JPH0157274B2 - - Google Patents

Info

Publication number
JPH0157274B2
JPH0157274B2 JP3831581A JP3831581A JPH0157274B2 JP H0157274 B2 JPH0157274 B2 JP H0157274B2 JP 3831581 A JP3831581 A JP 3831581A JP 3831581 A JP3831581 A JP 3831581A JP H0157274 B2 JPH0157274 B2 JP H0157274B2
Authority
JP
Japan
Prior art keywords
low pressure
value
set value
superheat
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3831581A
Other languages
Japanese (ja)
Other versions
JPS57153176A (en
Inventor
Hajime Kitauchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3831581A priority Critical patent/JPS57153176A/en
Publication of JPS57153176A publication Critical patent/JPS57153176A/en
Publication of JPH0157274B2 publication Critical patent/JPH0157274B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 この発明は冷凍装置の制御装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for a refrigeration system.

従来この種の装置として第1図に示すものがあ
つた。図において1は冷媒サイクルの低圧々力を
検出するセンサー、2はセンサー1の低圧々力を
機械的あるいは電気的な信号に変換する入力変換
装置、3はある圧力を設定する設定装置、4は設
定装置3の設定圧力を機械的あるいは電気的に変
換する設定圧力変換装置、5は入力変換装置2と
設定圧力変換装置4の出力を入力とし、入力変換
装置2から出力された低圧々力が設定圧力変換装
置4で設定された圧力以下になると出力を出す比
較装置、6は比較装置5の出力に応じて圧縮機停
止や警報等を出す制御回路である。
A conventional device of this type is shown in FIG. In the figure, 1 is a sensor that detects the low pressure and force of the refrigerant cycle, 2 is an input conversion device that converts the low pressure and force of the sensor 1 into a mechanical or electrical signal, 3 is a setting device that sets a certain pressure, and 4 is a A set pressure converter 5 mechanically or electrically converts the set pressure of the setting device 3, which inputs the outputs of the input converter 2 and the set pressure converter 4, and converts the low pressure output from the input converter 2 into the set pressure converter 5. A comparator device outputs an output when the pressure becomes lower than the pressure set by the set pressure converter 4, and 6 is a control circuit that stops the compressor or issues an alarm in response to the output of the comparator 5.

次に動作について説明する。まず設定装置3、
設定圧力変換装置4により設定圧力をある値にセ
ツトする。次いで冷凍装置運転時、負荷が少ない
と、低圧々力が下がりセンサー1、入力変換装置
2で検出された低圧々力が設定装置3設定圧力変
換装置4で検出された設定圧力より低くなり、比
較装置5で出力が出、制御装置6が働き、圧縮機
を停止等させるので液バツク運転等を防止でき
る。また冷媒ガスが不足していても低圧々力が下
がり上記と同様に制御装置6が働いて圧縮機を停
止等させるので圧縮機の過熱運転等を防止でき
る。しかしこの種の装置としては低圧々力のみ検
出しているので負荷が小さくなつて低圧圧力が下
がつたのか、冷媒ガスが不足して低圧圧力が下が
つたのか、それらの組合せで低圧圧力が下がつた
のかわからないので、原因究明に時間、費用がか
かる。また、設定圧力値は調節できるが、通常設
定値は1ポイントであるため、圧縮機を安全側に
停止させるためには、ある程度の低圧々力に設定
する必要があり、低負荷、冷媒ガス不足の組合せ
で低圧々力が下がつた場合等上記設定圧力以下ま
で運転できるところが無視され、結局冷凍装置の
運転範囲を大きくとれない。という欠点があつ
た。
Next, the operation will be explained. First, setting device 3,
A set pressure converter 4 sets the set pressure to a certain value. Next, when the refrigeration equipment is operated, when the load is small, the low pressure and pressure decreases, and the low pressure and pressure detected by the sensor 1 and the input conversion device 2 become lower than the set pressure detected by the setting device 3 and the set pressure conversion device 4, and the comparison is made. The device 5 outputs an output, and the control device 6 operates to stop the compressor, thereby preventing liquid back-up operation. Furthermore, even if there is a shortage of refrigerant gas, the low pressure is lowered and the control device 6 operates to stop the compressor in the same way as described above, so that overheating of the compressor can be prevented. However, as this type of device only detects low pressure force, it is possible that the low pressure has decreased due to a decrease in the load, or due to a lack of refrigerant gas, or a combination of these. Since we don't know if the problem has gone down, it takes time and money to investigate the cause. In addition, although the set pressure value can be adjusted, the normal set value is 1 point, so in order to stop the compressor safely, it is necessary to set it to a certain low pressure and force, which can occur due to low load or lack of refrigerant gas. When the low pressure is lowered due to a combination of the above, the ability to operate the refrigeration system below the set pressure is ignored, and as a result, the operating range of the refrigeration system cannot be widened. There was a drawback.

