JPH0611172A - Cooling control device for multi-chamber type air conditioner - Google Patents

Cooling control device for multi-chamber type air conditioner

Info

Publication number
JPH0611172A
JPH0611172A JP4167134A JP16713492A JPH0611172A JP H0611172 A JPH0611172 A JP H0611172A JP 4167134 A JP4167134 A JP 4167134A JP 16713492 A JP16713492 A JP 16713492A JP H0611172 A JPH0611172 A JP H0611172A
Authority
JP
Japan
Prior art keywords
degree
opening degree
target
indoor
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4167134A
Other languages
Japanese (ja)
Other versions
JP3174153B2 (en
Inventor
Yasunori Nishio
安則 西尾
Akihiro Kino
章宏 城野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP16713492A priority Critical patent/JP3174153B2/en
Publication of JPH0611172A publication Critical patent/JPH0611172A/en
Application granted granted Critical
Publication of JP3174153B2 publication Critical patent/JP3174153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To prevent a room temperature from being disturbed and contrive an energy saving by a method wherein a degree of opening of an indoor electrical expansion valve and a frequency of a compressor having a variable capability are controlled in such a manner that over-heating and over-cooling of refrigerant are not produced. CONSTITUTION:The first target degree of opening of each of the indoor electrical expansion valves 27a to 27c is calculated by the first target degree of opening calculating means 32 in response to a deviation between the room temperatures detected by room temperature sensing means 29a to 29c and the target temperatures set by temperature setting means 30a to 30c. The second target degree of opening of each of the indoor electrical expansion valves 27a to 27c is calculated by the second target degree of opening calculating means 33 in response to a degree of over-heating of outlet pipes of the indoor heat exchangers 31a to 31c detected by the over-heating degree sensing means 28a to 28c. A fuzzy inference is carried out in response to these results, over-heating degrees detected by the over-heating degree sensing means 28a to 28c and a control rule taken out of the memory device 35 and then the degree of opening of each of the indoor electrical expansion valves 27a to 27c is determined in response to the result of the inference. A frequency of each of the compressors 22a and 22b having a variable capability is determined by comparing it with the predetermined frequency. With such an arrangement as above, each of the indoor units is controlled in response to the most-suitable degree of opening and the most-suitable frequency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、複数台の室外ユニット
において室内側電動膨張弁の開度制御と能力可変圧縮機
の周波数制御により各室内ユニットの空調能力を制御す
る多室型空気調和機において、各室内ユニットの室温を
乱れなくなめらかに制御し、かつ機器の省エネルギー化
ができる冷房制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room air conditioner for controlling the air conditioning capacity of each indoor unit by controlling the opening degree of an indoor electric expansion valve and the frequency control of a capacity variable compressor in a plurality of outdoor units. In regard to the above, the present invention relates to a cooling control device capable of smoothly controlling the room temperature of each indoor unit without disturbance and saving energy of the equipment.

【0002】[0002]

【従来の技術】近年、ビル空調において、負荷の異なる
複数の部屋に対し各室毎に室内ユニットを設置し、これ
を1台の室外ユニットに接続する多室型空気調和機によ
り、各室毎に空調する個別分散空調が多く行なわれてい
る。
2. Description of the Related Art In recent years, in a building air conditioner, an indoor unit is installed in each room for a plurality of rooms having different loads, and a multi-room type air conditioner connecting this to one outdoor unit is used for each room. Many individual distributed air conditioning systems are used.

【0003】このようななかで、従来、特開昭63−1
80051号公報に開示されるような能力可変圧縮機を
備えた空気調和機が知られている。
Under such circumstances, conventionally, Japanese Patent Laid-Open No. 63-1
An air conditioner provided with a variable capacity compressor as disclosed in Japanese Patent No. 80051 is known.

【0004】以下、図面を参考に従来の技術について説
明する。図4は従来の多室型空気調和機の冷房制御装置
のブロック構成図を示すものである。図4において、能
力可変圧縮機1と凝縮器2と電動膨張弁3と蒸発器4と
を順次接続して冷媒循環系統5を構成した多室型空気調
和機において、室温を検出する室温検出手段6と、前記
室温検出手段6の出力を受け、室温と室温目標値との偏
差に応じて前記室内側電動膨張弁3の目標開度を演算す
る目標開度演算手段7と、前記目標開度演算手段7の出
力を受け、前記室内側電動膨張弁3の開度を目標開度に
制御する開度制御手段8と冷媒の過熱度を検出する過熱
度検出手段9と前記開度制御手段8に優先する保護手段
10とから成っている。
A conventional technique will be described below with reference to the drawings. FIG. 4 is a block diagram of a conventional cooling control device for a multi-room air conditioner. In FIG. 4, in a multi-room air conditioner in which a variable capacity compressor 1, a condenser 2, an electric expansion valve 3 and an evaporator 4 are sequentially connected to form a refrigerant circulation system 5, a room temperature detecting means for detecting room temperature. 6, and a target opening degree calculating means 7 for receiving the output of the room temperature detecting means 6 and calculating a target opening degree of the indoor electric expansion valve 3 according to a deviation between a room temperature and a room temperature target value; An opening degree control means 8 for controlling the opening degree of the indoor electric expansion valve 3 to a target opening degree, an overheat degree detecting means 9 for detecting the degree of superheat of the refrigerant, and the opening degree control means 8 in response to the output of the computing means 7. It comprises a protection means 10 which takes precedence over.

