。
Based on this, the computing unit PID2 performs PID calculation and sends a signal Sc for controlling the water supply temperature θ0 to the refrigerator R1+R2, so that the water supply temperature θ0 is controlled as shown in Fig. 4, and the air conditioning load amount LA becomes θ~ When the air conditioning load LA is 25%, the water supply temperature θ0 decreases according to the air conditioning load LA, whereas when the air conditioning load LA is 25% to 50%, the water supply temperature θ0 remains at a constant value of 7.5℃. This determines the limit value LV+ at the time of 50-inch rotation. Also, at 100% rotation, the output of the coefficient converter FCV becomes 100 inches, and the command value from the calculator PII) becomes 1.
While it is less than 00%, the low value selector LSg always selects the command value and gives this 2t as a set value to the calculator PID2.
When the temperature is less than H, the water supply temperature θ0 decreases according to the air conditioning load amounts T and A, and reaches the limit value LV2 at 100% rotation at 100% of the air conditioning load amount Lh.

なお、第4図においては、空調負荷量LAがは’N25
〜50チのとき、還水温度θi fC変化を生ずるが、
還水温度θiと送水温度θ0 との温度差は、空調負荷
iLAに応じて増大するため、空調負荷量TJAと対応
した冷房が行なわ牡る。
In addition, in Fig. 4, the air conditioning load amount LA is 'N25.
~50 degrees, the return water temperature θi fC changes, but
Since the temperature difference between the return water temperature θi and the water supply temperature θ0 increases according to the air conditioning load iLA, cooling is performed in accordance with the air conditioning load amount TJA.

したがって、空調負荷量LAが50チ近傍において増減
しても、送水温度θ0が連続的に制御さ扛るものとなり
、空調負荷ALの弁μm1度が送水温度θ0の変化に即
応しなくとも、制御器CTが空調負荷量LAを誤判断す
ることがなくなり、ポンプPI、P2に対する回転数の
制御が安定なものとなる。
Therefore, even if the air conditioning load LA increases or decreases in the vicinity of 50 inches, the water supply temperature θ0 will be continuously controlled, and even if the air conditioning load AL valve μm 1 degree does not immediately respond to changes in the water supply temperature θ0, the water supply temperature θ0 will be continuously controlled. The device CT no longer misjudges the air conditioning load amount LA, and the rotation speeds of the pumps PI and P2 can be controlled stably.

また、負荷が減少して台数制御の判断がなされ1台運転
になると、1台の定格能力を100%としたうえ、負荷
がその半分の50%に変わるときにも同様にリミット制
御か行なわれる。
Also, when the load decreases and a decision is made to control the number of units and one unit is operated, the rated capacity of one unit is set to 100%, and when the load changes to half of that, 50%, limit control is performed in the same way. .

なお、第4図において、制限値LV2はあまり効果的で
ないものと認めら扛るが、回転数の設定が3段階以上の
場合は制限値LV+  と同様に作用し、効果的となる
In FIG. 4, it is recognized that the limit value LV2 is not very effective, but when the rotational speed is set in three or more stages, it acts in the same way as the limit value LV+ and becomes effective.

たソし、第3図の楢成は、マイクロプロセッサ等による
演算機能により実現してもよく、第4図に示す制御状態
を実現するものであれば、具体的栴成の選定は任意であ
り1冷凍機R1、Rzの台数、送水温度θo1還水温度
θiおよび制限値LV。
However, the structure shown in FIG. 3 may be realized by the arithmetic function of a microprocessor, etc., and the selection of the specific structure is arbitrary as long as the control state shown in FIG. 4 is realized. 1 Number of refrigerators R1 and Rz, water supply temperature θo1, return water temperature θi, and limit value LV.

、LV2等は、条件に応じて定めnばよく、冷凍装置の
みならず、ボイラ等を含む温水供給装置へ適用しても同
様であシ、種々の変形が自在である。
, LV2, etc. may be determined depending on the conditions, and can be applied not only to refrigeration equipment but also to hot water supply equipment including boilers and the like, and various modifications are possible.