この発明は上記のような従来のものの欠点を除
去するためになされたもので、冷媒サイクルの低
圧々力の他にスーパーヒートを検出し、低負荷お
よび冷媒ガス不足を識別して出力するとともに、
運転範囲を大きくとれる冷凍装置の制御装置を提
供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and it detects superheat in addition to low pressure of the refrigerant cycle, identifies low load and lack of refrigerant gas, and outputs it.
The object of the present invention is to provide a control device for a refrigeration system that can have a wide operating range.

以下、この発明の一実施例を図について説明す
る。第2図において7は圧縮機、8は凝縮器9は
凝縮器用送風機10は膨張装置11は蒸発器12
は蒸発器用送風機13は蒸発器11の入口コイル
部に設置し、冷媒の蒸発温度あるいは蒸発温度相
当値を検出する第1感温素子、14は圧縮機7冷
媒吸込部に設置し、冷媒の吸込温度あるいは相当
値を検出する第2感温素子である。また第3図に
おいて15は第1感温素子13および第2感温素
子14の入力を電気信号に変換する入力変換装置
16は入力変換装置15からの出力を入力として
冷凍サイクルの低圧々力の換算値、スーパーヒー
トの換算値を演算する演算装置、17は圧縮機の
始動時よりカウントを開始し、ある一定時間後出
力を出すタイマー装置、18はあらかじめ最低負
荷時や最小冷媒量時等の低圧々力の換算値とスー
パーヒートの換算値およびある設定時間等を記憶
しておく記憶装置、19は演算装置16、タイマ
ー装置17の出力データと記憶装置18の設定値
を比較し、演算装置16、タイマー装置17の出
力データが記憶装置18の設定値を満足していれ
ばその設定値に対応した出力を出す比較装置、2
0は比較器19の出力により、低負荷の警報、冷
媒ガス不足の警報、圧縮機停止指令等を出す制御
装置である。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 2, 7 is a compressor, 8 is a condenser, 9 is a condenser blower 10, an expansion device 11 is an evaporator 12
The evaporator blower 13 is installed at the inlet coil of the evaporator 11, and has a first temperature sensing element that detects the evaporation temperature of the refrigerant or a value equivalent to the evaporation temperature. This is a second temperature sensing element that detects temperature or an equivalent value. In FIG. 3, 15 is an input converter 16 that converts the inputs of the first temperature sensing element 13 and the second temperature sensing element 14 into electrical signals. 17 is a timer device that starts counting from the start of the compressor and outputs the output after a certain period of time; 18 is a calculation device that calculates the converted value and the super heat conversion value; A storage device 19 stores the converted value of low pressure and force, the converted value of super heat, a certain set time, etc., and 19 compares the output data of the arithmetic device 16 and the timer device 17 with the set value of the storage device 18; 16. If the output data of the timer device 17 satisfies the set value of the storage device 18, a comparison device outputs an output corresponding to the set value; 2
0 is a control device that issues a low load alarm, a refrigerant gas shortage alarm, a compressor stop command, etc. based on the output of the comparator 19.

