JP3174153B2 - Cooling control device for multi-room air conditioner - Google Patents

Cooling control device for multi-room air conditioner

Info

Publication number
JP3174153B2
JP3174153B2 JP16713492A JP16713492A JP3174153B2 JP 3174153 B2 JP3174153 B2 JP 3174153B2 JP 16713492 A JP16713492 A JP 16713492A JP 16713492 A JP16713492 A JP 16713492A JP 3174153 B2 JP3174153 B2 JP 3174153B2
Authority
JP
Japan
Prior art keywords
degree
indoor
superheat
target
electric expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16713492A
Other languages
Japanese (ja)
Other versions
JPH0611172A (en
Inventor
安則 西尾
章宏 城野
Original Assignee
松下冷機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下冷機株式会社 filed Critical 松下冷機株式会社
Priority to JP16713492A priority Critical patent/JP3174153B2/en
Publication of JPH0611172A publication Critical patent/JPH0611172A/en
Application granted granted Critical
Publication of JP3174153B2 publication Critical patent/JP3174153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、複数台の室外ユニット
において室内側電動膨張弁の開度制御と能力可変圧縮機
の周波数制御により各室内ユニットの空調能力を制御す
る多室型空気調和機において、各室内ユニットの室温を
乱れなくなめらかに制御し、かつ機器の省エネルギー化
ができる冷房制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room air conditioner for controlling the air-conditioning capacity of each indoor unit in a plurality of outdoor units by controlling the opening of an indoor electric expansion valve and controlling the frequency of a variable capacity compressor. The present invention relates to a cooling control device capable of smoothly controlling the room temperature of each indoor unit without disturbing and saving energy of equipment.

【0002】[0002]

【従来の技術】近年、ビル空調において、負荷の異なる
複数の部屋に対し各室毎に室内ユニットを設置し、これ
を1台の室外ユニットに接続する多室型空気調和機によ
り、各室毎に空調する個別分散空調が多く行なわれてい
る。
2. Description of the Related Art In recent years, in a building air conditioner, an indoor unit is installed for each of a plurality of rooms having different loads, and each room is connected to a single outdoor unit by a multi-room air conditioner. Individually distributed air conditioning is frequently performed.

【0003】このようななかで、従来、特開昭63−1
80051号公報に開示されるような能力可変圧縮機を
備えた空気調和機が知られている。
Under such circumstances, conventionally, Japanese Patent Application Laid-Open No. 63-1
An air conditioner equipped with a variable capacity compressor as disclosed in Japanese Patent Application Laid-Open No. 80051 is known.

【0004】以下、図面を参考に従来の技術について説
明する。図4は従来の多室型空気調和機の冷房制御装置
のブロック構成図を示すものである。図4において、能
力可変圧縮機1と凝縮器2と電動膨張弁3と蒸発器4と
を順次接続して冷媒循環系統5を構成した多室型空気調
和機において、室温を検出する室温検出手段6と、前記
室温検出手段6の出力を受け、室温と室温目標値との偏
差に応じて前記室内側電動膨張弁3の目標開度を演算す
る目標開度演算手段7と、前記目標開度演算手段7の出
力を受け、前記室内側電動膨張弁3の開度を目標開度に
制御する開度制御手段8と冷媒の過熱度を検出する過熱
度検出手段9と前記開度制御手段8に優先する保護手段
10とから成っている。
[0004] The prior art will be described below with reference to the drawings. FIG. 4 shows a block diagram of a conventional cooling control device for a multi-room air conditioner. In FIG. 4, in a multi-room air conditioner in which a variable capacity compressor 1, a condenser 2, an electric expansion valve 3, and an evaporator 4 are sequentially connected to form a refrigerant circulation system 5, room temperature detecting means for detecting room temperature. 6, a target opening calculating means 7 for receiving the output of the room temperature detecting means 6 and calculating a target opening of the indoor-side electric expansion valve 3 according to a deviation between the room temperature and the target room temperature; The opening control means 8 receives the output of the calculating means 7 and controls the opening of the indoor-side electric expansion valve 3 to the target opening, the superheat detection means 9 for detecting the superheat of the refrigerant, and the opening control means 8 And protection means 10 which has priority over

【0005】以上のように構成された従来の多室型空気
調和機の冷房制御装置について、以下その動作について
説明する。まず空調運転時、室温と室温目標値との偏差
に応じた室内側電動膨張弁3の目標開度が目標開度演算
手段7で演算され、この目標開度になるように室内側電
動膨張弁3の開度が開度制御手段8で増減制御されるの
で、蒸発器4への冷媒流量が適切な量となって、室内の
空調負荷と空調能力とが良好に対応して室内が快適に空
調される。
The operation of the conventional cooling control device for a multi-room air conditioner configured as described above will be described below. First, during the air-conditioning operation, the target opening of the indoor electric expansion valve 3 according to the deviation between the room temperature and the room temperature target value is calculated by the target opening calculating means 7, and the indoor electric expansion valve is set so as to reach this target opening. 3 is controlled to be increased or decreased by the opening control means 8, so that the flow rate of the refrigerant to the evaporator 4 becomes an appropriate amount, and the indoor air-conditioning load and the air-conditioning capacity are satisfactorily corresponded to make the room comfortable. Air-conditioned.

