JPS599719A - Operation controlling method of pump - Google Patents

Operation controlling method of pump

Info

Publication number
JPS599719A
JPS599719A JP11690782A JP11690782A JPS599719A JP S599719 A JPS599719 A JP S599719A JP 11690782 A JP11690782 A JP 11690782A JP 11690782 A JP11690782 A JP 11690782A JP S599719 A JPS599719 A JP S599719A
Authority
JP
Japan
Prior art keywords
pump
output
pumps
pressure
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11690782A
Other languages
Japanese (ja)
Inventor
Kazuyuki Kamimura
一幸 神村
Junichi Ueno
上野 潤一
Yasushi Hasegawa
靖 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP11690782A priority Critical patent/JPS599719A/en
Publication of JPS599719A publication Critical patent/JPS599719A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2006Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means
    • G05D16/2066Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using controlling means acting on the pressure source
    • G05D16/2073Control of fluid pressure characterised by the use of electric means with direct action of electric energy on controlling means using controlling means acting on the pressure source with a plurality of pressure sources

Abstract

PURPOSE:To increase the stage of a pump in accordance with a detecting output, by constituting each pump connected in parallel so that its rotational frequency is controlled in accordance with a pressure schedule, and also providing a detector for detecting the maximum output state, on each pump, respectively. CONSTITUTION:A controller CON detects an input current of a driving motor in pumps P1-P3 by detectors D1-D3, and also detects a signal from a flow meter F and a differential pressure gauge DP, too. A detecting output from the flow meter F is converted to a value for showing a pressure schedule by a transducer R/B using a conversion table, is inputted to a comparator CP1, and also a detecting output of the differential pressure gauge DP is also inputted. When the detecting output of DP drops to a value of the pressure schedule or below, an output of logic ''1'' is generated from the CP1. Also, the value for showing the pressure schedule and the detecting output of the DP are provided to an operator PID, too, and rotational frequency of the pump required for obtaining the differential pressure of the pressure schedule or above is derived by an operation, is outputted as a rotational frequency control signal RS, and is compared with a reference value RL by a comparator CP2 so that a compared output can be obtained.

Description

【発明の詳細な説明】 本発明は、複数台並列に接続されたポンプの運転状況を
制御する運転制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an operation control method for controlling the operating status of a plurality of pumps connected in parallel.

一般に、ポンプにより給水を圧送する空調装置等のシス
テムにおいては、配管および給水を受ける負荷の状況に
応じて定まる最小圧力が定まっており、この最小圧力を
示す圧力スケジュール以上\ の圧力に゛より給水を圧送することが必要とされ、従来
は、システム設計止定められた設計圧力を基準として、
並列に接続されたポンプの運転台数を変化させる増設お
よび減殺全行なうものとしている。
Generally, in systems such as air conditioners that use pumps to pump water, there is a minimum pressure that is determined depending on the conditions of the piping and the load that receives the water supply. Conventionally, system design is based on a specified design pressure.
The number of pumps connected in parallel will be expanded and subtracted by changing the number of pumps in operation.

なお、給水の圧力は、給水の流量と反比例して低下する
特性をホし、給水と遣水との差圧を検出してポンプの増
減段を行なうものとなっている。
Note that the pressure of the water supply has a characteristic that it decreases in inverse proportion to the flow rate of the water supply, and the pressure difference between the water supply and the supply water is detected to increase or decrease the pump.

第1図は従来の増減設状況を示す図でちゃ、区間Aはポ
ンプ1台、区間BFiポンプ2台、区間Cはポンプ3台
の運転状態を示し、流量fが増加して差圧dpが減少の
うえ設計圧力Pd まで低下すれば、区間AとBおよび
BとCの境界において増設を行なうものとなっている。
Figure 1 is a diagram showing the conventional installation status. Section A shows the operation status of one pump, section BFi pumps two, and section C shows the operation status of three pumps. The flow rate f increases and the differential pressure dp increases. If the pressure decreases to the design pressure Pd, expansion will be carried out at the boundaries between sections A and B and B and C.

たソし、減殺の際には、制御上のハンチング発生を阻止
するため、デフレンシャルdが各境界にオイて設定され
ている。
In addition, a differential d is set at each boundary to prevent hunting from occurring during control.