一般に規定冷媒量が充てんされている冷媒装置
は負荷が小さくなるに従い、低圧々力およびスー
パーヒートが小さくなる。また同じ負荷であれば
冷凍機の充てん冷媒量が少なくなるに従い低圧々
力が小さくなりスーパーヒートが大きくなる特性
がある。第4図、第5図に本発明の一実施例によ
る特性線図を示す。第4図は冷凍装置の冷凍負荷
を一定としたときの冷媒量変化に対する低圧々
力、スーパーヒートの変化を表わす特性線図で横
軸は冷媒量規定量100%とした変化および低圧々
力LP、縦軸は冷媒R22の蒸発温度TRおよび第1
感温素子13設置部の温度TEおよびこの冷凍装
置の実際のスーパーヒートSH、および第2感温
素子14設置部の温度TCから上記温度TEを引い
たみかけのスーパーヒートΔT(ΔT=(TC)−
(TE))を表わす。図においてわかるように冷媒
量が少なくなつてきた低圧圧力LP=1.0KG/cm2
G付近まではTEはTRに、ΔTはSHによく追ず
いしており、それぞれ実際の低圧々力、スーパー
ヒートに換算できる。また低圧々力LPが1.0Kg/
cm2G以下になれば実際の冷媒量はほとんどなくな
るためTEは周囲の温度に近づくため、急激に上
昇するため、TEはTRに、ΔTはSHに追ずいし
なくなるが、逆にこの急激な温度上昇を利用し
て、冷媒ガス不足を判定することができる。な
お、通常はTC≧TEであるが、第4図において△
T≦0℃となる領域があるのは、冷媒ガスが少な
くなると第1の感温素子13の位置から第2の感
温素子14の位置間の冷媒の圧力損失が大きくな
り、温度TCが下がるからである。第5図は規定
冷媒量充てんされた冷凍装置の負荷変動に対する
低圧々力、スーパーヒートの変化を表わす特性線
図で、横軸は冷凍負荷で標準状態を100%とした
変化、縦軸はLP,TR,TE,SH、ΔTを表わ
す。図においてわかるように冷凍負荷変化に対し
TEはTRに、ΔTはSHによく追ずいしておりそ
れぞれ実際の低圧々力、スーパーヒートに換算で
き、TRとΔTの変化により冷凍負荷減少時の状
態を検出することができる。このように、第4図
および第5図からも明らかのように第1の感温素
子13の検出温度は冷媒の蒸発温度TRに追ずい
しているので、この検出値から低圧圧力の相当値
を換算することができ、またスーパーヒートも上
述の如くみかけのスーパーヒート△Tから換算す
ることができる。なお、冷凍負荷減少時および冷
媒ガス不足時ともに低圧圧力が低下し、スーパー
ヒートが冷凍負荷減少時に減少し、冷媒ガス不足
時に増大するので、スーパーヒートの変化のみを
検出すればよいように思われるが、現実には低圧
圧力自体が下がらないと低負荷や冷媒不足となら
ない為、低圧圧力、即ち感温素子13の検出値に
基づき低圧圧力相当値を求める必要がある。例え
ば、スーパーヒートが高くても低圧圧力が高いと
冷媒不足ではなく過負荷の状態である。上記の理
由によりあらかじめ、記憶装置18に圧縮機始動
一定時間の冷媒サイクルが安定する時間を加味し
て下記データを記憶しておく。
Generally, in a refrigerant device filled with a specified amount of refrigerant, as the load becomes smaller, the low pressure and superheat become smaller. Furthermore, if the load is the same, as the amount of refrigerant charged in the refrigerator decreases, the low pressure force decreases and the superheat increases. FIGS. 4 and 5 show characteristic diagrams according to an embodiment of the present invention. Figure 4 is a characteristic diagram showing the changes in low pressure and force and superheat with respect to changes in refrigerant amount when the refrigeration load of the refrigeration system is constant. , the vertical axis is the evaporation temperature TR of refrigerant R22 and the first
Temperature TE of the temperature sensing element 13 installation part, actual superheat SH of this refrigeration equipment, and apparent superheat ΔT obtained by subtracting the above temperature TE from the temperature TC of the second temperature sensing element 14 installation part (ΔT=(TC) −
(TE)). As you can see in the figure, the low pressure LP = 1.0KG/cm 2 where the amount of refrigerant is decreasing
Up to around G, TE tracks well with TR, and ΔT tracks well with SH, which can be converted into actual low pressure force and super heat, respectively. Also, the low pressure LP is 1.0Kg/
When the temperature drops below cm 2 G, the actual amount of refrigerant is almost gone and TE approaches the ambient temperature, so it rises rapidly, so TE cannot keep up with TR and ΔT with SH. A temperature rise can be used to determine a refrigerant gas shortage. Note that normally TC≧TE, but in Fig. 4, △
The reason why there is a region where T≦0°C exists is that when the refrigerant gas decreases, the pressure loss of the refrigerant between the position of the first temperature sensing element 13 and the position of the second temperature sensing element 14 increases, and the temperature TC decreases. It is from. Figure 5 is a characteristic diagram showing the changes in low pressure and superheat with respect to load fluctuations in a refrigeration system filled with a specified amount of refrigerant.The horizontal axis is the change in refrigeration load with the standard state being 100%, and the vertical axis is LP. , TR, TE, SH, and ΔT. As can be seen in the figure, the change in refrigeration load
TE closely follows TR and ΔT closely follows SH, and can be converted into actual low pressure force and superheat, respectively, and the state when the refrigeration load is reduced can be detected by changes in TR and ΔT. In this way, as is clear from FIGS. 4 and 5, the detected temperature of the first temperature sensing element 13 follows the evaporation temperature TR of the refrigerant, so from this detected value, the equivalent value of the low pressure can be calculated. can be converted, and the superheat can also be calculated from the apparent superheat ΔT as described above. Note that the low pressure decreases both when the refrigeration load decreases and when there is a shortage of refrigerant gas, and superheat decreases when the refrigeration load decreases and increases when there is a shortage of refrigerant gas, so it seems necessary to detect only changes in superheat. However, in reality, a low load or a refrigerant shortage will not occur unless the low pressure itself decreases, so it is necessary to find a value equivalent to the low pressure based on the low pressure, that is, the detected value of the temperature sensing element 13. For example, even if the superheat is high, if the low pressure is high, it is not a refrigerant shortage but an overload condition. For the above-mentioned reasons, the following data is stored in advance in the storage device 18, taking into account the time period during which the refrigerant cycle is stabilized during a certain period of time when the compressor is started.