【0006】今、例えば室内の空調負荷が減少して冷媒
の過熱度が低下した場合、過熱度検出手段9の出力を受
け、冷媒の過熱度が湿り運転となる所定過熱度値以下の
時、前記開度制御手段8に優先して保護手段10により
前記室内側電動膨張弁3の開度を減少させる。従って冷
媒の過熱度が上昇し、その結果冷媒の湿り状態の発生が
有効に防止される。
Now, for example, when the degree of superheating of the refrigerant decreases due to a decrease in the air conditioning load in the room, the output of the superheating degree detecting means 9 is received. The opening degree of the indoor-side electric expansion valve 3 is reduced by the protection means 10 prior to the opening degree control means 8. Accordingly, the degree of superheat of the refrigerant is increased, and as a result, the occurrence of a wet state of the refrigerant is effectively prevented.

【0007】[0007]

【発明が解決しようとする課題】しかしこのような構成
では、各室内側電動膨張弁3が個別に開度制御するた
め、室内側電動膨張弁3の動作によっては、他の室内ユ
ニットへの冷媒量過不足が起こり、能力可変圧縮機1が
時間遅れで周波数の変更を行わなければならなかった。
However, in such a configuration, the opening degree of each indoor-side electric expansion valve 3 is individually controlled. Therefore, depending on the operation of the indoor-side electric expansion valve 3, the refrigerant to other indoor units may be removed. An excess or deficiency occurred, and the variable capacity compressor 1 had to change the frequency with a time delay.

【0008】また所定の過熱度値を境界として、室内側
電動膨張弁3の開度の制御方式が大きく変わるので、境
界付近では室温に乱れが生ずるという課題があった。
In addition, since the control method of the opening degree of the indoor electric expansion valve 3 is greatly changed with a predetermined superheat degree as a boundary, there is a problem that the room temperature is disturbed near the boundary.

【0009】本発明は上記課題を解決するために、冷媒
の過熱度が上昇し過ぎたり低下し過ぎたりしないように
室内側電動膨張弁開度と能力可変圧縮機周波数を制御
し、室温の乱れを防止し快適性の向上と省エネルギー化
ができる多室型空気調和機の冷房制御装置を提供するこ
とを目的とする。
In order to solve the above-mentioned problems, the present invention controls the opening degree of the indoor-side electric expansion valve and the frequency of the variable capacity compressor so that the degree of superheat of the refrigerant does not increase or decrease excessively. It is an object of the present invention to provide a cooling control device for a multi-room air conditioner, which can prevent the air conditioner, improve the comfort and save energy.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に本発明の多室型空気調和機の冷房制御装置は、室温を
検出する室温検出手段と、目標温度を設定する温度設定
手段と、前記室温検出手段で検出した室温と前記温度設
定手段で設定した目標温度との偏差に基づき前記室内側
電動膨張弁の第1の目標開度を演算する第1の目標開度
演算手段と、前記各室内側熱交換器出口配管の過熱度を
検出する過熱度検出手段と、前記各過熱度検出手段で検
出した過熱度に基づき前記室内側電動膨張弁の第2の目
標開度を演算する第2の目標開度演算手段とを備えてい
る。
According to the present invention, there is provided a cooling control apparatus for a multi-room air conditioner, comprising: a room temperature detecting means for detecting a room temperature; a temperature setting means for setting a target temperature; First target opening calculating means for calculating a first target opening of the indoor electric expansion valve based on a deviation between the room temperature detected by the room temperature detecting means and the target temperature set by the temperature setting means; A superheat degree detecting means for detecting a superheat degree of each indoor heat exchanger outlet pipe, and a second target opening degree of the indoor electric expansion valve based on the superheat degree detected by each superheat degree detecting means. And two target opening calculating means.

【0011】そして、さらに前記各過熱度検出手段で検
出した過熱度に対して前記第1、第2の目標開度から前
記各室内側電動膨張弁の最適な開度を求めるための経験
則に基づく制御ルールを記憶するメモリ装置と、前記第
1、第2の目標開度演算手段でそれぞれ演算された第
1、第2の目標開度と前記各過熱度検出手段で検出した
過熱度と前記メモリ装置から取り出された制御ルールと
に基づいてファジィ論理演算を行なうファジィ推論手段
と、前記ファジィ推論手段で行なった推論結果に基づき
前記各室内側電動膨張弁の最適な開度を決定する開度決
定手段と、前記ファジィ推論手段で行なった推論結果に
基づき予め設定された周波数と比較して前記能力可変圧
縮機の周波数を決定する周波数決定手段とを備えたこと
を特徴としている。
Further, an empirical rule for obtaining an optimum opening of each of the indoor side electric expansion valves from the first and second target openings with respect to the degree of superheat detected by the respective degree of superheat detection means. A memory device that stores a control rule based on the first and second target opening degrees calculated by the first and second target opening degree calculating means, and a superheat degree detected by the respective superheat degree detecting means. Fuzzy inference means for performing a fuzzy logic operation based on a control rule extracted from the memory device, and an opening for determining an optimal opening of each of the indoor-side electric expansion valves based on an inference result performed by the fuzzy inference means. Determining means, and frequency determining means for determining a frequency of the variable capacity compressor based on a result of the inference performed by the fuzzy inference means and comparing the frequency with a preset frequency.