しかし、本来は最小圧力を示す圧力スケジュールPsi
で差圧dpが低下しても流量fは確保されるものとなっ
ており、第1図において実線により示す増膜動作では、
設g1圧力Pd と圧力スケジュールP8との差に基づ
く余裕範囲ft、fzf:生じ、この余裕f+、ft”
i零とした場合に比し、早目の増設が行なわれるため、
余剰な電力を消費する欠点を生じている。
However, the pressure schedule Psi that originally indicates the minimum pressure
Even if the differential pressure dp decreases, the flow rate f is maintained, and in the film increasing operation shown by the solid line in Fig. 1,
Margin range ft, fzf based on the difference between setting g1 pressure Pd and pressure schedule P8: This margin f+, ft"
Compared to the case where i is set to zero, the installation will be expanded earlier, so
This has the disadvantage of consuming excess power.

一方、ポンプの定格出力を基準として増減段の境界を定
めているが、実際に安全運転の保証される最大出力は定
格出力金上廻っておシ、最大出力未満の定格出力により
増設を行なっているため、現在運転中のポンプに余力が
あるにもか\わらず増設がなされ、これによっても余剰
電力を消費する欠点を生じている。
On the other hand, the boundaries of increase/decrease stages are determined based on the pump's rated output, but in reality, the maximum output that guarantees safe operation is higher than the rated output, and expansion is performed with a rated output that is less than the maximum output. Therefore, even though the pumps currently in operation have surplus power, they are expanded, and this also has the disadvantage of consuming surplus power.

本発明は、従来のか\る欠点を根本的に排除する目的を
有し、並列接続された各ポンプを圧力スケジュールに応
じて回転数を制御すると共に、各ポンプへ各個に最大出
力状態を検出する検出器を設け、これの検出々力に応じ
てポンプの増設を行なうポンプの運転制御方法を提供す
ると共に、これらに加え、検出器が検出々力を生じたと
きの流量と定格流量とに応じて能力係数を設定し、この
能力係数を乗じた定格流敞−所定のディファレンシアル
を差引いた値以下の流量状態において減殺を行なうもの
としたポンプの運転制御方法を提供するものである。
The present invention has the purpose of fundamentally eliminating the drawbacks of the conventional art, and controls the rotation speed of each pump connected in parallel according to a pressure schedule, and also detects the maximum output state of each pump individually. In addition to providing a pump operation control method in which a detector is provided and the number of pumps is increased according to the detectable force of the detector, in addition to the above, the method also provides a method for controlling the operation of a pump according to the flow rate when the detector generates the detectable force and the rated flow rate. The present invention provides a pump operation control method in which a capacity coefficient is set, and reduction is performed in a flow rate state that is equal to or less than the value obtained by subtracting a predetermined differential from the rated flow rate multiplied by the capacity coefficient.

以下、実施例を示す第2図以降によυ本発明の詳細な説
明する。
Hereinafter, the present invention will be explained in detail with reference to FIG. 2 showing an embodiment.

第2図は熱′rj、機器として冷凍機を用いた場合の計
装図であり、冷凍機R1−R3により冷却された冷水は
、ヘッダH1、H2を経てポンプP1〜P3により圧送
され、ヘッダH3を介してファンコイルユニット等の空
調負荷ALへ供給されたうえ、ヘッダH4を介して冷凍
機R+=R3へ還流し、これを反復するものとなってお
り、冷凍機R1〜R3は、マイクロプロセッサおよびメ
モリ等を有する制御器CON Kよシ、起動、停止およ
びベーン開度等が制御されるものとなっている。
Figure 2 is an instrumentation diagram when a refrigerator is used as the heat 'rj and equipment. The cold water cooled by the refrigerators R1-R3 is sent under pressure by pumps P1 to P3 via headers H1 and H2, and It is supplied to the air conditioning load AL such as a fan coil unit through H3, and then is returned to the refrigerator R+=R3 through the header H4, and this process is repeated. The controller CONK, which has a processor, memory, etc., controls startup, shutdown, vane opening, etc.