(a) 圧縮機始動5分後TE≦−2℃かつΔT≧
30degならば冷媒ガス不足と判断。
(a) 5 minutes after starting the compressor, TE≦-2℃ and ΔT≧
If it is 30deg, it is determined that there is a lack of refrigerant gas.

即ち、第4図において冷媒量規定量の50%程
度であり冷媒不足。また、第5図においてTE
=−2℃では△T≒0℃だから低負荷ではな
い。
That is, in Fig. 4, the amount of refrigerant is about 50% of the specified amount, and there is a refrigerant shortage. Also, in Figure 5, TE
At =-2°C, △T≒0°C, so the load is not low.

(b) 圧縮機始動5分後TE≧20℃ならば冷媒完全
ガス不足と判断。
(b) If TE≧20℃ 5 minutes after starting the compressor, it is determined that there is a complete refrigerant gas shortage.

即ち、第4図においてTE≧20℃では冷媒量
規定量の数%以下。
That is, in Fig. 4, when TE≧20°C, the amount of refrigerant is several percent or less of the specified amount.

また、第4図において冷媒量が多くなると
TEは上昇、第5図においても冷凍負荷が多く
なるとTEは上昇するが、TE≧20℃となること
はない。
Also, in Figure 4, when the amount of refrigerant increases,
TE increases.As shown in Figure 5, TE increases as the refrigeration load increases, but TE never exceeds 20°C.

(c) 圧縮機始動5分後TE≦−2℃かつΔT≦
5degならば冷凍負荷小と判断。
(c) 5 minutes after starting the compressor, TE≦-2℃ and ∆T≦
If it is 5deg, it is considered that the refrigeration load is small.