【0005】以上のように構成された従来の多室型空気
調和機の冷房制御装置について、以下その動作について
説明する。まず空調運転時、室温と室温目標値との偏差
に応じた室内側電動膨張弁3の目標開度が目標開度演算
手段7で演算され、この目標開度になるように室内側電
動膨張弁3の開度が開度制御手段8で増減制御されるの
で、蒸発器4への冷媒流量が適切な量となって、室内の
空調負荷と空調能力とが良好に対応して室内が快適に空
調される。
The operation of the conventional cooling control apparatus for a multi-room air conditioner configured as described above will be described below. First, during the air conditioning operation, the target opening degree of the indoor electric expansion valve 3 according to the deviation between the room temperature and the room temperature target value is calculated by the target opening calculation means 7, and the indoor electric expansion valve is adjusted to this target opening. Since the opening degree 3 is controlled to be increased / decreased by the opening degree control means 8, the flow rate of the refrigerant to the evaporator 4 becomes an appropriate amount, the air conditioning load and the air conditioning capacity in the room correspond well, and the room becomes comfortable. Air-conditioned.

【0006】今、例えば室内の空調負荷が減少して冷媒
の過熱度が低下した場合、過熱度検出手段9の出力を受
け、冷媒の過熱度が湿り運転となる所定過熱度値以下の
時、前記開度制御手段8に優先して保護手段10により
前記室内側電動膨張弁3の開度を減少させる。従って冷
媒の過熱度が上昇し、その結果冷媒の湿り状態の発生が
有効に防止される。
[0006] Now, for example, when the air-conditioning load in the room decreases and the superheat degree of the refrigerant decreases, when the superheat degree of the refrigerant is received and the superheat degree of the refrigerant is below a predetermined superheat degree value for wet operation, The opening degree of the indoor electric expansion valve 3 is reduced by the protection means 10 prior to the opening degree control means 8. Therefore, the degree of superheat of the refrigerant increases, and as a result, the occurrence of a wet state of the refrigerant is effectively prevented.

【0007】[0007]

【発明が解決しようとする課題】しかしこのような構成
では、各室内側電動膨張弁3が個別に開度制御するた
め、室内側電動膨張弁3の動作によっては、他の室内ユ
ニットへの冷媒量過不足が起こり、能力可変圧縮機1が
時間遅れで周波数の変更を行わなければならなかった。
However, in such a configuration, the opening degree of each indoor electric expansion valve 3 is controlled individually, so that depending on the operation of the indoor electric expansion valve 3, the refrigerant to another indoor unit may be changed. Due to an excess or deficiency of the amount, the variable capacity compressor 1 had to change the frequency with a time delay.

【0008】また所定の過熱度値を境界として、室内側
電動膨張弁3の開度の制御方式が大きく変わるので、境
界付近では室温に乱れが生ずるという課題があった。
Further, since the control method of the opening degree of the indoor electric expansion valve 3 largely changes at the predetermined superheat value as a boundary, there is a problem that the room temperature is disturbed near the boundary.

【0009】本発明は上記課題を解決するために、冷媒
の過熱度が上昇し過ぎたり低下し過ぎたりしないように
室内側電動膨張弁開度と能力可変圧縮機周波数を制御
し、室温の乱れを防止し快適性の向上と省エネルギー化
ができる多室型空気調和機の冷房制御装置を提供するこ
とを目的とする。
In order to solve the above problems, the present invention controls the indoor electric expansion valve opening and the variable capacity compressor frequency so that the degree of superheat of the refrigerant does not rise or fall too much, thereby disturbing the room temperature. It is an object of the present invention to provide a cooling control device for a multi-room air conditioner, which is capable of preventing the above and improving comfort and energy saving.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に本発明の多室型空気調和機の冷房制御装置は、室温を
検出する室温検出手段と、目標温度を設定する温度設定
手段と、前記室温検出手段で検出した室温と前記温度設
定手段で設定した目標温度との偏差に基づき前記室内側
電動膨張弁の第1の目標開度を演算する第1の目標開度
演算手段と、前記各室内側熱交換器出口配管の過熱度を
検出する過熱度検出手段と、前記各過熱度検出手段で検
出した過熱度に基づき前記室内側電動膨張弁の第2の目
標開度を演算する第2の目標開度演算手段とを備えてい
る。
In order to solve the above problems, a cooling control device for a multi-room air conditioner according to the present invention comprises a room temperature detecting means for detecting room temperature, a temperature setting means for setting a target temperature, First target opening degree calculating means for calculating a first target opening degree of the indoor electric expansion valve based on a deviation between a room temperature detected by the room temperature detecting means and a target temperature set by the temperature setting means; A superheat degree detecting means for detecting a superheat degree of each indoor heat exchanger outlet pipe; and a second target opening degree for calculating the second target opening degree of the indoor electric expansion valve based on the superheat degree detected by each superheat degree detecting means. 2 target opening degree calculation means.