また、ヘッダH1からの給水温度を温度センナT!によ
り検出すると共に、給水量を流量計Fによシ検出し、給
水の熱量を制御器CONが求めている一方、ヘッダH4
への還水温度を温度センサT2によシ検出し、流量計F
の検出々力とによシ還水の熱量を求め、給水と還水との
熱量差により空調負荷量を判断のうえ、これに応じて冷
凍機R。
Also, check the temperature of the water supply from header H1 using temperature sensor T! At the same time, the amount of water supplied is detected by the flow meter F, and the controller CON determines the amount of heat of the supplied water.
The temperature of the return water is detected by the temperature sensor T2, and the flow meter F
The calorific value of the return water is determined based on the detection power, and the air conditioning load is determined based on the difference in calorific value between the supplied water and the return water, and the refrigerator R is adjusted accordingly.

〜R3の増減段およびベーン開度を制御している。- Controls the increase/decrease stage of R3 and the vane opening degree.

一方、ポンプPl−Psは、図上省略した回転数制御装
置を介し、制御器CONによシ回転数および増減段が制
御されていると共に、ポンプP+〜P!における駆動用
モータの入力電流を検出器I)+−Dsが検出し、これ
の検出々力を制御器CONへ与えておシ、これKよって
ポンプP+〜P3の最大出力状態が検出されるものとな
っている。
On the other hand, the rotation speed and increase/decrease stage of the pumps Pl-Ps are controlled by the controller CON via a rotation speed control device (not shown), and the pumps P+ to P! The detector I)+-Ds detects the input current of the drive motor at , and the detected power is applied to the controller CON, thereby detecting the maximum output state of the pumps P+ to P3. It becomes.

このほか、ヘッダH2とH4との入力側間に差圧tl−
D Pが挿入されており、これによって給水と遣水との
間の差圧を検出して制御器へ与え、この検出々力に応じ
て制御器CONがポンプP1〜P3の回転数および増減
段を制御するものとなっている。
In addition, there is a differential pressure tl- between the input sides of headers H2 and H4.
A D P is inserted, which detects the differential pressure between the water supply and the water supply and provides it to the controller, and the controller CON adjusts the rotational speed and increase/decrease stage of the pumps P1 to P3 according to this detected force. It is supposed to be controlled.

たyし、この場合は、第1図に示す圧カスケジュールP
s以上の差圧を保つものとしてポンプP、〜P3の回転
数が制御されると共に、これらの回転数が最大値となり
、かつ、差圧が圧力スケジュールP8tで低下したとき
に増設が行なわれるものとなっている。
However, in this case, the pressure schedule P shown in FIG.
The rotational speed of pumps P, ~P3 is controlled to maintain a differential pressure of s or more, and the expansion is performed when these rotational speeds reach the maximum value and the differential pressure decreases according to pressure schedule P8t. It becomes.

第3図は、増減段の状況を示す図であり、区間Aがポン
プ1台、区間Bがポンプ2台、区間Cがポンプ3台の運
転状態を示しており、この場合はポンプP1〜P3の順
位によシ増設が行なわれ、ポンプP3〜P1の順位に上
り減殺が行なわれるものとなっている。
FIG. 3 is a diagram showing the status of increasing/decreasing stages, with section A showing the operating state of one pump, section B showing the operating state of two pumps, and section C showing the operating state of three pumps. In this case, pumps P1 to P3 are shown. Pumps are added in the order of pumps P3 to P1, and reductions are made in the order of pumps P3 to P1.

、すなわち、まずポンプPIが運転を行ない、これが最
大出力状態となれば、検出器DIから検出々力が生じ、
このときの最大出力時流量り、とポンプP+の定格流量
Lal とに応じて能力係数に1が次式により制御器C
OHにおいて演算される。
That is, first, the pump PI operates, and when it reaches the maximum output state, a detection force is generated from the detector DI,
According to the flow rate at maximum output at this time and the rated flow rate Lal of pump P+, 1 is set to the capacity coefficient of controller C according to the following formula.
Calculated in OH.

K 1= L l/ L (+ 1      ・・・
・・・・・・・・・・・・ (1)また、最大出力時流
量Ll の時点において第1回の増設が行々われ、ポン
プP1.P2の並列運転が行なわれる。
K 1= L l/L (+ 1...
(1) Also, the first expansion is performed at the time of maximum output flow rate Ll, and pump P1. Parallel operation of P2 is performed.