【0012】[0012]

【作用】本発明の多室型空気調和機の冷房制御装置は上
記した構成により、室温検出手段で検出した室温と温度
設定手段で設定した目標温度との偏差に基づき第1の目
標開度演算手段により室内側電動膨張弁の第1の目標開
度を演算し、室内側熱交換器出口配管の過熱度を検出す
る過熱度検出手段により検出した過熱度に基づき第2の
目標開度演算手段により室内側電動膨張弁の第2の目標
開度を演算する。
According to the cooling control device for a multi-room air conditioner of the present invention, a first target opening degree is calculated based on the deviation between the room temperature detected by the room temperature detecting means and the target temperature set by the temperature setting means. Means for calculating a first target opening of the indoor-side electric expansion valve, and a second target opening calculating means based on the degree of superheat detected by the degree of superheat detecting means for detecting the degree of superheat of the outlet pipe of the indoor heat exchanger. Calculates the second target opening degree of the indoor-side electric expansion valve.

【0013】これらの結果と過熱度検出手段で検出した
過熱度と、メモリ装置より取り出された経験則に基づく
制御ルールによりファジィ推論し、ファジィ推論手段で
行なった推論結果に基づき、各室内側電動膨張弁の開度
の決定と、予め設定された周波数と比較して前記能力可
変圧縮機の周波数を決定する周波数決定手段により、常
に最適な開度と周波数で各室内ユニットを制御できるた
め、他の室内ユニットへの冷媒量の過不足を防止でき、
能力可変圧縮機を時間遅れ無しに周波数変更できる。こ
れにより室温の乱れを防止し快適性の向上と省エネルギ
ー化ができる。
Based on these results, the degree of superheat detected by the degree of superheat detection means, and a control rule based on empirical rules taken out of the memory device, fuzzy inference is performed. The determination of the opening of the expansion valve and the frequency determination means for determining the frequency of the variable capacity compressor by comparing the frequency with a preset frequency make it possible to always control each indoor unit with the optimal opening and frequency. The amount of refrigerant in the indoor unit can be prevented from being excessive or insufficient,
The frequency of the variable capacity compressor can be changed without time delay. As a result, disturbance of room temperature is prevented, and comfort can be improved and energy can be saved.

【0014】[0014]

【実施例】以下本発明の多室型空気調和機の冷房制御装
置の一実施例について、図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a cooling control device for a multi-room air conditioner according to the present invention will be described below with reference to the drawings.

【0015】図1は本発明の多室型空気調和機の冷房制
御装置のブロック図を示す。図1において21a,21
bは室外ユニットで、それぞれ能力可変圧縮機22a,
22bと室外側熱交換器23a,23bと室外側電動膨
張弁24a,24bと四方弁25a,25bとから構成
される。26a,26b,26cは室内ユニットで、そ
れぞれ室内側電動膨張弁27a,27b,27cと過熱
度検出手段(後述する)28a,28b,28cと室温
検出手段29a,29b,29cと温度設定手段30
a,30b,30cと室内側熱交換器31a,31b,
31cとから構成される。
FIG. 1 is a block diagram of a cooling control device for a multi-room air conditioner according to the present invention. In FIG. 1, 21a, 21
b is an outdoor unit, each of which has a variable capacity compressor 22a,
22b, outdoor heat exchangers 23a and 23b, outdoor electric expansion valves 24a and 24b, and four-way valves 25a and 25b. 26a, 26b, 26c are indoor units, which are indoor-side electric expansion valves 27a, 27b, 27c, superheat degree detection means (described later) 28a, 28b, 28c, room temperature detection means 29a, 29b, 29c, and temperature setting means 30, respectively.
a, 30b, 30c and the indoor heat exchangers 31a, 31b,
31c.

【0016】28a,28b,28cは過熱度検出手段
で、それぞれ室内側熱交換器31a,31b,31cと
室内側電動膨張弁27a,27b,27cとの間を接続
する配管に設置される。32は室温検出手段29で検出
した室温と温度設定手段30で設定した目標温度との偏
差から各室内側電動膨張弁27の第1の目標開度を演算
する第1の目標開度演算手段である。33は各過熱度検
出手段28で検出した過熱度から各室内側電動膨張弁2
7の第2の目標開度を演算する第2の目標開度演算手段
である。
Reference numerals 28a, 28b and 28c denote superheat degree detecting means, which are installed in pipes connecting between the indoor heat exchangers 31a, 31b and 31c and the indoor electric expansion valves 27a, 27b and 27c, respectively. Reference numeral 32 denotes first target opening degree calculating means for calculating a first target opening degree of each indoor expansion valve 27 from a difference between the room temperature detected by the room temperature detecting means 29 and the target temperature set by the temperature setting means 30. is there. Reference numeral 33 denotes each indoor expansion valve 2 based on the degree of superheat detected by each degree of superheat detection means 28.
7 is a second target opening calculating means for calculating a second target opening.