【0011】そして、さらに前記各過熱度検出手段で検
出した過熱度に対して前記第1、第2の目標開度から前
記各室内側電動膨張弁の最適な開度を求めるための経験
則に基づく制御ルールを記憶するメモリ装置と、前記第
1、第2の目標開度演算手段でそれぞれ演算された第
1、第2の目標開度と前記各過熱度検出手段で検出した
過熱度と前記メモリ装置から取り出された制御ルールと
に基づいてファジィ論理演算を行なうファジィ推論手段
と、前記ファジィ推論手段で行なった推論結果に基づき
前記各室内側電動膨張弁の最適な開度を決定する開度決
定手段と、前記ファジィ推論手段で行なった推論結果に
基づき予め設定された周波数と比較して前記能力可変圧
縮機の周波数を決定する周波数決定手段とを備えたこと
を特徴としている。
Further, according to an empirical rule for obtaining the optimum opening degree of each indoor electric expansion valve from the first and second target opening degrees with respect to the superheat degree detected by each of the superheat degree detecting means. A memory device for storing a control rule based on the above; first and second target opening degrees respectively calculated by the first and second target opening degree calculating means; Fuzzy inference means for performing a fuzzy logic operation based on a control rule extracted from the memory device, and an opening degree for determining the optimum opening degree of each indoor electric expansion valve based on the inference result performed by the fuzzy inference means It is characterized by comprising a determining means and a frequency determining means for determining the frequency of the variable capacity compressor by comparing with a preset frequency based on the inference result obtained by the fuzzy inference means.

【0012】[0012]

【作用】本発明の多室型空気調和機の冷房制御装置は上
記した構成により、室温検出手段で検出した室温と温度
設定手段で設定した目標温度との偏差に基づき第1の目
標開度演算手段により室内側電動膨張弁の第1の目標開
度を演算し、室内側熱交換器出口配管の過熱度を検出す
る過熱度検出手段により検出した過熱度に基づき第2の
目標開度演算手段により室内側電動膨張弁の第2の目標
開度を演算する。
The cooling control device for a multi-room air conditioner according to the present invention has the above-mentioned configuration, and calculates the first target opening degree based on the deviation between the room temperature detected by the room temperature detecting means and the target temperature set by the temperature setting means. Means for calculating the first target opening degree of the indoor electric expansion valve, and second target opening degree calculating means based on the superheat degree detected by the superheat degree detecting means for detecting the superheat degree of the indoor heat exchanger outlet pipe. Then, the second target opening degree of the indoor electric expansion valve is calculated.

【0013】これらの結果と過熱度検出手段で検出した
過熱度と、メモリ装置より取り出された経験則に基づく
制御ルールによりファジィ推論し、ファジィ推論手段で
行なった推論結果に基づき、各室内側電動膨張弁の開度
の決定と、予め設定された周波数と比較して前記能力可
変圧縮機の周波数を決定する周波数決定手段により、常
に最適な開度と周波数で各室内ユニットを制御できるた
め、他の室内ユニットへの冷媒量の過不足を防止でき、
能力可変圧縮機を時間遅れ無しに周波数変更できる。こ
れにより室温の乱れを防止し快適性の向上と省エネルギ
ー化ができる。
Based on these results, the degree of superheat detected by the degree of superheat detection means, and the fuzzy inference based on the control rule based on the empirical rule extracted from the memory device, based on the inference result obtained by the fuzzy inference means Since the frequency of the expansion valve is determined and the frequency determining means for determining the frequency of the variable capacity compressor by comparing it with a preset frequency, each indoor unit can always be controlled with the optimal opening and frequency. It is possible to prevent excess and deficiency of the amount of refrigerant in the indoor unit of
The frequency of the variable capacity compressor can be changed without time delay. As a result, the room temperature can be prevented from being disturbed, comfort can be improved, and energy can be saved.

【0014】[0014]

【実施例】以下本発明の多室型空気調和機の冷房制御装
置の一実施例について、図面を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a cooling control device for a multi-room air conditioner according to the present invention will be described below with reference to the drawings.

【0015】図1は本発明の多室型空気調和機の冷房制
御装置のブロック図を示す。図1において21a,21
bは室外ユニットで、それぞれ能力可変圧縮機22a,
22bと室外側熱交換器23a,23bと室外側電動膨
張弁24a,24bと四方弁25a,25bとから構成
される。26a,26b,26cは室内ユニットで、そ
れぞれ室内側電動膨張弁27a,27b,27cと過熱
度検出手段(後述する)28a,28b,28cと室温
検出手段29a,29b,29cと温度設定手段30
a,30b,30cと室内側熱交換器31a,31b,
31cとから構成される。
FIG. 1 is a block diagram of a cooling control device for a multi-room air conditioner according to the present invention. In FIG. 1, 21a, 21
Reference numeral b is an outdoor unit, which is a variable capacity compressor 22a,
22b, outdoor heat exchangers 23a and 23b, outdoor electric expansion valves 24a and 24b, and four-way valves 25a and 25b. Reference numerals 26a, 26b and 26c denote indoor units, which are indoor electric expansion valves 27a, 27b and 27c, superheat detection means (to be described later) 28a, 28b and 28c, room temperature detection means 29a, 29b and 29c and temperature setting means 30, respectively.
a, 30b, 30c and indoor heat exchangers 31a, 31b,
31c.