なお、この状態において流量が減少すれば、点線により
示すとおり、最大出力時流量L(からデフレンシャルd
を差引いた流量において減殺が行なわれる。
In addition, if the flow rate decreases in this state, as shown by the dotted line, the flow rate at maximum output L (from the differential d
Attenuation is performed at the flow rate after subtracting .

一方、ポンプPI、P2が並列運転に入ったとき、第2
回の増設に備え、つぎの増設を行なう出力値L12  
が次式により演算される。
On the other hand, when pumps PI and P2 enter parallel operation, the second
In preparation for the next expansion, output value L12 for the next expansion.
is calculated by the following formula.

Lu −−(Lot + LO2) X Kl−・・(
2)たソし、LO2はポンプP2の定格出力でおる。
Lu --(Lot + LO2) X Kl-...(
2) Then, LO2 is set at the rated output of pump P2.

また、安全を期すための限界値が、例えば±20チとし
て出力値L+2へ加えられ、低域限界値LLおよび高域
限界値HLが設定され、高域限界値HL以下において検
出器D2から検出々力が生じないとき、高域限界値HL
へ出力値が達すれば、強制的に増設が行なわれ、低域限
界値LL以上において減殺が行なわれ々いとき、低域限
界値LLへ出力値が達すれば、強制的に減殺が行なわれ
る。
In addition, a limit value for ensuring safety is added to the output value L+2 as, for example, ±20ch, a low limit value LL and a high limit value HL are set, and detection is performed by the detector D2 below the high limit value HL. When no force is generated, the high range limit value HL
If the output value reaches LL, the expansion is forcibly performed, and if the output value reaches the low limit value LL, the attenuation is forcibly performed when the reduction is not performed above the low limit value LL.

なお・出力値L+2  を越えてから検出器り、または
I)2が検出・シカを生ずれば、出力値L11が未だ低
目なため、検出々カが生じたときの最大出方をL2とし
て次式の演算が行なわれ、これによって求めた能力係数
に2により、さきの能力係数Klを更新する。
In addition, if the detector fails after the output value L+2 is exceeded, or if I) 2 is detected/deer occurs, the output value L11 is still low, so the maximum output when the detection force occurs is set as L2. The following equation is calculated, and the previous ability coefficient Kl is updated by adding 2 to the ability coefficient obtained thereby.

K2 = L2 / (Lot +Lo2)  −−−
(3)第4図は、前述の制御状況を実現するため制御器
CON内のプロセッサが行なう制御動作のフローチャー
トであり、まず、S現運転ポンプに対するI(L 、 
LL股定″ が行なわれ、ついで、現在の出力値が ’
LL以下?゛′ を判断し、これがNOであれば、後述
の回路からの1増段要求あり・T″を判断のうえ、これ
のNOに応じて現在の出方値が’HL以上?″を判断す
る。
K2 = L2 / (Lot +Lo2) ---
(3) FIG. 4 is a flowchart of the control operation performed by the processor in the controller CON to realize the above-mentioned control situation. First, I(L,
LL determination'' is performed, and then the current output value is '
Below LL?゛′ is judged, and if this is NO, there is a 1 stage increase request from the circuit described later.・T” is judged, and depending on this, it is judged whether the current output value is ``HL or higher?'' .

’HL以上T″  がNO’t?あれば、i減殺位置を
計算″により、例えば第3図に示す定格出力L6+から
デ7レンシャルcl減算する演算を行ない、現在の出力
が1減段位置以下?“のYESとなれば、隼動停ポンプ
指定″によって減殺を行なう。
If 'T' is greater than or equal to HL (NO'?), then the 'calculate i reduction position' is used to subtract the de7 renal cl from the rated output L6+ shown in Fig. 3, and the current output is less than or equal to the 1 stage reduction position. ? If the answer is YES, the amount of water is reduced by designating the suspension pump.

なお、唱滅段位置以下T″がNOであれば、増減段が不
要なため、!現状維持“が行なわれる。
Note that if T″ below the dead stage position is NO, there is no need to increase or decrease the stage, so the status quo is maintained.