即ち、第4図においてTE=−2℃では△T
≒25℃だから冷媒不足ではない。また、第5図
において冷凍負荷の50%程度であり低負荷。
That is, in Figure 4, at TE=-2℃, △T
Since the temperature is ≒25℃, there is no shortage of refrigerant. Also, in Figure 5, the load is about 50% of the refrigeration load, which is low.

(d) 圧縮機始動直後TE≦−10℃ならば冷媒ガス
不足と冷凍負荷小の組合せもしくはそれぞれの
最悪条件等と判断。なお、設定値−10℃は第4
図の特性でも明らかのように冷凍機、特に空調
機の代表的な数値で、あくまで目安値であるの
で例えば−5℃に設定することも可能である
が、上述した別の判断条件となる設定値−2℃
よりもある程度低いことが重要である。
(d) If TE≦-10℃ immediately after starting the compressor, it is determined that there is a combination of refrigerant gas shortage and small refrigeration load, or the worst condition of each. In addition, the set value -10℃ is the 4th
As is clear from the characteristics in the figure, these are typical values for refrigerators, especially air conditioners, and are only a guideline value, so it is possible to set it to, for example, -5℃, but the setting is another judgment condition mentioned above. Value -2℃
It is important that the value is lower than .

即ち、上記(a)(b)と比べて低圧圧力が低い領域
であり、(a)または(b)に包含される領域である
が、圧縮機保護の為、始動5分まで待てない。
このため、第3図中のタイマー装置17として
始動直後にも出力を発生するものを設け、該出
力が発生していること、および演算装置16で
演算された温度TEと記憶装置18に記憶され
ている設定値−10℃との関係がTE≦−10℃で
あることを条件として比較装置19より出力を
発生する。
That is, this is a region where the low pressure is lower than in (a) and (b) above, and is included in (a) or (b), but in order to protect the compressor, it is not possible to wait until 5 minutes after startup.
For this reason, a timer device 17 in FIG. 3 that generates an output even immediately after startup is provided, and it is possible to check that the output is being generated and that the temperature TE calculated by the calculation device 16 and the temperature TE are stored in the storage device 18. The comparator 19 generates an output on the condition that the relationship with the set value -10°C is TE≦-10°C.

演算装置16とタイマー装置17のデータが記
憶装置18の上記(a)〜(d)の条件を満足すれば比較
装置19、制御装置20はそれぞれ指令 (a)、(b)を満足しているときは冷媒ガス不足警報 (c)を満足しているときは低負荷警報と圧縮機停
止指令 (d)を満足しているときは圧縮機停止指令 を出す。
If the data of the arithmetic device 16 and the timer device 17 satisfy the conditions (a) to (d) above in the storage device 18, the comparison device 19 and the control device 20 satisfy the commands (a) and (b), respectively. If the refrigerant gas shortage alarm (c) is satisfied, a low load alarm is issued, and if the condition (d) is met, a compressor stop command is issued.

なお上記実施例では第1感温素子13を設けた
ものを示したが第1感温素子13のかわりに圧力
感知素子で取付位置も冷媒サイクルの低圧々力を
検知する位置でもよく、この場合特に冷媒ガス不
足時完全にガスがなくなるまで実際の低圧々力に
追ずいし、スーパーヒートも追ずいするのでより
精度のあがる制御ができる。さらにマイクロコン
ピユータを用いれば入力変換装置15、演算装置
16、タイマー装置17、記憶装置18、比較装
置19、制御装置20はすべてソフトウエアで処
理され回路構成も容易になる。
In the above embodiment, the first temperature sensing element 13 is provided, but the first temperature sensing element 13 may be replaced by a pressure sensing element and the mounting position may be a position that detects the low pressure and force of the refrigerant cycle. In particular, when there is a shortage of refrigerant gas, it follows the actual low pressure and force until the gas is completely exhausted, and it also follows the superheat, allowing for even more precise control. Furthermore, if a microcomputer is used, the input conversion device 15, arithmetic device 16, timer device 17, storage device 18, comparison device 19, and control device 20 are all processed by software, making the circuit configuration easier.

以上のようにこの発明によれば冷媒サイクルの
低圧々力とスーパーヒートを検出、低負荷および
冷媒ガス不足を識別して警報および圧縮機の停止
指令を出すようにしたので、不具合発見、原因究
明に時間、費用が少なくてすみ、また精度高く検
出できるので冷凍装置の運転範囲を広げられると
いう効果がある。
As described above, according to the present invention, low pressure and force in the refrigerant cycle and superheat are detected, low load and refrigerant gas shortage are identified, and an alarm and a command to stop the compressor are issued, so that the problem can be discovered and the cause investigated. This method requires less time and cost, and can be detected with high accuracy, which has the effect of expanding the operating range of the refrigeration equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の冷凍装置の制御装置のブロツク
図、第2図はこの発明の一実施例による冷凍装置
の冷媒サイクルのブロツク図、第3図はこの発明
の一実施例による冷凍装置の制御装置のブロツク
図、第4図はこの発明の一実施例による冷媒量変
化時の低圧々力、スーパーヒート等の特性線図、
第5図はこの発明の一実施例による冷凍負荷変化
時の低圧々力、スーパーヒート等の特性線図であ
る。 12……蒸発器用送風機、13……第1感温素
子、14……第2感温素子、15……入力変換装
置、16……演算装置、17……タイマー装置、
18……記憶装置、19……比較装置、20……
制御装置、LP……低圧々力(Kg/cm2G)、TR…
…冷媒R22の蒸発温度(℃)、TE……第1感温素
子13設置部の温度(℃)、SH……本発明の一実
施例による冷凍装置の実際のスーパーヒート、
TC……第2感温素子14設置部の温度(℃)、
ΔT……TCからTEを引いたみかけのスーパーヒ
ートである。なお図中、同一符号は同一、または
相当部分を示す。
Fig. 1 is a block diagram of a conventional control device for a refrigeration system, Fig. 2 is a block diagram of a refrigerant cycle of a refrigeration system according to an embodiment of the present invention, and Fig. 3 is a block diagram of a control system for a refrigeration system according to an embodiment of the present invention. A block diagram of the device, FIG. 4 is a characteristic diagram of low pressure and force, super heat, etc. when the amount of refrigerant changes according to an embodiment of the present invention;
FIG. 5 is a characteristic diagram of low pressure and force, super heat, etc. when the refrigeration load changes according to an embodiment of the present invention. 12... Evaporator blower, 13... First temperature sensing element, 14... Second temperature sensing element, 15... Input conversion device, 16... Arithmetic device, 17... Timer device,
18... Storage device, 19... Comparison device, 20...
Control device, LP...Low pressure force (Kg/cm 2 G), TR...
...Evaporation temperature (°C) of refrigerant R22, TE...Temperature (°C) of the installation part of the first temperature sensing element 13, SH...Actual superheat of the refrigeration system according to an embodiment of the present invention,
TC...Temperature (°C) of the installation part of the second temperature sensing element 14,
ΔT...This is the apparent superheat obtained by subtracting TE from TC. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 1 冷媒の蒸発圧力あるいは蒸発温度を検出する
第1の検出素子と、圧縮機の冷媒吸入温度を検出
する第2の検出素子と、これら第1と第2の検出
素子の検出値から冷凍サイクルの低圧圧力相当値
とスーパーヒート相当値を求める演算装置と、上
記圧縮機の始動時から所定時間経過時、上記演算
装置で求められた低圧圧力相当値とスーパーヒー
ト相当値と予め設定された低圧圧力設定値とスー
パーヒート設定値とを比較し、上記低圧圧力相当
値が第1の低圧圧力設定値以下で且つ上記スーパ
ーヒート相当値が第1のスーパーヒート設定値以
上の場合または上記低圧圧力相当値が上記第1の
低圧圧力設定値より高く設定された第2の低圧圧
力設定値以上の場合は冷媒不足警告の制御信号を
発生し、上記低圧圧力相当値が上記第1の低圧圧
力設定値以下で且つ上記スーパーヒート相当値が
上記第1のスーパーヒート設定値より低く設定さ
れた第2のスーパーヒート設定値以下の場合は低
負荷警告の制御信号を発生し、並びに圧縮機始動
直後の上記低圧圧力相当値が上記第1の低圧圧力
設定値より低く設定された第3の低圧圧力設定値
以下の場合は圧縮機停止の制御信号を発生する手
段を備えていることを特徴とする冷凍装置の制御
装置。
1 A first detection element that detects the evaporation pressure or evaporation temperature of the refrigerant, a second detection element that detects the refrigerant suction temperature of the compressor, and the detection values of the refrigeration cycle from the detection values of these first and second detection elements. A calculation device that calculates a low pressure equivalent value and a superheat equivalent value, and when a predetermined time has elapsed from the start of the compressor, the low pressure equivalent value and superheat equivalent value calculated by the calculation device and the preset low pressure. Compare the set value and the super heat set value, and if the low pressure equivalent value is less than or equal to the first low pressure set value and the super heat equivalent value is greater than or equal to the first super heat set value, or the low pressure equivalent value is equal to or higher than the second low pressure set value, which is set higher than the first low pressure set value, a refrigerant shortage warning control signal is generated, and the low pressure equivalent value is equal to or lower than the first low pressure set value. and if the superheat equivalent value is less than or equal to a second superheat set value that is set lower than the first superheat set value, a low load warning control signal is generated, and the low pressure immediately after the compressor is started. A refrigeration system characterized by comprising means for generating a control signal for stopping the compressor when the pressure equivalent value is less than or equal to a third low pressure set value that is set lower than the first low pressure set value. Control device.
JP3831581A 1981-03-16 1981-03-16 Controller for refrigerating plant Granted JPS57153176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3831581A JPS57153176A (en) 1981-03-16 1981-03-16 Controller for refrigerating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3831581A JPS57153176A (en) 1981-03-16 1981-03-16 Controller for refrigerating plant

Publications (2)

Publication Number Publication Date
JPS57153176A JPS57153176A (en) 1982-09-21
JPH0157274B2 true JPH0157274B2 (en) 1989-12-05

Family

ID=12521846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3831581A Granted JPS57153176A (en) 1981-03-16 1981-03-16 Controller for refrigerating plant

Country Status (1)

Country Link
JP (1) JPS57153176A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048069U (en) * 1983-09-07 1985-04-04 光藤 隆 Refrigerator compressor protection device
JPS60181548A (en) * 1984-02-28 1985-09-17 Matsushita Electric Ind Co Ltd Heat collecting device utilizing solar heat
JPS63279071A (en) * 1987-05-11 1988-11-16 サンデン株式会社 Protective device for compressor for refrigerator

Also Published As

Publication number Publication date
JPS57153176A (en) 1982-09-21

Similar Documents

Publication Publication Date Title
EP1706684B1 (en) Diagnosing a loss of refrigerant charge in a refrigerant system
US4932220A (en) Air conditioner system with optimum high pressure control function
JPH10153353A (en) Air conditioner
JPH04240355A (en) Controlling method for electronic expansion valve of air conditioner
JPH0157274B2 (en)
JPH11230624A (en) Apparatus and method of controlling electronic expansion valve
JP2767937B2 (en) Refrigeration cycle refrigerant charging amount detection device
JPH109686A (en) Air conditioner
JP3187198B2 (en) Air conditioner
JPH09159293A (en) Compressor protection controller for air conditioner
JPH07234044A (en) Controlling device for protecting compressor of air conditioner
JPH0157263B2 (en)
JPS5912942B2 (en) Refrigeration equipment
JPH0378551B2 (en)
JPH0527019B2 (en)
JPH03267657A (en) Multi-room air-conditioner
JPH0684832B2 (en) Defroster for air conditioner
JPS6266065A (en) Liquid-return preventive method of refrigerator
JPH08178439A (en) Controller for refrigerator
JPS62294852A (en) Refrigerator
JPS62213669A (en) Method of controlling operation of air conditioner
JPS6356465B2 (en)
JP2836411B2 (en) Ice storage operation protection device
JPS6375445A (en) Pump-down operation controller for refrigerator
JP3197634B2 (en) Refrigeration equipment