【0017】34はマイクロプロセッサで、制御ルール
を記憶するメモリ装置35とファジィ推論手段36とか
ら構成されている。37はファジィ推論手段36で得た
結果に基づき各室内側電動膨張弁27の開度を決定する
開度決定手段で、38は開度決定手段37で決定した開
度の指示にしたがって各能力可変圧縮機22の周波数を
制御する周波数決定手段である。
Reference numeral 34 denotes a microprocessor, which comprises a memory device 35 for storing control rules and fuzzy inference means 36. Reference numeral 37 denotes an opening determining means for determining the opening of each indoor expansion valve 27 based on the result obtained by the fuzzy inference means 36, and reference numeral 38 denotes a variable capacity according to the opening instruction determined by the opening determining means 37. It is frequency determining means for controlling the frequency of the compressor 22.

【0018】以上のように構成された多室型空気調和機
の冷房制御装置についてその動作を説明する。
The operation of the cooling control device for a multi-room air conditioner configured as described above will be described.

【0019】室温検出手段29で検出した室温と温度設
定手段30で設定した目標温度との偏差を求め、この偏
差から第1の目標開度演算手段32により第1の目標開
度S1を算出する。また、過熱度検出手段28で検出し
た過熱度SHから第2の目標開度演算手段33により第
2の目標開度S2を算出する。
A deviation between the room temperature detected by the room temperature detecting means 29 and the target temperature set by the temperature setting means 30 is obtained, and a first target opening degree S1 is calculated from the deviation by the first target opening degree calculating means 32. . Further, a second target opening degree S2 is calculated by the second target opening degree calculating means 33 from the superheat degree SH detected by the superheat degree detecting means 28.

【0020】以上のようにして演算された第1の目標開
度S1と第2の目標開度S2と過熱度検出手段28で検
出した過熱度SHとはファジィ推論手段36に入力され
る。メモリ装置35はファジィ推論手段36で実行され
るファジィ推論に必要な制御ルールを格納している。フ
ァジィ推論は、下記のような制御ルールを基にして実行
される。
The first target opening S1 and the second target opening S2 calculated as described above and the superheat SH detected by the superheat detecting means 28 are input to the fuzzy inference means 36. The memory device 35 stores control rules necessary for fuzzy inference executed by the fuzzy inference means 36. Fuzzy inference is performed based on the following control rules.

【0021】本実施例で採用した制御ルールは次のよう
な3ルールである。 ルールR1:もし過熱度が小であれば、開度は第2の目
標開度 ルールR2:もし過熱度が中であれば、開度は第1の目
標開度 ルールR3:もし過熱度が大であれば、開度は第2の目
標開度 前記言語ルールは、発明者が数多くの実験データから得
た経験則から求めた、室内側電動膨張弁の開度を判定す
る制御ルールであり、これを表に示すと(表1)の通り
になる。
The control rules adopted in this embodiment are the following three rules. Rule R1: If the superheat is small, the opening is the second target opening Rule R2: If the superheating is medium, the opening is the first target opening Rule R3: If the superheat is large If so, the opening degree is the second target opening degree The language rule is a control rule for determining the opening degree of the indoor-side electric expansion valve, which is obtained from the empirical rules obtained by the inventor from many experimental data, This is shown in the table (Table 1).

【0022】[0022]

【表1】 [Table 1]

【0023】(表1)は実施例に使用する能力可変圧縮
機22の開度を判定する制御ルールの関係を示してい
る。(表1)は横方向に過熱度SHの大きさによって3
段階(S=小、M=中、B=大)に分けて配置し、上記
区分された過熱度SHの大きさに対する能力可変圧縮機
22の開度Fを設定している。
Table 1 shows the relationship of control rules for determining the opening of the variable capacity compressor 22 used in the embodiment. (Table 1) shows three values depending on the degree of superheat SH in the horizontal direction.
It is arranged in stages (S = small, M = medium, B = large), and the opening degree F of the variable capacity compressor 22 with respect to the magnitude of the superheat degree SH is set.

【0024】ここで(表1)においては能力可変圧縮機
22の開度(F)に応じて2段階(S1=第1の目標開
度、S2=第2の目標開度)に分けている。即ち前記制
御ルールRi(i=1、2、3)は(表1)における升
目(Ri)で示されている。
Here, in Table 1, there are two stages (S1 = first target opening, S2 = second target opening) according to the opening (F) of the variable capacity compressor 22. . That is, the control rule Ri (i = 1, 2, 3) is indicated by a square (Ri) in (Table 1).