また、1増段要求あり?゛′のYES 、または、嘩H
L以上?″  のYESに応じては、(3)式の演算に
より1能力係数更新″がなされたうえ、尋動停ポンプ指
定″によって増設が行なわれる。
Also, is there a request for 1 stage increase?゛' YES or H
L or more? In response to YES in ``, the 1 capacity coefficient is updated'' by the calculation of equation (3), and an expansion is performed by specifying the stop pump.

第5図は、第4図における一増設要求あり?″のYES
 を示す増膜要求信号TJSfc発生する回路のブロッ
ク図であシ、制御器CON内に収容されており、つぎの
とおりに動作する。
Is there a request for an addition in Figure 5 to Figure 4? “YES”
This is a block diagram of a circuit that generates a film increase request signal TJSfc indicating the following.This circuit is housed in the controller CON and operates as follows.

すなわち、流量計Fからの検出々力を、変換テーブルを
用いた変換器R/B  により圧力スケジュールを示す
値へ変換し、比較器CPr の一方の入力へ与えると共
に、差圧計DPの検出々力を他方の入力へ与えており、
圧力スケジュール以下の値に差圧計DPの検出々力が低
下すると、比較器CP+が論理値%1“ の比較出力を
生ずるものとなっている。
That is, the detected force from the flow meter F is converted into a value indicating the pressure schedule by the converter R/B using a conversion table, and is applied to one input of the comparator CPr, and the detected force of the differential pressure gauge DP is converted to a value indicating the pressure schedule. is given to the other input,
When the detection force of the differential pressure gauge DP decreases to a value below the pressure schedule, the comparator CP+ produces a comparison output of the logical value %1''.

また、演算器PIDには、変換器R/B の出力および
差圧計DPの検出々カが与えられており、圧力スケジュ
ール以上の差圧を得るのに必要とするポンプP1〜P3
の回転数が演算により求められ、これが比較器CP2の
一方の入力へ与えられると共に、他方の入力KViポン
プP+−Psの回転数が最大の100%であることを示
す基準値RLが与えられている。
In addition, the output of the converter R/B and the detection force of the differential pressure gauge DP are given to the calculator PID, and the output of the converter R/B and the detection force of the differential pressure gauge DP are given, and the pumps P1 to P3 required to obtain a differential pressure above the pressure schedule are
The rotational speed of the pump P+-Ps is determined by calculation, and this is given to one input of the comparator CP2, and the reference value RL indicating that the rotational speed of the pump P+-Ps is 100% of the maximum is given to the other input. There is.

このため、演算器PIDの出力が基準値RL以上となっ
たときに %1″の比較出方が生じ、比較器CP+の比
較出力も ◆1″となった条件妊おいて、ANDゲー)
G+が隼1“の出力を生ずるものとなり、ORゲー)G
ffiを介して不安定期間の状態を無視するためのタイ
マーTIMを起動し、これのタイムアツプにより増膜要
求信号USが送出される。
Therefore, when the output of the arithmetic unit PID exceeds the reference value RL, a comparison of %1'' occurs, and the comparison output of the comparator CP+ also becomes ◆1'' (AND game)
G+ will produce the output of Hayabusa 1", and OR game) G
A timer TIM for ignoring the state of the unstable period is activated via ffi, and a film increase request signal US is sent out when the timer TIM times up.

他方、検出器D I−D 3の検出々刀が比較器CPa
〜CP6の一方の入力へ与えられていると共に、最大出
力時のモータ入力電流を示す基準値ILが他方の入力へ
与えられておシ、検出器D1〜D3の検出々力が基準値
m以上となったとき比較器CPs〜CP++ が%1n
 の比較出力を生ずるものとなっているため、ポンプP
1〜P3のいずれかが最大出力状態となれば、比較器C
P3〜CPS中のいずれかから比較出力が生じ、ORグ
ー)GsおよびG2を介してタイマーTIMを起動し、
これのタイムアツプによって増膜要求信号USが送出さ
れる。
On the other hand, the detector D I-D 3 detects the comparator CPa.
~ CP6 is supplied to one input, and a reference value IL indicating the motor input current at maximum output is supplied to the other input, and the detection force of the detectors D1 to D3 is equal to or greater than the reference value m. When the comparator CPs~CP++ becomes %1n
Since the pump P
If any of P1 to P3 reaches the maximum output state, comparator C
A comparison output occurs from any of P3 to CPS and starts timer TIM via Gs and G2;
When this time-up occurs, a film increase request signal US is sent.

なお、演算器PIDの出力は、直接、回転数制御信号R
8として送出され、これが各ポンプP!〜P3に対する
回転数の制御に用いられる。
Note that the output of the arithmetic unit PID is directly connected to the rotation speed control signal R.
8, and this is sent out as each pump P! -Used to control the rotation speed for P3.

したがって、ポンプPI−P3は圧力スケジュールに応
じて回転数が制御されると共に、差圧が圧力スケジュー
ルにまで低下したときに始めて増設が行なわれるものと
なり、かつ、各ポンプPi〜P3の能力が最大限に発揮
されるため、消費電力の節減が達せられる。
Therefore, the rotation speed of pumps PI-P3 is controlled according to the pressure schedule, and expansion is only performed when the differential pressure falls to the pressure schedule, and the capacity of each pump Pi-P3 is maximized. This reduces power consumption.

たyし、第2図の冷凍機R1−R*をボイラ等へ置換し
゛てもよく、制御器CONにプロセッサを用いず、専用
の制御回路を用いてもよい反面、第5図の機能をプロセ
ッサの制御動作へ置換しても同様である等、本発明は種
々の変形が自在である。
However, the refrigerator R1-R* in Fig. 2 may be replaced with a boiler, etc., and a dedicated control circuit may be used instead of a processor for the controller CON. The present invention can be modified in various ways, such as replacing the control operation with a processor.

以上の説明により明らかなとおり本発明によれば、並列
接続された複数台のポンプに対し増設を行なう場合、合
理的な増設が行なわれるものとなシ、消費電力の節減が
達成されるため、各種の給水システムにおいて顕著な効
果が得られる。
As is clear from the above description, according to the present invention, when adding to a plurality of pumps connected in parallel, the addition is done in a reasonable manner and power consumption is reduced. Remarkable effects can be obtained in various water supply systems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の増減設状況を示す図、第2図以降は本発
明あ実施例を示し、第2図は計装図、第3図は増減段の
状況を示す図、第4図は制御動作のフローチャート、第
5図は増膜要求信号を発生する回路のブロック図である
。 P1〜P1 ・・・φポンプ、DI 〜D3 ・・・・
検出器、CON・・・・制御器、DP・・Φ・差圧計、
F・・・・流量計。 特許出願人  山武ハネウェル株式会社代理人 山川政
樹(ほか1名)
Fig. 1 is a diagram showing the conventional increase/decrease installation situation, Fig. 2 and subsequent figures show an embodiment of the present invention, Fig. 2 is an instrumentation diagram, Fig. 3 is a diagram showing the situation of increase/decrease stage, and Fig. 4 is a diagram showing the situation of increase/decrease stages. A flowchart of the control operation, and FIG. 5 is a block diagram of a circuit that generates a film increase request signal. P1~P1...φ pump, DI~D3...
Detector, CON...Controller, DP...Φ/Differential pressure gauge,
F...Flowmeter. Patent applicant Yamatake Honeywell Co., Ltd. Agent Masaki Yamakawa (and one other person)

Claims (2)

【特許請求の範囲】[Claims] (1)並列接続されかつシステムの最小圧力を示す圧力
スケジュールに応じて回転数の制御される複数台のポン
プ−・各個に最大出力状態を検出する検出器を設け、該
検出器の検出々力に応じて前記ポンプの増設を行なうこ
とを特徴とするポンプの運転制御方法。
(1) Multiple pumps that are connected in parallel and whose rotational speed is controlled according to a pressure schedule that indicates the minimum pressure of the system - Each pump is equipped with a detector that detects the maximum output state, and the detection power of the detector is A method for controlling operation of a pump, characterized in that the number of pumps is increased depending on the number of pumps.
(2)並列接続されかつシステムの最小圧力を示す圧力
スケジュールに応じて回転数の制御される複数台のポン
プへ各個に最大出力状態を検出する検出器を設け、該検
出器が検出々力を生じたときの出力時流量と定格流量と
に応じて能力係数を設定し、該能力係数を乗じた定格流
量へ所定のディファレンシャルを減じた値以下の流量状
態において減殺を行なうことを特徴とするポンプの運転
制御方法。
(2) A detector is installed to detect the maximum output state of each pump connected in parallel and whose rotation speed is controlled according to a pressure schedule that indicates the minimum pressure of the system, and the detector detects the detection force. A pump characterized in that a capacity coefficient is set according to the output flow rate and the rated flow rate at the time of occurrence, and the reduction is performed in a flow rate state below a value obtained by subtracting a predetermined differential from the rated flow rate multiplied by the capacity coefficient. operation control method.
JP11690782A 1982-07-07 1982-07-07 Operation controlling method of pump Pending JPS599719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11690782A JPS599719A (en) 1982-07-07 1982-07-07 Operation controlling method of pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11690782A JPS599719A (en) 1982-07-07 1982-07-07 Operation controlling method of pump

Publications (1)

Publication Number Publication Date
JPS599719A true JPS599719A (en) 1984-01-19

Family

ID=14698591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11690782A Pending JPS599719A (en) 1982-07-07 1982-07-07 Operation controlling method of pump

Country Status (1)

Country Link
JP (1) JPS599719A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425202A (en) * 1987-07-21 1989-01-27 Mitsubishi Electric Corp Controller for pump driving stand number
EP1255174A1 (en) * 2001-04-30 2002-11-06 Starite S.p.A. Electric Pump with automatic on-off device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518485A (en) * 1974-07-12 1976-01-23 Toyo Electric Mfg Co Ltd SAITEKIDAISUSEIGYOHOSHIKI
JPS524810A (en) * 1975-07-01 1977-01-14 Nippon Telegr & Teleph Corp <Ntt> Recording system in audio response unit
JPS5755416A (en) * 1980-09-22 1982-04-02 Hitachi Ltd Controlling method for flow rate of cooling water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS518485A (en) * 1974-07-12 1976-01-23 Toyo Electric Mfg Co Ltd SAITEKIDAISUSEIGYOHOSHIKI
JPS524810A (en) * 1975-07-01 1977-01-14 Nippon Telegr & Teleph Corp <Ntt> Recording system in audio response unit
JPS5755416A (en) * 1980-09-22 1982-04-02 Hitachi Ltd Controlling method for flow rate of cooling water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425202A (en) * 1987-07-21 1989-01-27 Mitsubishi Electric Corp Controller for pump driving stand number
EP1255174A1 (en) * 2001-04-30 2002-11-06 Starite S.p.A. Electric Pump with automatic on-off device

Similar Documents

Publication Publication Date Title
JP3523269B2 (en) Variable speed control of centrifugal chiller using fuzzy logic
US5537830A (en) Control method and appartus for a centrifugal chiller using a variable speed impeller motor drive
US5355691A (en) Control method and apparatus for a centrifugal chiller using a variable speed impeller motor drive
US5946926A (en) Variable flow chilled fluid cooling system
JP2834139B2 (en) Refrigeration equipment
JPS60162170A (en) Cooling device and method of controlling flow rate of refrigerant for said device
KR960012739B1 (en) Automatic chiller stopping sequence
US4255089A (en) Method of controlling series fans driving a variable load
JPS599719A (en) Operation controlling method of pump
JPS5921933A (en) Air conditioner
JP3405426B2 (en) Refrigerator unit control device
JPS5767736A (en) Air conditioner
GB2316714A (en) A method of operating a centrifugal compressor
JPH04179879A (en) Device for reducing load of motor
JPS6149519B2 (en)
JPH0324599B2 (en)
JPS59168203A (en) Back-pressure turbine having back-pressure controlling means
JPH0127347B2 (en)
JPH0157274B2 (en)
JP3251122B2 (en) Exhaust heat recovery system
JPS5851799A (en) Output reducing device for turbine generator
JPH0132903B2 (en)
JPS61132786A (en) Controller for compressor
JPS62103496A (en) Revolutional speed controller of condenser booster pump
JPH0155387B2 (en)