〔発明の効果〕〔Effect of the invention〕

以上の説明により明らかなとおり本発明によnば、送水
温度が連続的に制御さ扛るため、空調負荷の弁開度が送
水温度に即応せずとも、制御上空調負荷量の誤判断を生
ずることがなく、ポンプの回転数制御が安定に行なわれ
、空調用熱源装置の制御において顕著な効果が得らする
As is clear from the above explanation, according to the present invention, since the water supply temperature is continuously controlled, even if the valve opening degree of the air conditioning load does not immediately respond to the water supply temperature, misjudgment of the air conditioning load amount can be avoided. This does not occur, and the rotational speed of the pump can be controlled stably, resulting in a remarkable effect in controlling the air conditioning heat source device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は熱源装置の一例を示す冷凍装置の構成図、第2
図は従来における空調負荷量と送水温度との関係を示す
図、第3図以降は本発明の実施例を示し、第3図は制御
回路のブロック図、第4図は空調負荷量と還水温度およ
び送水温度との関係を示す図であるO R1,R2−・・・冷凍機、Pt  、P2  ・・・
・ポンプ、CT・・・・、制御器、F・・・・流量計、
T1〜T2 ・・・・温度センサ、TG・・・・速度発
電機、FC■・・・・係数変換器、PIDl、PID2
・・φ・演算器、LSE ・・・・低値セレクタ、θ0
 ・・・・送水温度、θi ・・・・還水温度、LA・
・・・空調負荷量、LVt 、LV2・・・・制限値。 特許出願人 山武ノ1ネウエル株式会社代理人山川政樹
(ほか1名) 第3図 第4図 +”Cl
Fig. 1 is a configuration diagram of a refrigeration system showing an example of a heat source device;
The figure shows the relationship between the air conditioning load and the water supply temperature in the past. Figure 3 and subsequent figures show the embodiments of the present invention. Figure 3 is a block diagram of the control circuit, and Figure 4 shows the relationship between the air conditioning load and the water return temperature. It is a diagram showing the relationship between temperature and water supply temperature.
・Pump, CT..., controller, F...flow meter,
T1~T2...Temperature sensor, TG...Speed generator, FC...Coefficient converter, PIDl, PID2
...φ・Arithmetic unit, LSE ...Low value selector, θ0
... Water supply temperature, θi ... Return water temperature, LA.
...Air conditioning load amount, LVt, LV2...Limit value. Patent Applicant Yamatake No. 1 Newel Co., Ltd. Agent Masaki Yamakawa (and 1 other person) Figure 3 Figure 4 + “Cl

Claims (1)

【特許請求の範囲】[Claims] 空調負荷量に応じて還水温度をはソ一定に保つ様に熱源
機器用ポンプの回転数を段階的に制御する方法において
、前記ポンプの回転数毎に送水温度の制限値を定め、該
制限値および前記空調負荷量に応じて前記送水温度の制
御を行なうことを特徴とする熱源装置の制御方法。
In a method of controlling the rotation speed of a heat source equipment pump in stages so as to keep the return water temperature constant according to the air conditioning load, a limit value of the water supply temperature is determined for each rotation speed of the pump, and the limit value is set for each rotation speed of the pump. A method for controlling a heat source device, characterized in that the water supply temperature is controlled according to a value and the air conditioning load amount.
JP58047007A 1983-03-23 1983-03-23 Controlling method of heat source device Granted JPS59173646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58047007A JPS59173646A (en) 1983-03-23 1983-03-23 Controlling method of heat source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58047007A JPS59173646A (en) 1983-03-23 1983-03-23 Controlling method of heat source device

Publications (2)

Publication Number Publication Date
JPS59173646A true JPS59173646A (en) 1984-10-01
JPH0132903B2 JPH0132903B2 (en) 1989-07-11

Family

ID=12763106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58047007A Granted JPS59173646A (en) 1983-03-23 1983-03-23 Controlling method of heat source device

Country Status (1)

Country Link
JP (1) JPS59173646A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245560A (en) * 2002-10-18 2004-09-02 Mitsubishi Jisho Sekkei Inc Heat source system, control method of heat source system, heat source and control method of heat source

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56940A (en) * 1979-06-15 1981-01-08 Hitachi Ltd Operation control device for air conditioning system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56940A (en) * 1979-06-15 1981-01-08 Hitachi Ltd Operation control device for air conditioning system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245560A (en) * 2002-10-18 2004-09-02 Mitsubishi Jisho Sekkei Inc Heat source system, control method of heat source system, heat source and control method of heat source

Also Published As

Publication number Publication date
JPH0132903B2 (en) 1989-07-11

Similar Documents

Publication Publication Date Title
US4748822A (en) Speed control of a variable speed air conditioning system
CN107514743A (en) A kind of air-conditioner control method, control device and air conditioner
CN109237703B (en) Control method for multi-split air conditioning system
CN106871332A (en) One drag two detachable air conditioner control method and one drag two detachable air conditioner
Ma et al. Energy-efficient static pressure reset in VAV systems
US3628600A (en) Air-conditioning system and control including control method and means
JPS59173646A (en) Controlling method of heat source device
US2244551A (en) Air conditioning system
CN106765955A (en) Water supply variable temperature control system based on end comfort level
JPH0131877Y2 (en)
JPS5921933A (en) Air conditioner
JPH09178248A (en) Air conditioning system
US6817209B1 (en) Fluid cooled air conditioning system
CN106594997B (en) Supply backwater temperature difference control system
JP2005274103A (en) Air conditioning system
JPS59164837A (en) Method for controlling air conditioning system
JPH024152A (en) Air conditioner
JPS61272547A (en) Air conditioner
JPS5811341A (en) Air-conditioning apparatus
JPH0678868B2 (en) Control method for high voltage capacitors
JPH0611172A (en) Cooling control device for multi-chamber type air conditioner
JPH023104B2 (en)
JPS61217635A (en) Method of recycling cold and hot water in air conditioner
JPH076000B2 (en) Material temperature control method for different plate joints in continuous strip processing line
JPH05149569A (en) Air heater and air cooler