【0016】28a,28b,28cは過熱度検出手段
で、それぞれ室内側熱交換器31a,31b,31cと
室内側電動膨張弁27a,27b,27cとの間を接続
する配管に設置される。32は室温検出手段29で検出
した室温と温度設定手段30で設定した目標温度との偏
差から各室内側電動膨張弁27の第1の目標開度を演算
する第1の目標開度演算手段である。33は各過熱度検
出手段28で検出した過熱度から各室内側電動膨張弁2
7の第2の目標開度を演算する第2の目標開度演算手段
である。
Reference numerals 28a, 28b and 28c are superheat detecting means, which are installed in the pipes connecting the indoor heat exchangers 31a, 31b and 31c and the indoor electric expansion valves 27a, 27b and 27c, respectively. Reference numeral 32 denotes a first target opening degree calculation means for calculating a first target opening degree of each indoor electric expansion valve 27 from the deviation between the room temperature detected by the room temperature detection means 29 and the target temperature set by the temperature setting means 30. is there. Reference numeral 33 denotes each indoor electric expansion valve 2 based on the degree of superheat detected by each degree of superheat detection means 28.
7 is a second target opening degree calculating means for calculating the second target opening degree 7.

【0017】34はマイクロプロセッサで、制御ルール
を記憶するメモリ装置35とファジィ推論手段36とか
ら構成されている。37はファジィ推論手段36で得た
結果に基づき各室内側電動膨張弁27の開度を決定する
開度決定手段で、38は開度決定手段37で決定した開
度の指示にしたがって各能力可変圧縮機22の周波数を
制御する周波数決定手段である。
Reference numeral 34 is a microprocessor, which comprises a memory device 35 for storing control rules and fuzzy inference means 36. Reference numeral 37 is an opening degree determining means for determining the opening degree of each indoor electric expansion valve 27 based on the result obtained by the fuzzy inference means 36, and 38 is each capacity variable according to the opening degree instruction determined by the opening degree determining means 37. The frequency determining means controls the frequency of the compressor 22.

【0018】以上のように構成された多室型空気調和機
の冷房制御装置についてその動作を説明する。
The operation of the cooling control device for a multi-room air conditioner configured as described above will be described.

【0019】室温検出手段29で検出した室温と温度設
定手段30で設定した目標温度との偏差を求め、この偏
差から第1の目標開度演算手段32により第1の目標開
度S1を算出する。また、過熱度検出手段28で検出し
た過熱度SHから第2の目標開度演算手段33により第
2の目標開度S2を算出する。
The deviation between the room temperature detected by the room temperature detecting means 29 and the target temperature set by the temperature setting means 30 is obtained, and the first target opening degree calculating means 32 calculates the first target opening degree S1 from the deviation. . Further, the second target opening degree computing means 33 calculates the second target opening degree S2 from the superheat degree SH detected by the superheat degree detecting means 28.

【0020】以上のようにして演算された第1の目標開
度S1と第2の目標開度S2と過熱度検出手段28で検
出した過熱度SHとはファジィ推論手段36に入力され
る。メモリ装置35はファジィ推論手段36で実行され
るファジィ推論に必要な制御ルールを格納している。フ
ァジィ推論は、下記のような制御ルールを基にして実行
される。
The first target opening degree S1, the second target opening degree S2, and the superheat degree SH detected by the superheat degree detecting means 28 calculated as described above are input to the fuzzy inference means 36. The memory device 35 stores the control rules necessary for the fuzzy inference executed by the fuzzy inference means 36. Fuzzy inference is executed based on the following control rules.

【0021】本実施例で採用した制御ルールは次のよう
な3ルールである。 ルールR1:もし過熱度が小であれば、開度は第2の目
標開度 ルールR2:もし過熱度が中であれば、開度は第1の目
標開度 ルールR3:もし過熱度が大であれば、開度は第2の目
標開度 前記言語ルールは、発明者が数多くの実験データから得
た経験則から求めた、室内側電動膨張弁の開度を判定す
る制御ルールであり、これを表に示すと(表1)の通り
になる。
The control rules adopted in this embodiment are the following three rules. Rule R1: If the degree of superheat is small, the degree of opening is the second target degree of opening Rule R2: If the degree of superheat is medium, the degree of opening is the first target degree of opening Rule R3: If the degree of superheat is large If so, the opening is the second target opening. The language rule is a control rule for determining the opening of the indoor electric expansion valve, which is obtained from the empirical rule obtained by the inventor from many experimental data. This is shown in Table 1 (Table 1).

【0022】[0022]

【表1】 [Table 1]

【0023】(表1)は実施例に使用する能力可変圧縮
機22の開度を判定する制御ルールの関係を示してい
る。(表1)は横方向に過熱度SHの大きさによって3
段階(S=小、M=中、B=大)に分けて配置し、上記
区分された過熱度SHの大きさに対する能力可変圧縮機
22の開度Fを設定している。
Table 1 shows the relationship of control rules for determining the opening degree of the variable capacity compressor 22 used in the embodiment. (Table 1) shows 3 depending on the degree of superheat SH in the lateral direction.
It is arranged in stages (S = small, M = medium, B = large), and the opening F of the variable capacity compressor 22 with respect to the size of the divided superheat degree SH is set.