【0025】また前記言語ルールは、図1のメモリ装置
35の内に記憶する場合に下記のようなルールで記憶さ
れている。ここで使用した制御ルール数は3個である。 ルールR1:IF SH is S THEN F=S
2 ルールR2:IF SH is M THEN F=S
1 ルールR3:IF SH is B THEN F=S
2 つぎに、ファジィ推論手段36ではあらかじめメモリ装
置35に記憶されている前記制御ルールを取り出してフ
ァジィ推論によって各室内側電動膨張弁27の開度を算
出する。
The language rules are stored according to the following rules when stored in the memory device 35 of FIG. The number of control rules used here is three. Rule R1: IF SH is S THEN F = S
2 Rule R2: IF SH is M THEN F = S
1 Rule R3: IF SH is B THEN F = S
Next, the fuzzy inference means 36 takes out the control rules stored in the memory device 35 in advance and calculates the opening degree of each indoor expansion valve 27 by fuzzy inference.

【0026】前記制御ルールR1、ルールR2、ルール
R3のルールは過熱度SHに対する能力可変圧縮機22
の開度を段階的に決めているので、きめ細かな制御を行
なう場合には、前記制御ルールの前件部(IF部)をど
の程度満たしているかの度合いを算出して、その度合い
に応じた各室内側電動膨張弁27の開度を判定する必要
がある。そのため、本実施例では前記度合いを算出する
のにファジィ変数のメンバシップ関数を利用している。
The rules of the control rules R1, R2 and R3 are based on the variable capacity compressor 22 for the superheat degree SH.
The degree of opening is determined in a stepwise manner. In order to perform fine control, the degree to which the antecedent part (IF part) of the control rule is satisfied is calculated, and the degree corresponding to the degree is calculated. It is necessary to determine the opening of each indoor expansion valve 27. Therefore, in this embodiment, a membership function of a fuzzy variable is used to calculate the degree.

【0027】図2は過熱度SHに対するファジィ変数
S、M、Bのメンバシップ関数μS(SH)、μM(S
H)、μB(SH)を示したものである。
FIG. 2 shows the membership functions μS (SH) and μM (S) of the fuzzy variables S, M and B with respect to the superheat SH.
H) and μB (SH).

【0028】ファジィ推論手段36で実行するファジィ
推論は前記制御ルールR1、ルールR2、ルールR3と
図2のメンバシップ関数とを用いて室内側電動膨張弁2
7の開度の演算を行なう。以下、図3をもとに推論の手
順を説明する。
The fuzzy inference executed by the fuzzy inference means 36 uses the control rules R1, R2, R3 and the membership function of FIG.
7 is calculated. Hereinafter, an inference procedure will be described with reference to FIG.

【0029】図3(a)は推論手順を示す流れ図であ
る。STEP1では室温検出手段29で検出した室温と
温度設定手段30で設定した目標温度との偏差を求め、
この偏差から第1の目標開度演算手段32により第1の
目標開度S1を算出する。STEP2で過熱度検出手段
28で検出した過熱度SHから第2の目標開度演算手段
33により第2の目標開度S2を算出する。
FIG. 3A is a flowchart showing the inference procedure. In STEP1, a deviation between the room temperature detected by the room temperature detecting means 29 and the target temperature set by the temperature setting means 30 is obtained.
The first target opening degree S1 is calculated from the deviation by the first target opening degree calculating means 32. In Step 2, the second target opening degree S2 is calculated by the second target opening degree calculating means 33 from the superheat degree SH detected by the superheat degree detecting means 28.

【0030】STEP3でファジィ推論手段36によっ
て過熱度SHに対するファジィ変数のメンバシップ関数
を用いて、前記過熱度SHにおけるメンバシップ値の算
出を行なう。STEP4で、得られたメンバシップ値が
前記3個の各ルールの前件部にどの程度の度合いで所属
しているかを算出する。
In STEP 3, the membership value at the superheat degree SH is calculated by the fuzzy inference means 36 using the fuzzy variable membership function for the superheat degree SH. In STEP 4, the degree to which the obtained membership value belongs to the antecedent part of each of the three rules is calculated.

【0031】つぎに、開度決定手段37により、上記で
述べたファジィ推論のSTEP4で求めた所属度合いに
基づき、第1の目標開度S1と第2の目標開度S2との
混合比率から開度を決定し、各室内側電動膨張弁27の
制御を行なう。
Next, based on the degree of affiliation obtained in STEP 4 of the fuzzy inference described above, the opening degree determining means 37 determines the opening degree from the mixture ratio of the first target opening degree S1 and the second target opening degree S2. The degree is determined, and control of each indoor-side electric expansion valve 27 is performed.

【0032】つぎに、周波数決定手段38により、上記
で述べたファジィ推論のSTEP4で求めた所属度合い
に基づき、第1の目標開度S1と第2の目標開度S2と
の混合比率に対応する予め設定しておいた周波数を決定
し、各能力可変圧縮機22の制御を行う。
Next, the frequency determining means 38 corresponds to the mixing ratio of the first target opening S1 and the second target opening S2 based on the degree of affiliation obtained in STEP 4 of the fuzzy inference described above. The frequency set in advance is determined, and each variable capacity compressor 22 is controlled.

【0033】例えば、図3(b)に示すように過熱度S
HがSH1であれば、制御ルールR2とR3とに50%
ずつ所属している。従って、開度Fは(数1)により求
められる。
For example, as shown in FIG.
If H is SH1, 50% is applied to control rules R2 and R3.
Belong to each. Therefore, the opening F is obtained by (Equation 1).

【0034】[0034]

【数1】 (Equation 1)

【0035】上記実施例の構成によれば、過熱度SHが
適正な大きさの時には制御パラメータとして室温と目標
温度との偏差を使用しているため空調負荷の大きさに応
じて最適な各室内側電動膨張弁27の開度制御が可能で
ある。また過熱度SHが過大または過小の時には制御パ
ラメータとして過熱度SHを使用しているため過熱度S
Hの大きさに応じて最適な各室内側電動膨張弁27の開
度制御が可能で、適正な過熱度で空調運転ができる。
According to the configuration of the above embodiment, when the degree of superheat SH is an appropriate value, the deviation between the room temperature and the target temperature is used as a control parameter. The opening degree of the inner electric expansion valve 27 can be controlled. When the superheat degree SH is too large or too small, the superheat degree SH is used as a control parameter, so that the superheat degree S
Optimal opening control of each indoor-side electric expansion valve 27 can be performed according to the magnitude of H, and air-conditioning operation can be performed with an appropriate degree of superheat.

【0036】また過熱度SHが適正と過大または適正と
過小の中間の時にはファジィ推論により、きめ細かでな
めらかな各室内側電動膨張弁27の開度制御が可能であ
る。
When the degree of superheat SH is between the appropriate and excessive or between the appropriate and excessive, the opening degree of each indoor-side electric expansion valve 27 can be finely and smoothly controlled by fuzzy inference.

【0037】さらに、各能力可変圧縮機22において、
前記第1の目標開度S1と第2の目標開度S2との混合
比率が50%ずつ所属している場合、周波数を各最大能
力の50%と実験値より予め設定しておいた周波数から
決定し、各能力可変圧縮機22の制御を行う。これによ
り各室内側電動膨張弁27の目標開度設定終了時に各能
力可変圧縮機の周波数がすでに設定されるため、時間遅
れ無しに周波数変更できる。これにより室温の乱れを防
止し快適性の向上と省エネルギー化ができる。
Further, in each capacity variable compressor 22,
When the mixture ratio of the first target opening S1 and the second target opening S2 belongs to 50% each, the frequency is set to 50% of each maximum capacity and a frequency set in advance from an experimental value. After the determination, the variable capacity compressor 22 is controlled. Thereby, the frequency of each variable capacity compressor is already set when the target opening degree of each indoor electric expansion valve 27 is set, so that the frequency can be changed without time delay. As a result, disturbance of room temperature is prevented, and comfort can be improved and energy can be saved.

【0038】[0038]

【発明の効果】以上、実施例から明らかなように本発明
の多室型空気調和機の冷房制御装置は、室温を検出する
室温検出手段と、目標温度を設定する温度設定手段と、
前記室温検出手段で検出した室温と前記温度設定手段で
設定した目標温度との偏差に基づき前記室内側電動膨張
弁の第1の目標開度を演算する第1の目標開度演算手段
と、前記各室内側熱交換器出口配管の過熱度を検出する
過熱度検出手段と、前記各過熱度検出手段で検出した過
熱度に基づき前記室内側電動膨張弁の第2の目標開度を
演算する第2の目標開度演算手段を備えている。
As is apparent from the above embodiments, the cooling control apparatus for a multi-room air conditioner according to the present invention comprises: a room temperature detecting means for detecting a room temperature; a temperature setting means for setting a target temperature;
First target opening calculating means for calculating a first target opening of the indoor electric expansion valve based on a deviation between the room temperature detected by the room temperature detecting means and the target temperature set by the temperature setting means; A superheat degree detecting means for detecting a superheat degree of each indoor heat exchanger outlet pipe, and a second target opening degree of the indoor electric expansion valve based on the superheat degree detected by each superheat degree detecting means. 2 target opening calculating means.

【0039】そして、さらに前記各過熱度検出手段で検
出した過熱度に対して前記第1、第2の目標開度から前
記各室内側電動膨張弁の最適な開度を求めるための経験
則に基づく制御ルールを記憶するメモリ装置と、前記第
1、第2の目標開度演算手段でそれぞれ演算された第
1、第2の目標開度と前記各過熱度検出手段で検出した
過熱度と前記メモリ装置から取り出された制御ルールと
に基づいてファジィ論理演算を行なうファジィ推論手段
と、前記ファジィ推論手段で行なった推論結果に基づき
前記各室内側電動膨張弁の最適な開度を決定する開度決
定手段と、前記ファジィ推論手段で行なった推論結果に
基づき予め設定された周波数と比較して前記能力可変圧
縮機の周波数を決定する周波数決定手段により、常に最
適な開度と周波数で各室内ユニットを制御できるため、
他の室内ユニットへの冷媒量の過不足を防止でき、能力
可変圧縮機を時間遅れ無しに周波数変更できる。これに
より室温の乱れを防止し快適性の向上と省エネルギー化
ができる。
Further, an empirical rule for obtaining an optimum opening of each of the indoor-side electric expansion valves from the first and second target openings with respect to the degree of superheat detected by the respective degree of superheat detection means. A memory device that stores a control rule based on the first and second target opening degrees calculated by the first and second target opening degree calculating means, and a superheat degree detected by the respective superheat degree detecting means. Fuzzy inference means for performing a fuzzy logic operation based on a control rule extracted from the memory device, and an opening for determining an optimal opening of each of the indoor-side electric expansion valves based on an inference result performed by the fuzzy inference means. Determining means, and frequency determining means for determining the frequency of the variable capacity compressor by comparing the frequency with a preset frequency based on the inference result performed by the fuzzy inference means, always with the optimum opening degree and frequency. Can be controlled indoor unit,
Excess or deficiency of the refrigerant amount to other indoor units can be prevented, and the frequency of the variable capacity compressor can be changed without time delay. As a result, disturbance of room temperature is prevented, and comfort can be improved and energy can be saved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の多室型空気調和機の冷房制
御装置のブロック図
FIG. 1 is a block diagram of a cooling control device for a multi-room air conditioner according to an embodiment of the present invention.

【図2】過熱度SHに対するファジィ変数S,M,Bの
メンバシップ関数を示した特性図
FIG. 2 is a characteristic diagram showing a membership function of fuzzy variables S, M, and B with respect to a superheat degree SH.

【図3】(a)は推論手順を示す流れ図 (b)は過熱度SH1に対するファジィ変数S,M,B
の所属度を示した特性図
FIG. 3A is a flowchart showing an inference procedure. FIG. 3B is a flowchart showing fuzzy variables S, M and B with respect to a superheat degree SH1.
Characteristic chart showing the degree of affiliation

【図4】従来の空気調和機の冷房制御装置のブロック図FIG. 4 is a block diagram of a conventional cooling control device for an air conditioner.

【符号の説明】[Explanation of symbols]

21a,21b 室外ユニット 22a,22b 能力可変圧縮機 23a,23b 室外側熱交換器 24a,24b 室外側電動膨張弁 25a,25b 四方弁 26a,26b,26c 室内ユニット 27a,27b,27c 室内側電動膨張弁 28a,28b,28c 過熱度検出手段 29a,29b,29c 室温検出手段 30a,30b,30c 温度設定手段 31a,31b,31c 室内側熱交換器 32 第1の目標開度演算手段 33 第2の目標開度演算手段 35 メモリ装置 36 ファジィ推論手段 37 開度決定手段 38 開度制御手段 21a, 21b Outdoor unit 22a, 22b Variable capacity compressor 23a, 23b Outdoor heat exchanger 24a, 24b Outdoor electric expansion valve 25a, 25b Four-way valve 26a, 26b, 26c Indoor unit 27a, 27b, 27c Indoor electric expansion valve 28a, 28b, 28c Superheat degree detecting means 29a, 29b, 29c Room temperature detecting means 30a, 30b, 30c Temperature setting means 31a, 31b, 31c Indoor heat exchanger 32 First target opening calculating means 33 Second target opening Degree calculation means 35 Memory device 36 Fuzzy inference means 37 Opening degree determining means 38 Opening degree controlling means

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 能力可変圧縮機と四方弁と室外側熱交換
器と室外側電動膨張弁とからなる複数の室外ユニット
と、室内側電動膨張弁と室内側熱交換器とからなり、前
記室外ユニットに並列に複数台接続した室内ユニットと
から構成された多室型空気調和機において、室温を検出
する室温検出手段と、目標温度を設定する温度設定手段
と、前記室温検出手段で検出した室温と前記温度設定手
段で設定した目標温度との偏差に基づき前記室内側電動
膨張弁の第1の目標開度を演算する第1の目標開度演算
手段と、前記各室内側熱交換器出口配管の過熱度を検出
する過熱度検出手段と、前記各過熱度検出手段で検出し
た過熱度に基づき前記室内側電動膨張弁の第2の目標開
度を演算する第2の目標開度演算手段と、前記各過熱度
検出手段で検出した過熱度に対して前記第1、第2の目
標開度から前記各室内側電動膨張弁の最適な開度を求め
るための経験則に基づく制御ルールを記憶するメモリ装
置と、前記第1、第2の目標開度演算手段でそれぞれ演
算された第1、第2の目標開度と前記各過熱度検出手段
で検出した過熱度と前記メモリ装置から取り出された制
御ルールとに基づいてファジィ論理演算を行なうファジ
ィ推論手段と、前記ファジィ推論手段で行なった推論結
果に基づき前記各室内側電動膨張弁の最適な開度を決定
する開度決定手段と、前記ファジィ推論手段で行なった
推論結果に基づき予め設定された周波数と比較して前記
能力可変圧縮機の周波数を決定する周波数決定手段とを
備えたことを特徴とする多室型空気調和機の冷房制御装
置。
A plurality of outdoor units each comprising a variable capacity compressor, a four-way valve, an outdoor heat exchanger and an outdoor electric expansion valve; an indoor electric expansion valve and an indoor heat exchanger; In a multi-room air conditioner comprising a plurality of indoor units connected in parallel to a unit, a room temperature detecting means for detecting a room temperature, a temperature setting means for setting a target temperature, and a room temperature detected by the room temperature detecting means. Target opening degree calculating means for calculating a first target opening degree of the indoor-side electric expansion valve based on a deviation between the target temperature set by the temperature setting means and the indoor-side heat exchanger outlet piping. Superheat degree detection means for detecting the degree of superheat, and second target opening degree calculation means for calculating a second target opening degree of the indoor-side electric expansion valve based on the degree of superheat detected by each of the superheat degree detection means. The superheat detected by each of the superheat detection means. A memory device for storing a control rule based on an empirical rule for determining an optimum opening of each of the indoor-side electric expansion valves from the first and second target openings with respect to a degree of heat; The fuzzy logic operation is performed based on the first and second target openings calculated by the target opening calculating means, the superheat detected by the respective superheat detecting means, and the control rule extracted from the memory device. Fuzzy inference means to be performed, opening degree determination means for determining an optimal opening degree of each indoor side electric expansion valve based on the inference result performed by the fuzzy inference means, and advance determination based on the inference result performed by the fuzzy inference means. A frequency control means for determining a frequency of the variable capacity compressor in comparison with a set frequency.
JP16713492A 1992-06-25 1992-06-25 Cooling control device for multi-room air conditioner Expired - Fee Related JP3174153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16713492A JP3174153B2 (en) 1992-06-25 1992-06-25 Cooling control device for multi-room air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16713492A JP3174153B2 (en) 1992-06-25 1992-06-25 Cooling control device for multi-room air conditioner

Publications (2)

Publication Number Publication Date
JPH0611172A JPH0611172A (en) 1994-01-21
JP3174153B2 true JP3174153B2 (en) 2001-06-11

Family

ID=15844063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16713492A Expired - Fee Related JP3174153B2 (en) 1992-06-25 1992-06-25 Cooling control device for multi-room air conditioner

Country Status (1)

Country Link
JP (1) JP3174153B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000053853A (en) * 2000-04-27 2000-09-05 조정민 Fuzzy-VAV DDC control method using GA(Genetic Algorithm) to improve indoor environment in IB( Intelligent Building)
KR101488390B1 (en) * 2008-02-05 2015-01-30 엘지전자 주식회사 Method for calculating the mass of a refrigerant in air conditioning apparatus
CN111878964B (en) * 2020-07-27 2022-02-08 宁波奥克斯电气股份有限公司 Control method and device of electronic expansion valve, air conditioner and storage medium
CN115451621A (en) * 2021-06-09 2022-12-09 青岛海特生物医疗有限公司 Method and device for adjusting frequency of compressor and compressor

Also Published As

Publication number Publication date
JPH0611172A (en) 1994-01-21

Similar Documents

Publication Publication Date Title
CN108954712B (en) Control method and control system of air conditioner and air conditioner
JP3265803B2 (en) Multi-room air conditioner and control method thereof
EP0282772B1 (en) Operating method for an air conditioning system
JP3174153B2 (en) Cooling control device for multi-room air conditioner
CN113865059A (en) Heating operation control method for multi-split air conditioner
JP3181116B2 (en) Air conditioner
JP4104218B2 (en) Air conditioner
JP2006317050A (en) Control device for cooling and heating concurrent operation type air conditioner
KR102558826B1 (en) Air conditioner system and control method
JPH07294021A (en) Heat pump type cooling dehumidifying equipment
JPH09178247A (en) Controller for multi-room air conditioning equipment
JPH04273939A (en) Cooling control device for multi-chamber type air conditioner
JPH06147671A (en) Cooling control device for multi-chamber type air conditioner
JP2960237B2 (en) Air conditioner
JPH05106929A (en) Space heating controller for multichamber air conditioner
JP2863305B2 (en) Multi-room air conditioner
JPH06294541A (en) Cooling controller for multiple room type airconditioning apparatus
JPH05296593A (en) Cooling control device for multi-chamber air conditioner
JP2001248919A (en) Air conditioner
JP2582441B2 (en) Air conditioner
JPH05306847A (en) Room heating controller for multi-chamber type air conditioner
JPH06307729A (en) Heating control device for multiroom type air-conditioner
JP3270531B2 (en) Multi-room air conditioner
JP3224695B2 (en) Air conditioner
JPH0674590A (en) Room cooling controller for multichamber type airconditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees