JPH023104B2 - - Google Patents

Info

Publication number
JPH023104B2
JPH023104B2 JP56207527A JP20752781A JPH023104B2 JP H023104 B2 JPH023104 B2 JP H023104B2 JP 56207527 A JP56207527 A JP 56207527A JP 20752781 A JP20752781 A JP 20752781A JP H023104 B2 JPH023104 B2 JP H023104B2
Authority
JP
Japan
Prior art keywords
air
volume
air volume
valve opening
throttling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56207527A
Other languages
Japanese (ja)
Other versions
JPS58108351A (en
Inventor
Toyoji Tsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56207527A priority Critical patent/JPS58108351A/en
Publication of JPS58108351A publication Critical patent/JPS58108351A/en
Publication of JPH023104B2 publication Critical patent/JPH023104B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 発明の技術分野 本発明は、空気調和機の運転方法に係り、居室
の熱負荷の量により空気調和機の能力を調整する
制御方法に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method of operating an air conditioner, and more particularly to a control method for adjusting the capacity of an air conditioner depending on the amount of heat load in a room.

発明の技術的背景 さて、固定風量式の空気調和系統は第1図に例
示するような系統図で表わされる。
Technical Background of the Invention Now, a fixed air volume type air conditioning system is represented by a system diagram as illustrated in FIG.

つまり、居室10から還風機20で排気を行な
い外気ダンパー21,22により一部を外気へ放
出し、残りを外気取込ダンパー23から取り入れ
た外気と混合し、空気調和機30において冷温水
制御弁41,42で流量制御をされる冷温水コイ
ル40で冷却、加熱を行ない、給風機50で居室
10へ給気して、この排気、給気の熱量差で居室
の負荷を処理する方法である。また、湿度が不足
の場合には加湿弁51でスプレイ52を制御し加
湿もされる。
In other words, the air is exhausted from the living room 10 by the return fan 20, part of it is released to the outside air by the outside air dampers 21 and 22, and the rest is mixed with outside air taken in from the outside air intake damper 23. In this method, cooling and heating are carried out by a hot/cold water coil 40 whose flow rate is controlled by 41 and 42, and air is supplied to the living room 10 by a blower 50, and the load in the living room is handled by the difference in calorific value between the exhaust air and the supplied air. . Further, when the humidity is insufficient, the spray 52 is controlled by the humidifying valve 51 to perform humidification.

これらの制御は、空調機制御装置60で主とし
て室温設定差の比例制御によつて行なわれる。制
御装置60は機械的にはその一部が中央監視で行
なわれたりするが、その機能ブロツク図を第2図
に示し説明する。
These controls are performed by the air conditioner control device 60 mainly by proportional control of the room temperature setting difference. A part of the control device 60 is mechanically controlled by central monitoring, and its functional block diagram is shown in FIG. 2 and will be explained.

まず、外気冷房判定部61で外気温度センサー
31、外気湿度センサー32と居室温度センサー
11、居室湿度センサー12から、外気による冷
房の可否を判定し、外気取入ダンパー制御部64
の許可信号を作る。一方外気温度センサー31よ
り外気温度を取り込み、外気補償制御部62から
室温偏差比例制御機構63に居室温度設定値が渡
され、居室10の温度センサー11との差による
比例制御出力が外気取込ダンパー制御部64と冷
温水弁制御部65に対して行なわれる。外気取入
ダンパー制御部64および冷温水弁制御部65は
出力の開閉の方向の反転等を行ない外気取入ダン
パー21,22,23、冷温水弁41,42を操
作し、空調負荷に応じたダンパーおよび弁の開度
制御を行なう。一方居室の湿度センサー12から
の湿度により加湿弁制御部66が加湿弁51の制
御も行なう。
First, the outside air cooling determination unit 61 determines whether or not cooling with outside air is possible from the outside air temperature sensor 31, outside air humidity sensor 32, living room temperature sensor 11, and living room humidity sensor 12, and the outside air intake damper control unit 64
Make a permission signal. On the other hand, the outside air temperature is taken in from the outside air temperature sensor 31, and the living room temperature set value is passed from the outside air compensation control section 62 to the room temperature deviation proportional control mechanism 63, and the proportional control output based on the difference with the temperature sensor 11 of the living room 10 is applied to the outside air intake damper. This is performed for the control section 64 and the cold/hot water valve control section 65. The outside air intake damper control unit 64 and the cold/hot water valve control unit 65 perform operations such as reversing the opening/closing direction of the output and operate the outside air intake dampers 21, 22, 23 and the cold/hot water valves 41, 42 according to the air conditioning load. Controls the opening of dampers and valves. On the other hand, the humidifying valve control section 66 also controls the humidifying valve 51 based on the humidity from the humidity sensor 12 in the living room.

背景技術の問題点 このような形態で空気調和機30の制御が行な
われているが、ひるがえてビル内における空調設
備の選定とエネルギー消費量について考慮する
と、この給排気は年間を通して運転される動力設
備であり、ビルのエネルギー消費において可成り
なウエイトを占める設備である。さらに、送風機
(給風機50、還風機20の送風能力の選定はピ
ーク負荷時を基準に行なわれるため、年間を通し
て考えると数%のピーク負荷時のために、多大な
搬送動力を運転していることになる。
Problems with the Background Art Although the air conditioner 30 is controlled in this manner, when considering the selection of air conditioning equipment and energy consumption in the building, this air supply and exhaust system is operated throughout the year. It is a power facility, and it is a facility that accounts for a considerable amount of energy consumption in a building. Furthermore, the selection of the air blowing capacity of the blowers (air supply fan 50 and air return fan 20) is made based on the peak load, so when considering the entire year, a large amount of conveying power is operated for the peak load of only a few percent. It turns out.

この動力を消減する手段としては送風機を間欠
運転する形式と、送風機を回転数制御することに
より送風能力を下げて運転する形式が考えられ
る。
Possible means for reducing this power include intermittent operation of the blower and operation with a reduced blowing capacity by controlling the rotational speed of the blower.

このうち、間欠運転を行なう方法はすでに実施
されており、これは第2図のブロツク中に表わさ
れた室温センサー11から定時刻毎に設定温度と
の差を判定し、停止時間を起動停止制御部67で
計算し、給風機50、還風器20を制御する方法
である。
Among these methods, the method of intermittent operation has already been implemented, and this method determines the difference from the set temperature at regular time intervals from the room temperature sensor 11 shown in the block of Fig. 2, and determines the difference between the starting and stopping times. This is a method in which the controller 67 calculates and controls the air supply fan 50 and air return fan 20.

ところで、送風機の性能特性からすれば、送風
量は回転数に比例し、軸動力は回転数の3乗に比
例する関係から、間欠運転よりも回転数制御を行
なつた方が動力エネルギーの削減効果が大きく、
かつ、風速の減少に伴い騒音の減少等もありより
一層効果的である。
By the way, considering the performance characteristics of the blower, the amount of air blown is proportional to the number of rotations, and the shaft power is proportional to the cube of the number of rotations, so it is better to control the number of rotations than to use intermittent operation to reduce power energy. The effect is great,
In addition, as the wind speed decreases, noise also decreases, making it even more effective.

発明の目的 ここにおいて本発明は、上述のような送風機の
過剰能力を回転数制御を行なうことにより適正な
能力にして使用するための制御方法を提供するこ
とをその目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a control method for converting the above-mentioned excess capacity of a blower into a proper capacity by controlling the rotational speed.

発明の概要 本発明は、室温と設定による水系の比例制御を
有する固定風量型の空気調和機において、給風機
および還風機の風量の調節をそれぞれの駆動機構
の回転数制御により行なう方法であり、風量調節
機構(空調機能力判定部、フアン風量制御部)を
附加し、水量の弁開度を一定期間積分し、フアン
の最大送風能力QMAXと最小送風能力QMINを送風
量の絞り率(100、0%)とみた送風絞り率α%
と平均弁開度β%を水量Lの絞り率とみなしα×
βを装置全体の能力の絞り率とし、この装置絞り
率が一定になるように新風量を求める方法であ
り、さらに要すれば風量変換の減少に伴ない前記
駆動機構の間欠運転を行う方法である。
Summary of the Invention The present invention is a method for adjusting the air volume of an air supply fan and a return fan by controlling the rotation speed of each drive mechanism in a fixed air volume air conditioner having water system proportional control based on room temperature and settings. An air volume adjustment mechanism (air conditioning function power determination unit, fan air volume control unit) is added, and the valve opening degree of water volume is integrated over a certain period of time, and the maximum air blowing capacity Q MAX and minimum air blowing capacity Q MIN of the fan are calculated as the throttling rate ( 100, 0%)
The average valve opening degree β% is regarded as the throttling rate of the water amount L, and α×
This is a method in which β is the aperture rate of the overall capacity of the device, and the new air volume is determined so that this device aperture rate becomes constant.If necessary, the drive mechanism is operated intermittently as the air volume conversion decreases. be.

発明の実施例 本発明の一実施例の構成を第3図に示す。これ
は第1図の制御装置60の機能ブロツク第2図に
相当し、本発明が従来と相違する構成は次のとお
りである。
Embodiment of the Invention The configuration of an embodiment of the present invention is shown in FIG. This corresponds to the functional block diagram in FIG. 2 of the control device 60 in FIG. 1, and the configuration in which the present invention differs from the conventional one is as follows.

○イ 外気補償制御部62の出力は新に備えた空調
機能力判定部68へ出力され、外気補償の微調
整はフアン風量で制御される。すなわち、フア
ン風量制御部69を介して給風機50、還風機
20の回転数制御がなされる。
B. The output of the outside air compensation control section 62 is output to a newly provided air conditioning function power determination section 68, and fine adjustment of the outside air compensation is controlled by the fan air volume. That is, the rotational speeds of the air supply fan 50 and the air return fan 20 are controlled via the fan air volume control section 69.

○ロ 起動停止制御部67は空調機能力判定部68
で設定された風量がフアン風量制御部69で判
定、処理された後段の制御(間欠制御)とな
る。
○B The start/stop control unit 67 is the air conditioning function power determination unit 68
The air volume set in is determined and processed by the fan air volume control unit 69 for subsequent control (intermittent control).

○ハ フアン風量制御部69は必要風量が風量可変
範囲よりもさらに小さい場合は、フアンの起
動、停止制御機構67へ出力する。
(c) If the required air volume is smaller than the air volume variable range, the fan air volume control unit 69 outputs an output to the fan start/stop control mechanism 67.

○ニ 外気取入量は風量により変化するので、外気
取入れの絶対量を補償するため、外気取入ダン
パー制御部64に対し送風量を加味したダンパ
ー開度を出力する。
○D Since the outside air intake amount changes depending on the airflow rate, in order to compensate for the absolute amount of outside air intake, the damper opening degree that takes into account the airflow amount is output to the outside air intake damper control section 64.

では、本発明の作用を第3図について説明す
る。
Now, the operation of the present invention will be explained with reference to FIG.

まず、空調機能力判定部68において空調コイ
ル(冷温水コイル40)の熱交換量は水供給量、
風供給量、水の入口のエンタルピ(Kcal/Kg)、
空気の入口のエンタルピ(Kcal/KgDA)によつ
て定まり、水量、風量の微小変化に対しては、近
似的に (水量の絞り率)×(風量の絞り率)=一定
……(1式) と見做し得る。
First, in the air conditioning functional power determination unit 68, the heat exchange amount of the air conditioning coil (cold/hot water coil 40) is determined as the water supply amount,
Wind supply amount, water inlet enthalpy (Kcal/Kg),
It is determined by the enthalpy of the air inlet (Kcal/KgDA), and approximately (water volume reduction ratio) x (air volume reduction ratio) = constant for minute changes in water volume and air volume.
...It can be regarded as (1 formula).

そこで、水系の制御を従来の方法である室温と
の設定差で比例制御している場合を想定すると、
弁41,42開度より求めた水量絞り率に、その
ときの風量の絞り率を乗じた値が、装置能力に対
する絞り率であると見做すことができ、水量を増
加させることによつて風量を抑えることができ
る。
Therefore, assuming that the water system is controlled proportionally using the conventional method of controlling the setting difference from room temperature,
The value obtained by multiplying the water volume throttling rate obtained from the opening degrees of the valves 41 and 42 by the throttling rate of the air volume at that time can be regarded as the throttling rate for the equipment capacity, and by increasing the water volume, Air volume can be reduced.

ただし、弁開度は常時変化するため、一定周期
で一定時間の積分値を求め、冷温水弁41,42
の開度制御の応答が一番望ましい開度(一般には
50〜80%)で換算しなおした風量が装置能力を考
慮した操作点となる。
However, since the valve opening degree constantly changes, the integral value for a certain period of time is calculated and the cold and hot water valves 41, 42 are
The most desirable opening control response is
50 to 80%) is the operating point that takes into account the equipment capacity.

しかして、このときの弁開度積分中の風量制御
は0次ホールドつまり一定風量をつづける。これ
により、居室負荷変動を、設定室温差で比例制御
される弁開度の積分を行うことで、つかまえるこ
とができる。
Therefore, the air volume control during the valve opening degree integration at this time continues on a zero-order hold, that is, at a constant air volume. Thereby, it is possible to grasp the load fluctuation in the room by integrating the valve opening degree which is proportionally controlled based on the difference in set room temperature.

なお、ここで室温設定差を求めるための外気補
償された設定室温は外気補償制御部62から従来
の如く室温偏差比例制御機構63へ出力しなくと
も、この空調機能力判定部68へ出力することで
外気補償制御が可能である。
Note that the set room temperature compensated for outside air to obtain the room temperature setting difference may be outputted to the air conditioning function power determination section 68 instead of being outputted from the outside air compensation control section 62 to the room temperature deviation proportional control mechanism 63 as in the conventional case. outside air compensation control is possible.

フアン風量制御部69は指定された風量が出力
可能か否かの判断を行い(送風量を下げるとダク
ト抵抗によりある程度以下になれば送風できなく
なる)、可能であれば還風機20、給風機20に
対し指定風量に相当する回転数を予め作成ずみの
回転数−風量相関表より求めて、設定出力を出力
する。
The fan air volume control unit 69 determines whether or not the specified air volume can be output (if the air volume is lowered, the air cannot be blown below a certain level due to duct resistance), and if possible, the air return fan 20 and the air supply fan 20 The rotation speed corresponding to the designated air volume is determined from a rotation speed-air volume correlation table created in advance, and a set output is output.

一方、一般に居室では空調機の他の排風機25
もあり、外気量は一定値を確保しなければ風量の
バランスが崩れすきま風による熱負荷が増大する
ので、この外気量に相当する風量の確保が必要と
なるため、風量−開度曲線に従いダンパー21〜
23の開度を計算し、外気取入ダンパー制御部6
4へ出力し外気の絶対取入量を確保する。第4図
は、本発明における装置絞り率が一定になるよう
に新風量を求める方法の説明図である。
On the other hand, in general, other exhaust fans of the air conditioner 25
Therefore, if the outside air volume is not maintained at a constant value, the air volume will be unbalanced and the heat load due to drafts will increase. Therefore, it is necessary to secure an air volume equivalent to this outside air volume. ~
23 and calculates the opening degree of the outside air intake damper control unit 6.
4 to ensure the absolute intake of outside air. FIG. 4 is an explanatory diagram of a method for determining the new air volume so that the device aperture ratio is constant according to the present invention.

第4図に示すように、フアンの最大送風能力
QMAXと最小送風能力QMINを送風量の絞り率
(100、0%)とみた送風絞り率α%と平均弁開度
β%を水量Lの絞り率とみなしα×βを装置全体
の能力の絞り率とする。
As shown in Figure 4, the maximum blowing capacity of the fan
Q MAX and the minimum air blowing capacity Q MIN are considered as the throttling rate of the air flow rate (100, 0%). The air throttling rate α% and the average valve opening β% are regarded as the throttling rate of the water volume L, and α×β is the capacity of the entire device. The aperture ratio is set to .

あるバランス点の理想点A点(α1、β2)で外
乱が生起し、たとえば居室負荷が増大し比例制御
される水量(弁開度)βが(β1→β2)に増えて
B点(α1、β2)へ移つた場合に、その推移その
ものは問題にしていない。
A disturbance occurs at the ideal point A (α1, β2) of a certain balance point, for example, the load in the living room increases, the proportionally controlled water amount (valve opening degree) β increases from (β1 → β2), and the point B (α1, β2) increases. β2), the transition itself is not an issue.

ただし、B点の弁開度β2が上限に近くであつ
たり、制御制の悪いポイントの場合は、送風絞り
率(風量)βの理想点β1の近くへ持つて行くよ
うに制御するというのである。
However, if the valve opening degree β2 at point B is close to the upper limit or is at a point where the control system is poor, control is performed to bring the ventilation throttling rate (air volume) β close to the ideal point β1. .

つまり、B点(α1、β2)をバランス点D点
(α2、β3)へ移行させ、α・β=一定の条件で制
御する。
That is, point B (α1, β2) is moved to the balance point D point (α2, β3), and control is performed under the condition that α·β=constant.

この場合、 α1・β2=α2・β3=α1・β2/β1・β3 であり、 β1=β3 の条件が成立するように、つまり α2=α1β2/β1 とすればよい。 in this case, α1・β2=α2・β3=α1・β2/β1・β3 and β1=β3 So that the condition holds, that is, α2=α1β2/β1 And it is sufficient.

したがつて、この負荷増加分を風量の増加でカ
ーバーするとした計算 α2=(α1・β2)・β1 で新風量を求めてα2の送風を行う。
Therefore, the calculation assumes that this load increase is covered by an increase in air volume, and the new air volume is calculated using α2=(α1・β2)·β1, and air is blown at α2.

この結果、居室への熱供給が促され、弁開度は
(β2→β3)に低下し、風量が増加した次のバラン
ス点(β3、β2)に収束する。
As a result, heat supply to the living room is promoted, the valve opening decreases to (β2→β3), and converges to the next balance point (β3, β2) where the air volume increases.

このようにして、この装置絞り率が一定になる
ように新風量を求める。
In this way, the new air volume is determined so that the device aperture rate remains constant.

なお、理論的には微少区間で 風量Δα∝熱量ΔQ であるが、熱交換器の変換効率は、必ずしも 風量Δα∝熱量ΔQ∝弁開度Δβ とならないので、一般に、 α2=α1β2/β1 の風量とした場合に、 β3>α1 となる。 In addition, theoretically, in a minute interval Air volume Δα∝ Heat amount ΔQ However, the conversion efficiency of the heat exchanger is not necessarily Air volume Δα ∝ Heat amount ΔQ ∝ Valve opening Δβ Therefore, in general, α2=α1β2/β1 When the air volume is β3>α1 becomes.

本発明における制御の目標は、制御制の良い弁
開度β1の近傍へ弁開度を持つて来ることなので、 弁開度β3〓弁開度β1 になるように、風量α2を変化させる。
The goal of the control in the present invention is to bring the valve opening close to the valve opening β1 with good control, so the air volume α2 is changed so that the valve opening β3=valve opening β1.

この風量変化をさせることで充分である。 This change in air volume is sufficient.

結論として次のように云える。 In conclusion, we can say the following.

本発明は、外乱発生前の理想弁解度のA点と、
外乱対応後のバランス点のD点を照合したとき
は、α・β≠一定となつている。
The present invention provides the ideal excuse level A point before the occurrence of disturbance;
When comparing the balance point D point after dealing with the disturbance, α and β≠ are constant.

しかるに、本発明は、理想点のA点から外乱に
対応したバランス点のB点から、過渡状態点のC
点を経由して、外乱状態における望まれるバラン
ス点のD点へ持つて行くように、α・β=一定の
条件で風量α2を決定する制御手段である。
However, in the present invention, from point A, which is an ideal point, to point B, which is a balance point corresponding to disturbance, to point C, which is a transient state point,
This is a control means that determines the air flow rate α2 under a constant condition of α and β so as to bring the air flow rate to point D, which is a desired balance point in a disturbance state, via the above point.

B点とD点を通るα・β一定のカーブC2は、
負荷増大前のA点のα・β一定のカーブC1より
大となるのは当然であり、またC点のα・β一定
のカーブC3は過渡状態として、B点とC点を通
るα・B一定のカーブC2より大きい。
A curve C2 with constant α and β passing through points B and D is
It is natural that it is larger than the curve C1 with constant α and β at point A before the load increase, and the curve C3 with constant α and β at point C is considered as a transient state. greater than the constant curve C2.

風量の下限以下で出力不能であれば、最小風量
に抑えたうえで、さらに風量減少分を次の(2
式)で計算した間欠運転時間だけフアンを停止さ
せる信号を起動停止制御部67へ出力し、間欠運
転を行なわしめる。
If the air volume is below the lower limit and output is not possible, reduce the air volume to the minimum and then reduce the air volume reduction by the following (2)
A signal to stop the fan for the intermittent operation time calculated by the formula) is output to the start/stop control section 67 to perform intermittent operation.

間欠停止時間=(最小風量−要求風量)/(最小風量) ×制御周期 ……(2式) 発明の効果 かくして本発明によれば、固定風量空系におい
て、装置絞り率が一定のまま弁閉度が設定絞り率
になるような風量変換を行うことにより、給風機
および還風機の風量の調節をそれぞれのフアン回
転数制御として、制御性の良い弁開度近傍へ弁開
度をもつていくことから搬送動力の削減ができ、
かつ風速を落すことによりダクト抵抗が減り、冷
温水コイル回りの熱効率が上昇し、騒音が少なく
なる効果も期待できる。
Intermittent stop time = (minimum air volume - required air volume) / (minimum air volume) × control period ... (2 equations) Effects of the Invention Thus, according to the present invention, in a fixed air volume air system, the valve can be closed while the device throttling rate remains constant. By converting the air volume so that the air flow rate becomes the set throttling ratio, the air volume of the blower and return fan is controlled by the fan rotation speed, and the valve opening is brought to a value close to the valve opening that provides good controllability. This allows for reduction of conveyance power,
In addition, by reducing the wind speed, duct resistance is reduced, thermal efficiency around the hot and cold water coils is increased, and noise can be expected to be reduced.

さらに間欠運転による居室の吹出し風量の大幅
な変化を抑えられるため、コールド・ドリフト等
による不快感も減じることができる。
Furthermore, since drastic changes in the amount of air blown into the living room due to intermittent operation can be suppressed, discomfort caused by cold drift, etc. can also be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は空気調和機回りのシステム系統図、第
2図は従来の制御機能ブロツク図、第3図は本発
明の一実施例のブロツク図、第4図は本発明にお
ける装置絞り率が一定になるように新風量を求め
る方法の説明図である。 10……居室、11……室温センサー、12…
…室湿センサー、20……還風機、25……排風
機、50……給風機、21,22,23……外気
取入ダンパー、30……空気調和機、31……外
気温度センサー、32……外気湿度センサー、4
0……冷温水コイル、41……冷水制御弁、42
……温水制御弁、60……空調機制御装置、61
……外気冷房判定部、62……外気補償制御部、
63……室温偏差比例制御機構、64……外気取
入ダンパー制御部、65……冷温水弁制御部、6
6……加湿弁制御部、67……起動停止制御部、
68……空調機能力判定部、69……フアン風量
制御部。
Fig. 1 is a system diagram around the air conditioner, Fig. 2 is a conventional control function block diagram, Fig. 3 is a block diagram of an embodiment of the present invention, and Fig. 4 is a system diagram in which the device aperture rate is constant in the present invention. FIG. 10... Room, 11... Room temperature sensor, 12...
... Room humidity sensor, 20 ... Air return fan, 25 ... Exhaust fan, 50 ... Air supply fan, 21, 22, 23 ... Outside air intake damper, 30 ... Air conditioner, 31 ... Outside air temperature sensor, 32 ...Outside air humidity sensor, 4
0...Cold/hot water coil, 41...Cold water control valve, 42
... Hot water control valve, 60 ... Air conditioner control device, 61
...Outside air cooling determination section, 62...Outside air compensation control section,
63...Room temperature deviation proportional control mechanism, 64...Outside air intake damper control unit, 65...Cold/hot water valve control unit, 6
6... Humidification valve control section, 67... Start/stop control section,
68... Air conditioning function power determination section, 69... Fan air volume control section.

Claims (1)

【特許請求の範囲】 1 室温と設定による水系の比例制御を有する固
定風量型の空気調和機において、 風量調節機構を付加し、一定風量をつづけなが
ら水量の弁開度を一定期間積分し、フアンの最大
送風能力QMAXと最少送風能力QMINを送風量の絞
り率(100、0%)とみた送風量の絞り率α%と
平均弁開度β%を水量Lの絞り率とみなしα×β
を装置全体の能力の絞り率として、 この装置絞り率が一定のまま弁開度が設定絞り
率になるような風量への風量変換を行うことによ
り、 給風機および還風機の風量の調節をそれぞれの
駆動機構の回転制御をして、制御性の良い弁開度
近傍へ弁開度をもつていく ことを特徴とする空気調和機の風量制御方法。 2 風量変換の減少に伴ない前記駆動機構の間欠
運転を行う 特許請求の範囲第1項記載の空気調和機の風量制
御方法。
[Claims] 1. In a fixed air volume air conditioner that has proportional control of the water system based on room temperature and settings, an air volume adjustment mechanism is added, and the valve opening degree of the water volume is integrated for a certain period of time while maintaining a constant air volume. The maximum air blowing capacity Q MAX and the minimum air blowing capacity Q MIN are regarded as the throttling rate of the air blowing volume (100, 0%).The throttling rate α% of the air blowing volume and the average valve opening degree β% are regarded as the throttling ratio of the water volume L.α× β
As the throttling rate of the overall capacity of the equipment, by converting the air volume to the air volume such that the valve opening becomes the set throttling ratio while keeping this equipment throttling ratio constant, the air volume of the air supply fan and air return fan can be adjusted respectively. An air volume control method for an air conditioner, characterized in that the rotation of the drive mechanism of the air conditioner is controlled to bring the valve opening close to a valve opening with good controllability. 2. The air volume control method for an air conditioner according to claim 1, wherein the drive mechanism is operated intermittently as the air volume conversion decreases.
JP56207527A 1981-12-22 1981-12-22 Controlling method for quantity of air of air conditioner Granted JPS58108351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56207527A JPS58108351A (en) 1981-12-22 1981-12-22 Controlling method for quantity of air of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56207527A JPS58108351A (en) 1981-12-22 1981-12-22 Controlling method for quantity of air of air conditioner

Publications (2)

Publication Number Publication Date
JPS58108351A JPS58108351A (en) 1983-06-28
JPH023104B2 true JPH023104B2 (en) 1990-01-22

Family

ID=16541191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56207527A Granted JPS58108351A (en) 1981-12-22 1981-12-22 Controlling method for quantity of air of air conditioner

Country Status (1)

Country Link
JP (1) JPS58108351A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397316U (en) * 1990-01-19 1991-10-07

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000257941A (en) * 1999-03-11 2000-09-22 Toshiba Corp Operation controller for air conditioner
JP2009030820A (en) * 2007-07-24 2009-02-12 Yamatake Corp Air-conditioning control device and its method
CN109442693A (en) * 2018-11-05 2019-03-08 广东美的暖通设备有限公司 A kind of method, apparatus and air-conditioning of air-blower control

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49111450A (en) * 1973-02-23 1974-10-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49111450A (en) * 1973-02-23 1974-10-23

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397316U (en) * 1990-01-19 1991-10-07

Also Published As

Publication number Publication date
JPS58108351A (en) 1983-06-28

Similar Documents

Publication Publication Date Title
US4754919A (en) Air conditioning apparatus
CN109556219B (en) Variable air volume air conditioning unit and control method thereof
US20050087616A1 (en) Thermal balance temperature control system
JP2003050038A (en) Control system for temperature and humidity and control method for temperature and humidity
JP2014173826A (en) Total heat exchange type ventilation device
JP2002357356A (en) Air conditioning control method
JPH023104B2 (en)
JP4646696B2 (en) Air conditioning apparatus, air conditioning method, air volume control apparatus for air conditioning apparatus, and air volume control method for air conditioning apparatus
JP4477914B2 (en) Air conditioning system
JP3175100B2 (en) Air conditioning control method
CN106679019A (en) VAV system start up air flow balancing method and system
Wendes Variable air volume manual
JPH02290454A (en) Air conditioner
JP3254621B2 (en) VAV control system
JPH08145432A (en) Air conditioner
JP2002333190A (en) System and method for controlling air conditioning
JP2667318B2 (en) Outside air introduction type air conditioner
JPH0420737A (en) Air conditioner
CN218068681U (en) Novel temperature and humidity control system based on total heat exchanger
JPH07174390A (en) Air conditioner equipped with condensate preventer
JPS5924907Y2 (en) Air conditioner with bypass duct
KR20000000545A (en) Controlling method for absorption heating and cooling instrument
JPS5844940B2 (en) How to determine the number of operating exhaust fans in air conditioning
JPS60178516A (en) Concentration control system for carbon dioxide gas
JPS6284253A (en) Air conditioner