【0024】ここで(表1)においては能力可変圧縮機
22の開度(F)に応じて2段階(S1=第1の目標開
度、S2=第2の目標開度)に分けている。即ち前記制
御ルールRi(i=1、2、3)は(表1)における升
目(Ri)で示されている。
Here (Table 1), there are two stages (S1 = first target opening, S2 = second target opening) according to the opening (F) of the variable capacity compressor 22. . That is, the control rule Ri (i = 1, 2, 3) is indicated by a square (Ri) in (Table 1).

【0025】また前記言語ルールは、図1のメモリ装置
35の内に記憶する場合に下記のようなルールで記憶さ
れている。ここで使用した制御ルール数は3個である。 ルールR1:IF SH is S THEN F=S
2 ルールR2:IF SH is M THEN F=S
1 ルールR3:IF SH is B THEN F=S
2 つぎに、ファジィ推論手段36ではあらかじめメモリ装
置35に記憶されている前記制御ルールを取り出してフ
ァジィ推論によって各室内側電動膨張弁27の開度を算
出する。
The language rules are stored according to the following rules when stored in the memory device 35 of FIG. The number of control rules used here is three. Rule R1: IF SH is S THEN F = S
2 Rule R2: IF SH is M THEN F = S
1 Rule R3: IF SH is B THEN F = S
2. Next, the fuzzy inference means 36 retrieves the control rule stored in advance in the memory device 35 and calculates the opening of each indoor electric expansion valve 27 by fuzzy inference.

【0026】前記制御ルールR1、ルールR2、ルール
R3のルールは過熱度SHに対する能力可変圧縮機22
の開度を段階的に決めているので、きめ細かな制御を行
なう場合には、前記制御ルールの前件部(IF部)をど
の程度満たしているかの度合いを算出して、その度合い
に応じた各室内側電動膨張弁27の開度を判定する必要
がある。そのため、本実施例では前記度合いを算出する
のにファジィ変数のメンバシップ関数を利用している。
The control rules R1, R2, and R3 are the variable capacity compressor 22 with respect to the superheat degree SH.
Since the opening degree of the control rule is determined stepwise, when performing fine control, the degree to which the antecedent part (IF part) of the control rule is satisfied is calculated, and the degree is determined according to the degree. It is necessary to determine the opening degree of each indoor electric expansion valve 27. Therefore, in this embodiment, a membership function of fuzzy variables is used to calculate the degree.

【0027】図2は過熱度SHに対するファジィ変数
S、M、Bのメンバシップ関数μS(SH)、μM(S
H)、μB(SH)を示したものである。
FIG. 2 shows membership functions μS (SH) and μM (S) of fuzzy variables S, M and B with respect to the superheat degree SH.
H) and μB (SH).

【0028】ファジィ推論手段36で実行するファジィ
推論は前記制御ルールR1、ルールR2、ルールR3と
図2のメンバシップ関数とを用いて室内側電動膨張弁2
7の開度の演算を行なう。以下、図3をもとに推論の手
順を説明する。
The fuzzy inference executed by the fuzzy inference means 36 uses the control rules R1, R2 and R3 and the membership function of FIG.
The opening degree 7 is calculated. The inference procedure will be described below with reference to FIG.

【0029】図3(a)は推論手順を示す流れ図であ
る。STEP1では室温検出手段29で検出した室温と
温度設定手段30で設定した目標温度との偏差を求め、
この偏差から第1の目標開度演算手段32により第1の
目標開度S1を算出する。STEP2で過熱度検出手段
28で検出した過熱度SHから第2の目標開度演算手段
33により第2の目標開度S2を算出する。
FIG. 3A is a flow chart showing the inference procedure. In STEP 1, the deviation between the room temperature detected by the room temperature detecting means 29 and the target temperature set by the temperature setting means 30 is calculated,
From this deviation, the first target opening degree calculation means 32 calculates the first target opening degree S1. In STEP2, the second target opening degree computing means 33 calculates the second target opening degree S2 from the superheat degree SH detected by the superheat degree detecting means 28.

【0030】STEP3でファジィ推論手段36によっ
て過熱度SHに対するファジィ変数のメンバシップ関数
を用いて、前記過熱度SHにおけるメンバシップ値の算
出を行なう。STEP4で、得られたメンバシップ値が
前記3個の各ルールの前件部にどの程度の度合いで所属
しているかを算出する。
In STEP 3, the fuzzy inference means 36 uses the membership function of the fuzzy variable for the superheat degree SH to calculate the membership value at the superheat degree SH. In STEP 4, the degree to which the obtained membership value belongs to the antecedent part of each of the three rules is calculated.

【0031】つぎに、開度決定手段37により、上記で
述べたファジィ推論のSTEP4で求めた所属度合いに
基づき、第1の目標開度S1と第2の目標開度S2との
混合比率から開度を決定し、各室内側電動膨張弁27の
制御を行なう。
Next, the opening degree determining means 37 opens the mixture ratio of the first target opening degree S1 and the second target opening degree S2 based on the degree of belonging determined in STEP 4 of the fuzzy reasoning described above. The degree is determined, and the indoor expansion valve 27 is controlled.

【0032】つぎに、周波数決定手段38により、上記
で述べたファジィ推論のSTEP4で求めた所属度合い
に基づき、第1の目標開度S1と第2の目標開度S2と
の混合比率に対応する予め設定しておいた周波数を決定
し、各能力可変圧縮機22の制御を行う。
Next, the frequency determining means 38 responds to the mixture ratio of the first target opening S1 and the second target opening S2 based on the degree of belonging determined in STEP 4 of the fuzzy inference described above. The preset frequency is determined and each variable capacity compressor 22 is controlled.

【0033】例えば、図3(b)に示すように過熱度S
HがSH1であれば、制御ルールR2とR3とに50%
ずつ所属している。従って、開度Fは(数1)により求
められる。
For example, as shown in FIG. 3 (b), the degree of superheat S
If H is SH1, 50% for control rules R2 and R3
Belong to each. Therefore, the opening degree F is obtained by (Equation 1).

【0034】[0034]

【数1】 [Equation 1]

【0035】上記実施例の構成によれば、過熱度SHが
適正な大きさの時には制御パラメータとして室温と目標
温度との偏差を使用しているため空調負荷の大きさに応
じて最適な各室内側電動膨張弁27の開度制御が可能で
ある。また過熱度SHが過大または過小の時には制御パ
ラメータとして過熱度SHを使用しているため過熱度S
Hの大きさに応じて最適な各室内側電動膨張弁27の開
度制御が可能で、適正な過熱度で空調運転ができる。
According to the configuration of the above embodiment, when the superheat degree SH has an appropriate magnitude, the deviation between the room temperature and the target temperature is used as a control parameter, so that each room is optimal depending on the magnitude of the air conditioning load. The opening degree of the inner electric expansion valve 27 can be controlled. When the superheat degree SH is too large or too small, the superheat degree SH is used as a control parameter.
It is possible to optimally control the opening degree of each indoor electric expansion valve 27 according to the magnitude of H, and it is possible to perform air conditioning operation with an appropriate degree of superheat.

【0036】また過熱度SHが適正と過大または適正と
過小の中間の時にはファジィ推論により、きめ細かでな
めらかな各室内側電動膨張弁27の開度制御が可能であ
る。
Further, when the superheat degree SH is in the middle between proper and excessive or proper and small, it is possible to finely and smoothly control the opening degree of each indoor electric expansion valve 27 by fuzzy reasoning.

【0037】さらに、各能力可変圧縮機22において、
前記第1の目標開度S1と第2の目標開度S2との混合
比率が50%ずつ所属している場合、周波数を各最大能
力の50%と実験値より予め設定しておいた周波数から
決定し、各能力可変圧縮機22の制御を行う。これによ
り各室内側電動膨張弁27の目標開度設定終了時に各能
力可変圧縮機の周波数がすでに設定されるため、時間遅
れ無しに周波数変更できる。これにより室温の乱れを防
止し快適性の向上と省エネルギー化ができる。
Further, in each capacity variable compressor 22,
When the mixing ratio of the first target opening S1 and the second target opening S2 belongs to 50% each, the frequency is set to 50% of each maximum capacity and the frequency preset from the experimental value. Then, the variable capacity compressor 22 is controlled. As a result, the frequency of each variable capacity compressor is already set at the end of setting the target opening degree of each indoor electric expansion valve 27, so that the frequency can be changed without time delay. As a result, the room temperature can be prevented from being disturbed, comfort can be improved, and energy can be saved.

【0038】[0038]

【発明の効果】以上、実施例から明らかなように本発明
の多室型空気調和機の冷房制御装置は、室温を検出する
室温検出手段と、目標温度を設定する温度設定手段と、
前記室温検出手段で検出した室温と前記温度設定手段で
設定した目標温度との偏差に基づき前記室内側電動膨張
弁の第1の目標開度を演算する第1の目標開度演算手段
と、前記各室内側熱交換器出口配管の過熱度を検出する
過熱度検出手段と、前記各過熱度検出手段で検出した過
熱度に基づき前記室内側電動膨張弁の第2の目標開度を
演算する第2の目標開度演算手段を備えている。
As is apparent from the above embodiments, the cooling control device for a multi-room air conditioner according to the present invention comprises a room temperature detecting means for detecting room temperature, a temperature setting means for setting a target temperature,
First target opening degree calculating means for calculating a first target opening degree of the indoor electric expansion valve based on a deviation between a room temperature detected by the room temperature detecting means and a target temperature set by the temperature setting means; A superheat degree detecting means for detecting a superheat degree of each indoor heat exchanger outlet pipe; and a second target opening degree for calculating the second target opening degree of the indoor electric expansion valve based on the superheat degree detected by each superheat degree detecting means. Two target opening degree calculation means are provided.

【0039】そして、さらに前記各過熱度検出手段で検
出した過熱度に対して前記第1、第2の目標開度から前
記各室内側電動膨張弁の最適な開度を求めるための経験
則に基づく制御ルールを記憶するメモリ装置と、前記第
1、第2の目標開度演算手段でそれぞれ演算された第
1、第2の目標開度と前記各過熱度検出手段で検出した
過熱度と前記メモリ装置から取り出された制御ルールと
に基づいてファジィ論理演算を行なうファジィ推論手段
と、前記ファジィ推論手段で行なった推論結果に基づき
前記各室内側電動膨張弁の最適な開度を決定する開度決
定手段と、前記ファジィ推論手段で行なった推論結果に
基づき予め設定された周波数と比較して前記能力可変圧
縮機の周波数を決定する周波数決定手段により、常に最
適な開度と周波数で各室内ユニットを制御できるため、
他の室内ユニットへの冷媒量の過不足を防止でき、能力
可変圧縮機を時間遅れ無しに周波数変更できる。これに
より室温の乱れを防止し快適性の向上と省エネルギー化
ができる。
Further, in accordance with the empirical rule for obtaining the optimum opening degree of each indoor electric expansion valve from the first and second target opening degrees with respect to the superheat degree detected by each superheat degree detecting means. A memory device for storing a control rule based on the above; first and second target opening degrees respectively calculated by the first and second target opening degree calculating means; Fuzzy inference means for performing a fuzzy logic operation based on a control rule extracted from the memory device, and an opening degree for determining the optimum opening degree of each indoor electric expansion valve based on the inference result performed by the fuzzy inference means By the determining means and the frequency determining means for determining the frequency of the variable capacity compressor by comparing with the preset frequency based on the result of the inference performed by the fuzzy inference means, the optimum opening and frequency are always maintained. Can be controlled indoor unit,
It is possible to prevent excess and deficiency of the refrigerant amount to other indoor units, and it is possible to change the frequency of the variable capacity compressor without delay. As a result, the room temperature can be prevented from being disturbed, comfort can be improved, and energy can be saved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の多室型空気調和機の冷房制
御装置のブロック図
FIG. 1 is a block diagram of a cooling control device for a multi-room air conditioner according to an embodiment of the present invention.

【図2】過熱度SHに対するファジィ変数S,M,Bの
メンバシップ関数を示した特性図
FIG. 2 is a characteristic diagram showing membership functions of fuzzy variables S, M and B with respect to superheat degree SH.

【図3】(a)は推論手順を示す流れ図 (b)は過熱度SH1に対するファジィ変数S,M,B
の所属度を示した特性図
3 (a) is a flow chart showing an inference procedure. FIG. 3 (b) is a fuzzy variable S, M, B for the superheat degree SH1.
Characteristic diagram showing the degree of belonging of

【図4】従来の空気調和機の冷房制御装置のブロック図FIG. 4 is a block diagram of a conventional cooling control device for an air conditioner.

【符号の説明】[Explanation of symbols]

21a,21b 室外ユニット 22a,22b 能力可変圧縮機 23a,23b 室外側熱交換器 24a,24b 室外側電動膨張弁 25a,25b 四方弁 26a,26b,26c 室内ユニット 27a,27b,27c 室内側電動膨張弁 28a,28b,28c 過熱度検出手段 29a,29b,29c 室温検出手段 30a,30b,30c 温度設定手段 31a,31b,31c 室内側熱交換器 32 第1の目標開度演算手段 33 第2の目標開度演算手段 35 メモリ装置 36 ファジィ推論手段 37 開度決定手段 38 開度制御手段 21a, 21b outdoor unit 22a, 22b variable capacity compressor 23a, 23b outdoor heat exchanger 24a, 24b outdoor electric expansion valve 25a, 25b four-way valve 26a, 26b, 26c indoor unit 27a, 27b, 27c indoor electric expansion valve 28a, 28b, 28c Superheat detection means 29a, 29b, 29c Room temperature detection means 30a, 30b, 30c Temperature setting means 31a, 31b, 31c Indoor heat exchanger 32 First target opening calculation means 33 Second target opening Degree calculation means 35 Memory device 36 Fuzzy inference means 37 Opening degree determination means 38 Opening degree control means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 能力可変圧縮機と四方弁と室外側熱交換
器と室外側電動膨張弁とからなる複数の室外ユニット
と、室内側電動膨張弁と室内側熱交換器とからなり、前
記室外ユニットに並列に複数台接続した室内ユニットと
から構成された多室型空気調和機において、室温を検出
する室温検出手段と、目標温度を設定する温度設定手段
と、前記室温検出手段で検出した室温と前記温度設定手
段で設定した目標温度との偏差に基づき前記室内側電動
膨張弁の第1の目標開度を演算する第1の目標開度演算
手段と、前記各室内側熱交換器出口配管の過熱度を検出
する過熱度検出手段と、前記各過熱度検出手段で検出し
た過熱度に基づき前記室内側電動膨張弁の第2の目標開
度を演算する第2の目標開度演算手段と、前記各過熱度
検出手段で検出した過熱度に対して前記第1、第2の目
標開度から前記各室内側電動膨張弁の最適な開度を求め
るための経験則に基づく制御ルールを記憶するメモリ装
置と、前記第1、第2の目標開度演算手段でそれぞれ演
算された第1、第2の目標開度と前記各過熱度検出手段
で検出した過熱度と前記メモリ装置から取り出された制
御ルールとに基づいてファジィ論理演算を行なうファジ
ィ推論手段と、前記ファジィ推論手段で行なった推論結
果に基づき前記各室内側電動膨張弁の最適な開度を決定
する開度決定手段と、前記ファジィ推論手段で行なった
推論結果に基づき予め設定された周波数と比較して前記
能力可変圧縮機の周波数を決定する周波数決定手段とを
備えたことを特徴とする多室型空気調和機の冷房制御装
置。
1. A plurality of outdoor units including a variable capacity compressor, a four-way valve, an outdoor heat exchanger, and an outdoor electric expansion valve; an indoor electric expansion valve and an indoor heat exchanger; In a multi-room air conditioner composed of a plurality of indoor units connected in parallel to the unit, room temperature detecting means for detecting room temperature, temperature setting means for setting a target temperature, and room temperature detected by the room temperature detecting means And first target opening degree calculating means for calculating a first target opening degree of the indoor electric expansion valve based on a deviation between the target temperature set by the temperature setting means and each indoor heat exchanger outlet pipe And a second target opening degree calculating means for calculating a second target opening degree of the indoor electric expansion valve based on the superheat degree detected by each of the superheat degree detecting means. , The temperature detected by each of the superheat detection means A memory device for storing a control rule based on an empirical rule for obtaining an optimal opening degree of each indoor electric expansion valve from the first and second target opening degrees with respect to heat value; Fuzzy logic operation based on the first and second target opening degrees respectively calculated by the target opening degree calculating means, the superheat degree detected by the respective superheat degree detecting means, and the control rule extracted from the memory device. Fuzzy inference means to perform, opening degree determining means for determining the optimal opening degree of each indoor electric expansion valve based on the inference result performed by the fuzzy inference means, and in advance based on the inference result performed by the fuzzy inference means A cooling control device for a multi-room air conditioner, comprising: frequency determining means for determining a frequency of the variable capacity compressor in comparison with a set frequency.
JP16713492A 1992-06-25 1992-06-25 Cooling control device for multi-room air conditioner Expired - Fee Related JP3174153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16713492A JP3174153B2 (en) 1992-06-25 1992-06-25 Cooling control device for multi-room air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16713492A JP3174153B2 (en) 1992-06-25 1992-06-25 Cooling control device for multi-room air conditioner

Publications (2)

Publication Number Publication Date
JPH0611172A true JPH0611172A (en) 1994-01-21
JP3174153B2 JP3174153B2 (en) 2001-06-11

Family

ID=15844063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16713492A Expired - Fee Related JP3174153B2 (en) 1992-06-25 1992-06-25 Cooling control device for multi-room air conditioner

Country Status (1)

Country Link
JP (1) JP3174153B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000053853A (en) * 2000-04-27 2000-09-05 조정민 Fuzzy-VAV DDC control method using GA(Genetic Algorithm) to improve indoor environment in IB( Intelligent Building)
KR101488390B1 (en) * 2008-02-05 2015-01-30 엘지전자 주식회사 Method for calculating the mass of a refrigerant in air conditioning apparatus
CN111878964A (en) * 2020-07-27 2020-11-03 宁波奥克斯电气股份有限公司 Control method and device of electronic expansion valve, air conditioner and storage medium
CN115451621A (en) * 2021-06-09 2022-12-09 青岛海特生物医疗有限公司 Method and device for adjusting frequency of compressor and compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000053853A (en) * 2000-04-27 2000-09-05 조정민 Fuzzy-VAV DDC control method using GA(Genetic Algorithm) to improve indoor environment in IB( Intelligent Building)
KR101488390B1 (en) * 2008-02-05 2015-01-30 엘지전자 주식회사 Method for calculating the mass of a refrigerant in air conditioning apparatus
CN111878964A (en) * 2020-07-27 2020-11-03 宁波奥克斯电气股份有限公司 Control method and device of electronic expansion valve, air conditioner and storage medium
CN111878964B (en) * 2020-07-27 2022-02-08 宁波奥克斯电气股份有限公司 Control method and device of electronic expansion valve, air conditioner and storage medium
CN115451621A (en) * 2021-06-09 2022-12-09 青岛海特生物医疗有限公司 Method and device for adjusting frequency of compressor and compressor

Also Published As

Publication number Publication date
JP3174153B2 (en) 2001-06-11

Similar Documents

Publication Publication Date Title
JPS63150551A (en) Air-conditioning system and control method of speed of compressor and speed of motor in said system
EP0282772B1 (en) Operating method for an air conditioning system
JP3181116B2 (en) Air conditioner
JP3174153B2 (en) Cooling control device for multi-room air conditioner
KR102558826B1 (en) Air conditioner system and control method
JPH07294021A (en) Heat pump type cooling dehumidifying equipment
JPH04273939A (en) Cooling control device for multi-chamber type air conditioner
JP3464882B2 (en) Air conditioning control device
JP2960237B2 (en) Air conditioner
JPH05106929A (en) Space heating controller for multichamber air conditioner
JPH05296593A (en) Cooling control device for multi-chamber air conditioner
JP3224695B2 (en) Air conditioner
JP2863305B2 (en) Multi-room air conditioner
JPH06294541A (en) Cooling controller for multiple room type airconditioning apparatus
JPH05306847A (en) Room heating controller for multi-chamber type air conditioner
JPH06147671A (en) Cooling control device for multi-chamber type air conditioner
JP2536313B2 (en) Operation control device for air conditioner
JP3270531B2 (en) Multi-room air conditioner
JP2582441B2 (en) Air conditioner
JP2001208441A (en) Air conditioning apparatus
JPH06341723A (en) Air conditioner
JPH06307729A (en) Heating control device for multiroom type air-conditioner
JP2717882B2 (en) Air conditioner
JPH07234023A (en) Method and apparatus for controlling air conditioner
JPH05149610A (en) Air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees