JP3166731B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP3166731B2
JP3166731B2 JP29153998A JP29153998A JP3166731B2 JP 3166731 B2 JP3166731 B2 JP 3166731B2 JP 29153998 A JP29153998 A JP 29153998A JP 29153998 A JP29153998 A JP 29153998A JP 3166731 B2 JP3166731 B2 JP 3166731B2
Authority
JP
Japan
Prior art keywords
compressor
gas
temperature
frequency
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29153998A
Other languages
Japanese (ja)
Other versions
JP2000105033A (en
Inventor
明紀 中井
康夫 水口
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP29153998A priority Critical patent/JP3166731B2/en
Publication of JP2000105033A publication Critical patent/JP2000105033A/en
Application granted granted Critical
Publication of JP3166731B2 publication Critical patent/JP3166731B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】この発明は、運転周波数を変
更可能な圧縮機を備えた空気調和装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner provided with a compressor whose operating frequency can be changed.
【0002】[0002]
【従来の技術】空気調和装置では、圧縮機、凝縮器、減
圧機構、蒸発器を冷媒が循環可能な順序で接続して冷媒
循環回路を構成し、この冷媒循環回路に冷媒を循環させ
て冷凍サイクルを実行し、冷房、暖房等の空気調和が行
われている。ここで、上記圧縮機は、蒸発器で蒸発した
冷媒ガスを吸入し、圧縮して液化しやすい状態にするも
のであり、発熱を伴うため、冷却機構を内蔵している。
2. Description of the Related Art In an air conditioner, a compressor, a condenser, a decompression mechanism, and an evaporator are connected in an order in which a refrigerant can circulate to form a refrigerant circulation circuit. The cycle is executed, and air conditioning such as cooling and heating is performed. Here, the compressor sucks the refrigerant gas evaporated by the evaporator and compresses the refrigerant gas so as to be easily liquefied. Since the compressor generates heat, it has a built-in cooling mechanism.
【0003】例えば、モータを内蔵した密閉型圧縮機の
場合、モータコイルは圧縮ガス(冷媒)によって冷却さ
れている。従って、冷媒漏れなどによっていわゆるガス
欠状態で圧縮機を運転した場合、冷媒が冷媒循環回路内
を循環しないため、モータコイルは冷却不足になり、徐
々にモータコイルの温度が上昇して最終的にはモータコ
イルの絶縁破壊に至り、モータとして機能しなくなる。
そのため、圧縮機を交換する必要があり、メンテナンス
コストが増大することになる。
For example, in the case of a hermetic compressor having a built-in motor, a motor coil is cooled by a compressed gas (refrigerant). Therefore, when the compressor is operated in a so-called gas-out state due to refrigerant leakage or the like, the refrigerant does not circulate in the refrigerant circulation circuit, so that the motor coil becomes insufficiently cooled, and the temperature of the motor coil gradually increases, and finally, Leads to insulation breakdown of the motor coil and stops functioning as a motor.
Therefore, it is necessary to replace the compressor, which increases maintenance cost.
【0004】そこで、圧縮機のケーシング上であってモ
ータコイルの近傍にバイメタル式の温度スイッチを設
け、圧縮機の温度が異常に上昇した時には上記温度スイ
ッチが遮断されて圧縮機の主回路電源をOFFするよう
に構成している。このバイメタル式の温度スイッチはO
L(Over Load protector:過負荷
保護装置)と称され、上述したような保護装置として使
用すると共に、故障検出器としても使用している。
Therefore, a bimetal type temperature switch is provided on the casing of the compressor and near the motor coil, and when the temperature of the compressor rises abnormally, the temperature switch is shut off and the main circuit power supply of the compressor is turned off. It is configured to be turned off. This bimetallic temperature switch is O
It is called L (Over Load protector), and is used as a protection device as described above and also as a failure detector.
【0005】[0005]
【発明が解決しようとする課題】上記OLは、圧縮機の
破損等を防止するための保護装置としては確かに有効に
機能するものであり、必要性のある部品である。しか
し、本来の空調制御に直接使用するものではなく、圧縮
機の異常時にのみ動作するものであり、動作頻度は低い
ものである。また、OLは取付金具によって圧縮機に取
付けられており、そしてOLと電装品箱との間はハーネ
スで接続されている。このように、必要ではあるが動作
頻度が低いOL及び関連部品を使用することが製品コス
トの上昇を招来している。即ち、空調制御に使用してい
る構成を利用してガス欠状態を検出し、圧縮機を停止さ
せることができれば、OL及び関連部品が不要となり、
製品コストを低減させることができるのは明らかであ
る。
The above-mentioned OL certainly functions effectively as a protection device for preventing damage to the compressor and the like, and is a necessary component. However, it is not used directly for the original air conditioning control, but operates only when the compressor is abnormal, and the operation frequency is low. The OL is attached to the compressor by a mounting bracket, and the OL and the electrical component box are connected by a harness. As described above, the use of OLs and related parts that are necessary but have a low operation frequency causes an increase in product cost. That is, if a gas-out state can be detected by using the configuration used for air-conditioning control and the compressor can be stopped, OL and related parts become unnecessary,
Clearly, product costs can be reduced.
【0006】本発明は上記従来の欠点を解決するために
なされたものであり、その目的は、専用部品を用いるこ
となく、空調制御に使用している構成を利用してガス欠
状態を検出することができる安価な空気調和装置を提供
することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional drawbacks, and an object of the present invention is to detect a gas-out state using a configuration used for air-conditioning control without using dedicated parts. It is to provide an inexpensive air conditioner which can be used.
【0007】[0007]
【課題を解決するための手段】そこで請求項1の空気調
和装置は、運転周波数が変更可能な圧縮機4、凝縮器
5、減圧機構6、蒸発器7を順に接続して冷媒循環回路
を構成し、上記蒸発器7の蒸発温度を検出する蒸発温度
検出手段18と、上記蒸発器7の周囲の温度を検出する
周囲温度検出手段20と、空調運転の開始を指示するた
めにユーザによって操作される操作手段と、上記冷媒循
環回路を制御して空調運転を行う制御手段16とを備
え、上記制御手段16は、上記操作手段によって空調運
転の開始が指示されると、予め定める基準周波数FGK
1以上で上記圧縮機4を運転させると共に、上記蒸発器
7の蒸発温度とその周囲温度との差を求めるガス欠検出
運転を行い、求めた温度差が所定の基準値未満である状
態が所定の時間継続したときは、さらに上記基準周波数
FGK1より高い第2の基準周波数FGK2以上でガス
欠検出運転を行い、求めた温度差が所定の基準値未満で
ある状態が所定の時間継続したときは、ガス欠状態であ
ると判断し、上記圧縮機4を停止させることを特徴とし
ている。
In the air conditioner according to the present invention, a compressor 4, a condenser 5, a decompression mechanism 6, and an evaporator 7, the operation frequency of which can be changed, are sequentially connected to form a refrigerant circulation circuit. Then, an evaporating temperature detecting means 18 for detecting the evaporating temperature of the evaporator 7, an ambient temperature detecting means 20 for detecting a temperature around the evaporator 7, and a user operated to instruct the start of the air conditioning operation. Operating means, and a control means 16 for controlling the refrigerant circulation circuit to perform an air-conditioning operation. When the operation means instructs the start of the air-conditioning operation, the control means 16 determines a predetermined reference frequency FGK.
The compressor 4 is operated by one or more, and a gas shortage detection operation for obtaining a difference between the evaporating temperature of the evaporator 7 and its ambient temperature is performed, and a state in which the obtained temperature difference is less than a predetermined reference value is determined. time continued time, further the reference frequency
Gas above the second reference frequency FGK2 higher than FGK1
Perform the missing detection operation, and if the calculated temperature difference is less than the
When a certain state continues for a predetermined time, it is determined that a gas-out state is present, and the compressor 4 is stopped.
【0008】 また請求項2の空気調和装置は、運転周
波数が変更可能な圧縮機4、凝縮器5、減圧機構6、蒸
発器7を順に接続して冷媒循環回路を構成し、上記凝縮
器5の凝縮温度を検出する凝縮温度検出手段17と、上
記凝縮器5の周囲の温度を検出する周囲温度検出手段1
9と、空調運転の開始を指示するためにユーザによって
操作される操作手段と、上記冷媒循環回路を制御して空
調運転を行う制御手段16とを備え、上記制御手段16
は、上記操作手段によって空調運転の開始が指示される
と、予め定める基準周波数FGK1以上で上記圧縮機4
を運転させると共に、上記凝縮器5の凝縮温度とその周
囲温度との差を求めるガス欠検出運転を行い、求めた温
度差が所定の基準値未満である状態が所定の時間継続し
たときは、さらに上記基準周波数FGK1より高い第2
の基準周波数FGK2以上でガス欠検出運転を行い、求
めた温度差が所定の基準値未満である状態が所定の時間
継続したときは、ガス欠状態であると判断し、上記圧縮
機4を停止させることを特徴としている。
In the air conditioner of the second aspect, the compressor 4, the operating frequency of which can be changed, the condenser 5, the pressure reducing mechanism 6, and the evaporator 7 are connected in this order to constitute a refrigerant circulation circuit. Temperature detecting means 17 for detecting the condensing temperature of the air, and ambient temperature detecting means 1 for detecting the temperature around the condenser 5
9, operation means operated by a user to instruct the start of air-conditioning operation, and control means 16 for controlling the refrigerant circuit to perform air-conditioning operation.
When the start of the air-conditioning operation is instructed by the operating means, the compressor 4 operates at a predetermined reference frequency FGK1 or higher.
Is performed, and a gas shortage detection operation for obtaining a difference between the condensing temperature of the condenser 5 and the ambient temperature is performed. When the obtained temperature difference is less than a predetermined reference value for a predetermined time, Furthermore, the second frequency higher than the reference frequency FGK1
Out of gas at the reference frequency FGK2 or higher
The state in which the measured temperature difference is less than a predetermined reference value for a predetermined time
When the continuation is continued, it is determined that a gas-out state is present, and the compressor 4 is stopped.
【0009】 上記請求項1及び請求項2の空気調和装
置では、蒸発器7の蒸発温度又は凝縮器5の凝縮温度と
その周囲温度との差に基づいてガス欠状態であるか否か
を判断するので、空調制御に用いている蒸発温度検出手
段18又は凝縮温度検出手段17及び周囲温度検出手段
20、19をそのまま利用することができる。これによ
って、ガス欠状態を検出するための専用部品を用いる必
要がなくなるため空気調和装置の製品コストを低減する
ことができる。また、ガス欠状態でなければ所定の基準
値以上の温度差が確実に生じるように、予め定める基準
周波数FGK1以上で圧縮機4を運転させるので、誤検
出を防止することができる。しかも上記請求項1又は請
求項2の空気調和装置では、低い基準周波数FGK1で
のガス欠検出運転に引続いて、高い基準周波数FGK2
でのガス欠検出運転を行う。これは、空気調和装置1の
運転開始直後は、機械や電気回路の動作が不安定な場合
があり、ガス欠状態でないときであっても温度差が生じ
ないことがあり得るからである。これによって、誤検出
の発生が低減し、信頼性が向上する。
In the air conditioner of the first and second aspects, it is determined whether or not the gas condition is present based on the evaporation temperature of the evaporator 7 or the difference between the condensation temperature of the condenser 5 and the ambient temperature. Therefore, the evaporating temperature detecting means 18 or the condensing temperature detecting means 17 and the ambient temperature detecting means 20 and 19 used for the air conditioning control can be used as they are. As a result, it is not necessary to use a dedicated component for detecting a gas shortage state, so that the product cost of the air conditioner can be reduced. Further, since the compressor 4 is operated at a predetermined reference frequency FGK1 or higher so that a temperature difference equal to or higher than a predetermined reference value surely occurs unless the gas is in a gas shortage state, erroneous detection can be prevented. And claim 1 or
In the air conditioner of claim 2, the low reference frequency FGK1
Of the high reference frequency FGK2
To run out of gas detection operation. This is the air conditioner 1
Immediately after the start of operation, when the operation of machinery or electrical circuits is unstable
Temperature difference occurs even when there is no gas shortage.
This is because there may not be. This allows false detection
Is reduced, and the reliability is improved.
【0010】請求項3の空気調和装置は、請求項1のガ
ス欠検出運転と、請求項2のガス欠検出運転とを同時に
行い、求めた2つの温度差が共に所定の基準値未満であ
る状態が上記所定の時間継続したときは、ガス欠状態で
あると判断し、上記圧縮機4を停止させることを特徴と
している。
According to a third aspect of the present invention, the air conditioner performs the gas shortage detection operation of the first embodiment and the gas shortage detection operation of the second embodiment at the same time, and the two temperature differences obtained are both less than a predetermined reference value. When the state continues for the predetermined time, it is determined that the state is a gas-out state, and the compressor 4 is stopped.
【0011】上記請求項3の空気調和装置では、蒸発器
側の温度差と凝縮器側の温度差とに基づいてガス欠状態
であるか否かを判断するので、蒸発器側又は凝縮器側の
いずれか一方の温度差のみに基づく場合と比べて誤検出
の発生が低減し、信頼性が向上する。
In the air conditioner of the third aspect, it is determined whether or not there is a gas shortage state based on the temperature difference on the evaporator side and the temperature difference on the condenser side. The occurrence of erroneous detection is reduced as compared with the case based on only one of the temperature differences, and the reliability is improved.
【0012】[0012]
【0013】[0013]
【0014】 請求項の空気調和装置は、上記制御手
段16は、上記圧縮機4の運転周波数を上記基準周波数
FGK1、FGK2まで上昇させる間に、上記圧縮機4
の運転状態に対応して運転周波数の上昇を規制する上限
制限をかける必要が生じたときは、ガス有りと判断して
上記ガス欠検出運転を終了し、上記上限制限の下で空調
運転を行うことを特徴としている。
In the air conditioner according to a fourth aspect , the control means 16 increases the operating frequency of the compressor 4 while raising the operating frequency of the compressor 4 to the reference frequencies FGK1 and FGK2.
When it becomes necessary to impose an upper limit that regulates an increase in the operating frequency in accordance with the operation state, it is determined that gas is present, the gas-out detection operation is terminated, and an air conditioning operation is performed under the upper limit. It is characterized by:
【0015】 上記請求項の空気調和装置では、上限
制限をかける必要があるときは、ガス有りと判断し、ガ
ス欠検出運転よりも上限制限が優先して実行される。こ
れは、上限制限は圧縮機4の吐出圧力が高いときや、制
御電流が大きいときなどに圧縮機4の損傷を防止するた
めに実行するものであり、上限制限をかける必要がある
ときは、ガス欠状態であるとは到底考えられないからで
ある。これによって、圧縮機4の損傷を防止して安全に
空調運転を行うことができる。
In the air conditioner according to the fourth aspect , when it is necessary to set an upper limit, it is determined that there is gas, and the upper limit is executed prior to the gas-out detection operation. This upper limit is executed to prevent damage to the compressor 4 when the discharge pressure of the compressor 4 is high or when the control current is large. When it is necessary to set the upper limit, This is because it is almost impossible to assume that there is no gas. As a result, the compressor 4 can be prevented from being damaged, and the air-conditioning operation can be performed safely.
【0016】 請求項の空気調和装置は、上記制御手
段16は、所定の期間内に、上記ガス欠検出運転による
圧縮機4の停止を複数回行ったときは、上記操作手段に
よる運転開始の指示を無効とすると共に、上記圧縮機4
の停止状態を維持することを特徴としている。
In the air conditioner according to a fifth aspect , when the control unit 16 stops the compressor 4 a plurality of times due to the lack-of-gas detection operation within a predetermined period, the control unit 16 starts the operation by the operation unit. The instruction is invalidated and the compressor 4
Is maintained.
【0017】 請求項の空気調和装置では、ガス欠検
出運転による圧縮機4の停止が所定の期間内に複数回行
われたときは、明らかにガス欠状態であると判断し、い
わゆるシステムダウンを行うために、操作手段からの運
転開始の指示を無効とすると共に、圧縮機4の停止状態
が維持される。圧縮機4が複数回停止した後にシステム
ダウンさせるのは、空気調和装置1の運転開始直後は、
機械や電気回路の動作が不安定な場合があり、ガス欠状
態であると誤って判断するおそれがあるからである。こ
れによって、誤検出の発生が低限し、信頼性が向上す
る。また、ユーザが無駄な操作を繰り返すことがなく、
使用上の利便性が向上する。
In the air conditioner according to the fifth aspect, when the compressor 4 is stopped a plurality of times within the predetermined period by the gas-out detection operation, it is clearly determined that the gas-out state is present, and the so-called system down is performed. Therefore, the operation start instruction from the operating means is invalidated, and the stopped state of the compressor 4 is maintained. The reason why the system is shut down after the compressor 4 is stopped a plurality of times is that immediately after the operation of the air conditioner 1 is started,
This is because the operation of the machine or the electric circuit may be unstable, and there is a possibility that the gas or the like may be erroneously determined to be out of gas. As a result, occurrence of erroneous detection is minimized, and reliability is improved. Also, the user does not repeat useless operations,
The convenience in use is improved.
【0018】[0018]
【発明の実施の形態】次に、この発明の空気調和装置の
具体的な実施の形態について図面を参照しつつ詳細に説
明する。
Next, specific embodiments of the air conditioner of the present invention will be described in detail with reference to the drawings.
【0019】図1は、本発明の一実施の形態である空気
調和装置1の概略的構成を示す構成図である。空気調和
装置1は、室外機2と室内機3とで構成されている。そ
して、空気調和装置1では、冷媒が循環可能な順序で、
圧縮機4、室外熱交換器5、減圧機構であるキャピラリ
チューブ6、室内熱交換器7を接続して冷媒循環回路を
構成している。具体的には、圧縮機4の吐出管4aと吸
入管4bとが四路切換弁8に接続され、この四路切換弁
8には室外熱交換器5、キャピラリチューブ6及び室内
熱交換器7が、順番に第1ガス管9a、第1液管9b、
第2液管9c及び第2ガス管9dによって環状に接続さ
れている。そして、第2液管9cの一部分が連絡配管の
液管10となり、また第2ガス管9dの一部分が連絡配
管のガス管11となっている。さらに、第2液管9cに
は液閉鎖弁12が介設され、第2ガス管9dにはガス閉
鎖弁13が介設され、また圧縮機4の吸入管4bにはア
キュムレータ14が介設されている。
FIG. 1 is a configuration diagram showing a schematic configuration of an air conditioner 1 according to an embodiment of the present invention. The air conditioner 1 includes an outdoor unit 2 and an indoor unit 3. And in the air conditioner 1, in the order in which the refrigerant can circulate,
The compressor 4, the outdoor heat exchanger 5, the capillary tube 6 as a pressure reducing mechanism, and the indoor heat exchanger 7 are connected to form a refrigerant circulation circuit. Specifically, a discharge pipe 4a and a suction pipe 4b of the compressor 4 are connected to a four-way switching valve 8, and the four-way switching valve 8 includes an outdoor heat exchanger 5, a capillary tube 6, and an indoor heat exchanger 7. But, in order, a first gas pipe 9a, a first liquid pipe 9b,
They are connected in a ring by a second liquid pipe 9c and a second gas pipe 9d. A part of the second liquid pipe 9c is a liquid pipe 10 of the communication pipe, and a part of the second gas pipe 9d is a gas pipe 11 of the communication pipe. Further, a liquid shut-off valve 12 is interposed in the second liquid pipe 9c, a gas shut-off valve 13 is interposed in the second gas pipe 9d, and an accumulator 14 is interposed in the suction pipe 4b of the compressor 4. ing.
【0020】上記圧縮機4は、インバータ15を介して
制御手段である制御部16によって運転周波数が変更可
能に制御され、これによって圧縮能力が変更可能であ
る。上記制御部16は、マイクロコンピュータ等を用い
て構成されたものである。この制御部16には、室外熱
交サーミスタ17、室内熱交サーミスタ18、室外温度
サーミスタ19、室内温度サーミスタ20からの検出温
度が入力され、これらの検出温度に基づいて制御部16
は上記冷媒循環回路を制御して空調運転を行う。
The operating frequency of the compressor 4 is controlled by a control unit 16 as control means via an inverter 15 so that the operating frequency can be changed, and thereby the compression capacity can be changed. The control unit 16 is configured using a microcomputer or the like. Detected temperatures from the outdoor heat exchange thermistor 17, the indoor heat exchange thermistor 18, the outdoor temperature thermistor 19, and the indoor temperature thermistor 20 are input to the control unit 16, and based on these detected temperatures, the control unit 16
Controls the refrigerant circuit to perform an air-conditioning operation.
【0021】室外熱交サーミスタ17は、室外熱交換器
5に付設されており、熱交温度として、冷房運転時には
凝縮器として機能する室外熱交換器5の凝縮温度を検出
し、暖房運転時には蒸発器として機能する室外熱交換器
5の蒸発温度を検出する。また、室内熱交サーミスタ1
8は、室内熱交換器7に付設されており、熱交温度とし
て、冷房運転時には蒸発器として機能する室内熱交換器
7の蒸発温度を検出し、暖房運転時には凝縮器として機
能する室内熱交換器7の凝縮温度を検出する。さらに、
室外温度サーミスタ19は室外機2の適当な場所に配置
されており、室外温度を検出し、また室内温度サーミス
タ20は室内機3の適当な場所に配置されており、室内
温度を検出する。
The outdoor heat exchange thermistor 17 is attached to the outdoor heat exchanger 5, and detects the condensation temperature of the outdoor heat exchanger 5 functioning as a condenser during the cooling operation as the heat exchange temperature, and evaporates during the heating operation. The evaporating temperature of the outdoor heat exchanger 5 functioning as a vessel is detected. In addition, indoor heat exchange thermistor 1
Numeral 8 is attached to the indoor heat exchanger 7, and detects, as a heat exchange temperature, an evaporation temperature of the indoor heat exchanger 7 functioning as an evaporator during the cooling operation, and an indoor heat exchange functioning as a condenser during the heating operation. The condensation temperature of the vessel 7 is detected. further,
The outdoor temperature thermistor 19 is arranged at an appropriate place of the outdoor unit 2 to detect an outdoor temperature, and the indoor temperature thermistor 20 is arranged at an appropriate place of the indoor unit 3 to detect an indoor temperature.
【0022】また、上記制御部16には、図示しない操
作手段からの操作信号が入力され、この操作信号によっ
て空気調和装置1の運転モードが決定される。運転モー
ドとは、空調運転の開始及び停止、冷房運転と暖房運転
の切換え、設定温度、風量等である。操作手段は、室内
機3に接続された操作パネルや、リモートコントロール
装置(リモコンと略称)などで実現される。さらに、制
御部16には、図示しない報知手段が接続されており、
この報知手段を作動させることによってユーザに空気調
和装置1の運転状況を報知する。運転状況とは、上述し
た運転モードの他に、エラー情報などが該当する。この
エラー情報の中には、後述するガス欠状態であることも
含まれている。報知手段は、上記操作手段に設けられた
表示パネルや、室内機3に設けられたランプやアラーム
音発生回路などで実現される。
An operation signal from an operation means (not shown) is input to the control unit 16, and the operation mode of the air conditioner 1 is determined by the operation signal. The operation mode includes start and stop of an air-conditioning operation, switching between a cooling operation and a heating operation, a set temperature, an air volume, and the like. The operation means is realized by an operation panel connected to the indoor unit 3, a remote control device (abbreviated as a remote control), or the like. Further, a notifying unit (not shown) is connected to the control unit 16.
By operating this notification means, the user is notified of the operating condition of the air conditioner 1. The operation status corresponds to error information and the like in addition to the operation mode described above. The error information includes a gas-out state described later. The notification unit is realized by a display panel provided in the operation unit, a lamp and an alarm sound generation circuit provided in the indoor unit 3 and the like.
【0023】このような空気調和装置1では、リモコン
等の操作手段からの指示に基づいて、冷房運転又は暖房
運転が可能である。冷房運転を行う場合には、四路切換
弁8を図1に示す実線方向に切り換えて、冷媒を圧縮機
4から順に室外熱交換器5、キャピラリチューブ6、室
内熱交換器7と流通させ、室外熱交換器5を凝縮器とし
て機能させると共に、室内熱交換器7を蒸発器として機
能させる。そして、室内熱交換器7で吸収した熱量を冷
媒を介して室外に放出することによって、室内の温度を
下げて冷房を行う。一方、暖房運転を行う場合には、四
路切換弁8を図1に示す破線方向に切り換えて、冷媒を
上記冷房運転時とは逆方向に循環させ、室外熱交換器5
を蒸発器として機能させると共に、室内熱交換器7を凝
縮器として機能させる。そして、室外熱交換器5で吸収
した熱量を冷媒を介して室内に放出することによって、
室内の温度を上昇させて暖房を行う。
In such an air conditioner 1, a cooling operation or a heating operation can be performed based on an instruction from operation means such as a remote controller. When performing the cooling operation, the four-way switching valve 8 is switched in the solid line direction shown in FIG. 1 to flow the refrigerant from the compressor 4 to the outdoor heat exchanger 5, the capillary tube 6, and the indoor heat exchanger 7 in order. The outdoor heat exchanger 5 functions as a condenser, and the indoor heat exchanger 7 functions as an evaporator. Then, by discharging the heat absorbed by the indoor heat exchanger 7 to the outside of the room via the refrigerant, the temperature in the room is lowered to perform cooling. On the other hand, when performing the heating operation, the four-way switching valve 8 is switched in the direction of the dashed line shown in FIG. 1 to circulate the refrigerant in the direction opposite to that in the cooling operation.
Function as an evaporator, and the indoor heat exchanger 7 functions as a condenser. Then, by releasing the amount of heat absorbed by the outdoor heat exchanger 5 into the room through the refrigerant,
Heating is performed by increasing the indoor temperature.
【0024】従って、冷房運転時には室内熱交サーミス
タ18が、暖房運転時には室外熱交サーミスタ17が、
それぞれ蒸発温度検出手段となり、また冷房運転時には
室外熱交サーミスタ17が、暖房運転時には室内熱交サ
ーミスタ18が、それぞれ凝縮温度検出手段となる。
尚、室外温度サーミスタ19及び室内温度サーミスタ2
0は、共に周囲温度検出手段となる。
Therefore, the indoor heat exchange thermistor 18 during the cooling operation, the outdoor heat exchange thermistor 17 during the heating operation,
The outdoor heat exchange thermistor 17 during cooling operation and the indoor heat exchange thermistor 18 during heating operation respectively serve as condensation temperature detection means.
The outdoor temperature thermistor 19 and the indoor temperature thermistor 2
0 both serve as ambient temperature detecting means.
【0025】図2は、空気調和装置1の圧縮機4の制御
状態を示すタイムチャートであり、図3は空気調和装置
1の制御動作を示すフローチャートである。尚、図面に
おいて、周波数は「Hz」と略記する。ユーザがリモコ
ン等の操作手段を操作して空調運転の開始を指示する
と、制御が開始される。空調運転の種類は、冷房であっ
ても暖房であってもよい。
FIG. 2 is a time chart showing a control state of the compressor 4 of the air conditioner 1, and FIG. 3 is a flowchart showing a control operation of the air conditioner 1. In the drawings, the frequency is abbreviated as “Hz”. When the user operates an operation unit such as a remote controller to instruct the start of the air conditioning operation, the control is started. The type of the air-conditioning operation may be cooling or heating.
【0026】図2の時刻t0に運転開始が指示される
と、ステップS1では圧縮機4を始動させ、ステップS
2ではタイマTGK1をスタートさせる。尚、以下の説
明では、タイマを示す参照符号は、そのタイマの計測時
間を示す場合もある。
When start of operation is instructed at time t0 in FIG. 2, the compressor 4 is started in step S1, and
At 2, the timer TGK1 is started. In the following description, a reference numeral indicating a timer may indicate a measurement time of the timer.
【0027】ステップS3では、圧縮機4の目標運転周
波数が基準周波数FGK1未満であるか否かを判断す
る。判断が肯定であれば、ステップS4に進み、目標運
転周波数をFGK1に設定する。これは、本来の目標運
転周波数(ユーザが入力する設定温度等によって決定さ
れる。)が低すぎると、熱交換器5、7の熱交温度が低
く、周囲温度との差があまりつかず、誤検出のおそれが
あるので、充分な温度差が生じるようにするためであ
る。従って、本来の目標運転周波数がFGK1未満の場
合は、図2で実線で示すように、運転周波数はFGK1
まで上昇させる。一方、本来の目標運転数がFGK1以
上の場合は、図2で一点鎖線及び破線で示すように、本
来の目標運転周波数まで上昇させる。
In step S3, it is determined whether or not the target operating frequency of the compressor 4 is lower than the reference frequency FGK1. If the determination is affirmative, the process proceeds to step S4, where the target operation frequency is set to FGK1. This is because when the original target operating frequency (determined by the set temperature input by the user, etc.) is too low, the heat exchange temperature of the heat exchangers 5, 7 is low, and there is not much difference from the ambient temperature. This is to ensure that there is a sufficient temperature difference due to the possibility of erroneous detection. Therefore, when the original target operating frequency is lower than FGK1, as shown by the solid line in FIG.
Up to On the other hand, when the original target operation number is FGK1 or more, the frequency is increased to the original target operation frequency as shown by a dashed line and a broken line in FIG.
【0028】上記ステップS3での判断が否定の場合又
はステップS4の処理後は、ステップS5に進む。ステ
ップS5では、3つの条件、、が基準時間TGH
ANT1(<TGK1)にわたって継続して成立したか
否かが判断される。3つの条件とは、以下のとおりであ
る。
If the determination in step S3 is negative or after the processing in step S4, the process proceeds to step S5. In step S5, three conditions, the reference time TGH
It is determined whether or not ANT1 (<TGK1) is continuously established. The three conditions are as follows.
【0029】条件:圧縮機4が運転中であること 条件:|室内温度サーミスタ20の温度DA−室内熱
交サーミスタ18の温度DC|<Δ1 条件:|室外温度サーミスタ19の温度DOA−室外
熱交サーミスタ17の温度DE|<Δ2 ここで、Δ1、Δ2は共に定数であり、例えば4℃に選
ばれている。
Condition: Compressor 4 is operating Condition: | temperature DA of indoor temperature thermistor 20-temperature DC of indoor heat exchange thermistor 18 | <Δ1 Condition: | temperature DOA of outdoor temperature thermistor 19-heat exchange of outdoor The temperature DE | <Δ2 of the thermistor 17 Here, Δ1 and Δ2 are both constants, for example, 4 ° C.
【0030】上記の3つの条件、、が基準時間T
GHANT1にわたって継続して成立した場合は、圧縮
機4が比較的高い周波数(高い圧縮能力)で運転されて
おり、熱交換量も多くなければならないにもかかわら
ず、熱交換器とその周囲温度との差が小さい状態であ
り、ガス欠状態であると判断することができる。そこ
で、ステップS5での判断が肯定であれば、時間TGK
1の経過前であっても、ステップS7以降の処理に進
み、判断に誤りがないことを確認するために、圧縮機4
の運転周波数をさらに上昇させて、上述と同様の制御を
行う。尚、図2のタイムチャートでは、時間TGK1が
経過した時刻t1において、ステップS5の判断が肯定
となった場合を示している。
The above three conditions correspond to the reference time T
If the operation is continuously performed over GHANT1, the compressor 4 is operated at a relatively high frequency (high compression capacity) and the heat exchange amount must be large, but the heat exchanger and its ambient temperature and Is small, and it can be determined that there is no gas. Therefore, if the determination in step S5 is affirmative, the time TGK
Even before the lapse of 1, the processing proceeds to the processing after step S7, and in order to confirm that there is no error in the determination, the compressor 4
And the same control as described above is performed. Note that the time chart of FIG. 2 illustrates a case where the determination in step S5 is positive at time t1 when the time TGK1 has elapsed.
【0031】一方、ステップS5の判断が否定であれ
ば、ステップS6に進み、時間TGK1(2〜3分に選
ばれる)が経過するまでは、ステップS3〜S5の処理
を繰返し、時間TGK1が経過した時点(時刻t1)で
通常制御に移行する。通常制御とは、本来の目標運転周
波数による空調運転のことである。尚、ステップS2〜
S6の処理が1回目のガス欠検出運転である。
On the other hand, if the determination in step S5 is negative, the process proceeds to step S6, and the processing in steps S3 to S5 is repeated until the time TGK1 (chosen from two to three minutes) elapses, and the time TGK1 elapses. At this point (time t1), the control shifts to the normal control. The normal control is an air-conditioning operation at an original target operation frequency. Steps S2 to S2
The process of S6 is the first gas-out detection operation.
【0032】次に、2回目のガス欠検出運転について説
明する。図2の時刻t1において、ステップS7ではタ
イマTGK2をスタートさせる。続いて、ステップS8
では、圧縮機4の目標運転周波数が基準周波数FGK2
(>FGK1)未満であるか否かを判断する。判断が肯
定であれば、ステップS9に進み、上記ステップS4と
同じ理由により、目標運転周波数をFGK2に設定す
る。従って、本来の目標運転周波数がFGK2未満の場
合は、図2で実線及び一点鎖線で示すように、運転周波
数をFGK2まで上昇させる。一方、本来の目標運転周
波数がFGK2以上の場合は、図2で破線で示すよう
に、本来の目標運転周波数のまま維持する。
Next, the second gas-out detection operation will be described. At time t1 in FIG. 2, the timer TGK2 is started in step S7. Subsequently, step S8
, The target operating frequency of the compressor 4 is the reference frequency FGK2
It is determined whether it is less than (> FGK1). If the determination is affirmative, the process proceeds to step S9, and the target operation frequency is set to FGK2 for the same reason as in step S4. Therefore, when the original target operation frequency is lower than FGK2, the operation frequency is increased to FGK2 as shown by the solid line and the dashed line in FIG. On the other hand, when the original target operation frequency is equal to or higher than FGK2, the original target operation frequency is maintained as shown by the broken line in FIG.
【0033】上記ステップS8での判断が否定の場合又
はステップS9の処理後は、ステップS10に進む。ス
テップS10では、3つの条件、、が基準時間T
GHANT2(<TGK2)にわたって継続して成立し
たか否かが判断される。3つの条件とは、以下のとおり
である。
When the determination in step S8 is negative or after the processing in step S9, the process proceeds to step S10. In step S10, three conditions, the reference time T
It is determined whether or not GHANT2 (<TGK2) is continuously established. The three conditions are as follows.
【0034】条件:圧縮機4が運転中であること 条件:|室内温度サーミスタ20の温度DA−室内熱
交サーミスタ18の温度DC|<Δ3 条件:|室外温度サーミスタ19の温度DOA−室外
熱交サーミスタ17の温度DE|<Δ4 ここで、Δ3、Δ4は共に定数であり、例えば4℃に選
ばれている。
Condition: Compressor 4 is operating Condition: | temperature DA of indoor temperature thermistor 20-temperature DC of indoor heat exchange thermistor 18 | <Δ3 Condition: | temperature DOA of outdoor temperature thermistor 19-heat exchange of outdoor The temperature DE | <Δ4 of the thermistor 17 Here, both Δ3 and Δ4 are constants, for example, 4 ° C. is selected.
【0035】上記の3つの条件、、が基準時間T
GHANT2にわたって継続して成立した場合は、上記
の3つの条件〜の場合と同様に、ガス欠状態である
と判断することができる。そこで、ステップS10での
判断が肯定であれば、ステップS12に進み、ガス欠状
態であるとして圧縮機4を停止させる。
The above three conditions correspond to the reference time T
When the condition is continuously satisfied over GHANT2, it can be determined that the gas is out of gas, as in the above three conditions. Therefore, if the determination in step S10 is affirmative, the process proceeds to step S12, and the compressor 4 is stopped assuming that there is a gas shortage.
【0036】一方、ステップS10の判断が否定であれ
ば、ステップS11に進み、時間TGK2(2〜3分に
選ばれる)が経過するまではステップS8〜S10の処
理を繰返し、時間TGK2が経過した時点(時刻t2)
で通常制御に移行する。即ち、低い運転周波数でのガス
欠検出運転においてガス欠状態であると判断されたとき
でも、高い運転周波数でのガス欠検出運転において異常
なしとされたときは、ガス有りと判断するようにしてい
る。尚、図2のタイムチャートでは、2回目のガス欠検
出運転では異常がなかった場合を示している。
On the other hand, if the determination in step S10 is negative, the process proceeds to step S11, and the processing in steps S8 to S10 is repeated until the time TGK2 (chosen from two to three minutes) elapses, and the time TGK2 elapses. Time point (time t2)
Shifts to normal control. That is, even when it is determined that there is a gas deficiency state in the gas deficiency detection operation at the low operation frequency, when it is determined that there is no abnormality in the gas deficiency detection operation at the high operation frequency, it is determined that there is gas. I have. Note that the time chart of FIG. 2 shows a case where there is no abnormality in the second gas-out detection operation.
【0037】ところで、ステップS12では圧縮機4が
停止されることになるが、この時点ではユーザには何ら
報知されていない。これは、誤検出のおそれがあるから
である。そのため、再度ユーザが操作手段から運転開始
を指示すると、図3の制御が再度実行される。このとき
に、やはりガス欠状態であると判断された場合は、当然
圧縮機4は停止される。従って、ユーザは何回も運転開
始を指示し、そのたびに圧縮機4は一定時間運転した後
に停止することになり、ユーザは無駄な操作を何回も繰
り返すことになる。そこで、ガス欠検出運転による圧縮
機4の停止を所定の期間内に複数回行ったときは、明ら
かにガス欠状態であると考えられるので、空気調和装置
1をシステムダウンさせると共に、上記報知手段を作動
させてガス欠状態であることをユーザに報知する。尚シ
ステムダウンとは、操作手段からの運転開始の指示を無
効とし、圧縮機4の停止状態を維持することを意味す
る。
By the way, in step S12, the compressor 4 is stopped, but the user is not notified at this time. This is because there is a risk of erroneous detection. Therefore, when the user again instructs the start of operation from the operation means, the control of FIG. 3 is executed again. At this time, if it is determined that the gas is out of gas, the compressor 4 is naturally stopped. Therefore, the user instructs the start of the operation many times, and each time the compressor 4 operates for a certain period of time and then stops, and the user repeats useless operations many times. Therefore, when the compressor 4 is stopped a plurality of times during the predetermined period of time due to the gas shortage detection operation, it is apparently considered to be in the gas shortage state. Is operated to notify the user of the lack of gas. The system down means that the operation start instruction from the operation means is invalidated and the compressor 4 is kept stopped.
【0038】また、上述したガス欠検出運転中に、圧縮
機4に対して運転周波数の上下限制限をかける必要が生
じたときは、上下限制限に従って圧縮機4を運転する。
そして、上限制限をかける必要が生じたときは、ガス有
りと判断し、ガス欠検出運転を終了し、上限制限を優先
する。これは、上限制限は圧縮機4の吐出圧力が非常に
高いときや、制御電流が非常に大きいときなどに、圧縮
機4の損傷を防止するために実行するものであり、上限
制限をかける必要があるときは、ガス欠状態であるとは
到底考えられないからである。
When it becomes necessary to place upper and lower limits on the operating frequency of the compressor 4 during the above-mentioned gas shortage detection operation, the compressor 4 is operated according to the upper and lower limits.
Then, when it becomes necessary to apply the upper limit, it is determined that there is gas, and the gas-out detection operation is terminated, and the upper limit is prioritized. The upper limit is executed to prevent damage to the compressor 4 when the discharge pressure of the compressor 4 is extremely high or when the control current is extremely large. This is because it is almost impossible to assume that there is a gas shortage state.
【0039】以上のように本実施の形態によれば、空調
制御に使用している4つのサーミスタ17、18、1
9、20を利用してガス欠状態であるか否かを判断する
ので、ガス欠状態を検出するための専用部品を用いる必
要がなく、製品コストを低減することができる。
As described above, according to the present embodiment, the four thermistors 17, 18, 1
Since it is determined whether or not there is a gas deficiency state by using the components 9 and 20, it is not necessary to use a dedicated component for detecting the gas deficiency state, and the product cost can be reduced.
【0040】また、ガス欠状態でなければ所定の基準値
Δ1、Δ2、Δ3、Δ4以上の温度差が確実に生じるよ
うに、予め定める基準周波数FGK1、FGK2以上で
圧縮機4を運転させるので、誤検出を防止することがで
きる。
Further, the compressor 4 is operated at a predetermined reference frequency FGK1, FGK2 or higher so that a temperature difference of more than the predetermined reference values Δ1, Δ2, Δ3, Δ4 surely occurs unless the gas is in a gas shortage state. False detection can be prevented.
【0041】さらに、異なる基準周波数FGK1、FG
K2で2回のガス欠検出運転を行い、かつ、蒸発器側と
凝縮器側の2つの温度差を求めて判断するので、誤検出
を防止して、信頼性の高い判断を行うことができる。
尚、制御部16の負担を軽減する観点から、1つ基準周
波数で1回だけガス欠検出運転を行うようにしてもよい
し、また蒸発器側と凝縮器側のいずれか一方の温度差だ
けを求めて判断するようにしてもよい。
Furthermore, different reference frequencies FGK1, FG
Since the gas depletion detection operation is performed twice at K2 and the temperature difference between the evaporator side and the condenser side is determined and determined, erroneous detection can be prevented and a highly reliable determination can be performed. .
In addition, from the viewpoint of reducing the load on the control unit 16, the gas depletion detection operation may be performed only once at one reference frequency, or only the temperature difference between the evaporator side and the condenser side may be performed. May be determined.
【0042】また、圧縮機4に対して上限制限をかける
必要があるときは、ガスありと判断してガス欠検出運転
を終了し、上限制限を優先するので、圧縮機4の破損を
防止して安全に空調運転を行うことができる。
When it is necessary to place an upper limit on the compressor 4, it is determined that there is gas, and the operation for detecting the absence of gas is terminated, and the upper limit is prioritized. Air-conditioning operation can be performed safely.
【0043】さらに、ガス欠検出運転による圧縮機4の
停止が複数回行われたときに空気調和装置1はシステム
ダウンし、ガス欠状態であることをユーザに報知するの
で、運転開始直後の不安定な状態に起因する誤検出を防
止することができ、信頼性が向上する。また、ユーザが
何回も運転開始の指示を繰り返すことが防止され、使用
上の利便性が向上する。
Further, when the compressor 4 is stopped a plurality of times due to the lack of gas detection operation, the system of the air conditioner 1 is shut down, and the user is notified of the lack of gas. Erroneous detection due to a stable state can be prevented, and reliability is improved. Further, the user is prevented from repeating the operation start instruction many times, and the convenience in use is improved.
【0044】[0044]
【発明の効果】以上のように請求項1及び請求項2の空
気調和装置によれば、空調制御に使用している構成を利
用してガス欠状態であるか否かを判断するので、ガス欠
状態を検出するための専用部品を用いる必要がなく、製
品コストを低減することができる。また、ガス欠状態で
なければ所定の基準値以上の温度差が確実に生じるよう
に、予め定める基準周波数以上で圧縮機を運転させるこ
とで誤検出を防止できる。しかも上記空気調和装置にれ
ば、低い基準周波数でのガス欠検出運転に引続いて、高
い基準周波数でのガス欠検出運転を行うので、運転開始
直後の不安定な状態に起因する誤検出を防止することが
でき、信頼性が向上する。
As described above, according to the air conditioners of the first and second aspects, it is determined whether or not there is a gas shortage by utilizing the configuration used for air conditioning control. There is no need to use a dedicated component for detecting a missing state, and the product cost can be reduced. In addition, by operating the compressor at a predetermined reference frequency or higher so that a temperature difference equal to or higher than a predetermined reference value surely occurs unless the gas is out of gas, erroneous detection can be prevented. And the above air conditioner
For example, following an out-of-gas detection operation at a low reference frequency,
Starts operation due to running out of gas at low reference frequency
It is possible to prevent false detection due to the unstable state immediately after
And reliability is improved.
【0045】また請求項3の空気調和装置によれば、蒸
発器側又は凝縮器側のいずれか一方の温度差だけでな
く、蒸発器側と凝縮器側との両方の温度差を求めてガス
欠状態であるか否かを判断するようにしたので、誤検出
の発生が低減し、信頼性が向上する。
According to the air conditioner of the third aspect, not only the temperature difference on either the evaporator side or the condenser side but also the temperature difference on both the evaporator side and the condenser side are obtained. Since it is determined whether or not there is a missing state, occurrence of erroneous detection is reduced, and reliability is improved.
【0046】[0046]
【0047】 請求項の空気調和装置によれば、圧縮
機に対して上限制限をかける必要があるときは、ガス有
りと判断して上限制限を優先するので、圧縮機の破損を
防止して安全に空調運転を行うことができる。
According to the air conditioner of the fourth aspect , when it is necessary to place an upper limit on the compressor, it is determined that there is gas and the upper limit is given priority, so that damage to the compressor is prevented. Air conditioning operation can be performed safely.
【0048】 請求項の空気調和装置によれば、ガス
欠検出運転による圧縮機の停止が複数回行われたときに
システムダウンさせるので、運転開始直後の不安定な状
態に起因する誤検出を防止することができ、信頼性が向
上する。また、ユーザが何回も運転開始の操作を繰り返
すことが防止され、使用上の利便性が向上する。
According to the air conditioner of the fifth aspect, the system is shut down when the compressor is stopped a plurality of times due to the lack of gas detection operation, so that an erroneous detection due to an unstable state immediately after the start of operation is performed. Can be prevented and reliability is improved. In addition, the user is prevented from repeating the operation of starting operation many times, and the convenience in use is improved.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の一実施形態である空気調和装置の概略
的構成を示す構成図である。
FIG. 1 is a configuration diagram illustrating a schematic configuration of an air-conditioning apparatus according to an embodiment of the present invention.
【図2】上記空気調和装置の制御状態を示すタイムチャ
ートである。
FIG. 2 is a time chart showing a control state of the air conditioner.
【図3】上記空気調和装置の制御手順を示すフローチャ
ートである。
FIG. 3 is a flowchart showing a control procedure of the air conditioner.
【符号の説明】[Explanation of symbols]
1 空気調和装置 2 室外機 3 室内機 4 圧縮機 5 室外熱交換器 6 キャピラリチューブ 7 室内熱交換器 15 インバータ 16 制御部 17 室外熱交サーミスタ 18 室内熱交サーミスタ 19 室外温度サーミスタ 20 室内温度サーミスタ DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Outdoor unit 3 Indoor unit 4 Compressor 5 Outdoor heat exchanger 6 Capillary tube 7 Indoor heat exchanger 15 Inverter 16 Control part 17 Outdoor heat exchange thermistor 18 Indoor heat exchange thermistor 19 Outdoor temperature thermistor 20 Indoor temperature thermistor
フロントページの続き (56)参考文献 特開 平8−226732(JP,A) 特開 平1−107070(JP,A) 特開 平8−14717(JP,A) 特開 平7−234045(JP,A) 特開 平7−208838(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 49/02 Continuation of the front page (56) References JP-A-8-226732 (JP, A) JP-A-1-107070 (JP, A) JP-A-8-14717 (JP, A) JP-A-7-234045 (JP) , A) JP-A-7-208838 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 49/02

Claims (5)

    (57)【特許請求の範囲】(57) [Claims]
  1. 【請求項1】 運転周波数が変更可能な圧縮機(4)、
    凝縮器(5)、減圧機構(6)、蒸発器(7)を順に接
    続して冷媒循環回路を構成し、上記蒸発器(7)の蒸発
    温度を検出する蒸発温度検出手段(18)と、上記蒸発
    器(7)の周囲の温度を検出する周囲温度検出手段(2
    0)と、空調運転の開始を指示するためにユーザによっ
    て操作される操作手段と、上記冷媒循環回路を制御して
    空調運転を行う制御手段(16)とを備え、上記制御手
    段(16)は、上記操作手段によって空調運転の開始が
    指示されると、予め定める基準周波数(FGK1)以上
    で上記圧縮機(4)を運転させると共に、上記蒸発器
    (7)の蒸発温度とその周囲温度との差を求めるガス欠
    検出運転を行い、求めた温度差が所定の基準値未満であ
    る状態が所定の時間継続したときは、さらに上記基準周
    波数(FGK1)より高い第2の基準周波数(FGK
    2)以上でガス欠検出運転を行い、求めた温度差が所定
    の基準値未満である状態が所定の時間継続したときは、
    ガス欠状態であると判断し、上記圧縮機(4)を停止さ
    せることを特徴とする空気調和装置。
    A compressor having a variable operating frequency;
    A condenser (5), a pressure reducing mechanism (6), and an evaporator (7) are sequentially connected to form a refrigerant circuit, and an evaporating temperature detecting means (18) for detecting an evaporating temperature of the evaporator (7); Ambient temperature detecting means (2) for detecting the temperature around the evaporator (7)
    0), operating means operated by a user to instruct the start of air-conditioning operation, and control means (16) for controlling the refrigerant circuit to perform air-conditioning operation, wherein the control means (16) When the start of the air conditioning operation is instructed by the operating means, the compressor (4) is operated at a frequency equal to or higher than a predetermined reference frequency (FGK1), and the temperature between the evaporation temperature of the evaporator (7) and the ambient temperature is determined. When a gas shortage detection operation for obtaining the difference is performed and the state in which the obtained temperature difference is less than the predetermined reference value has continued for a predetermined time, the above-described reference cycle is further performed.
    The second reference frequency (FGK) higher than the wave number (FGK1)
    2) Perform the gas-out detection operation as described above, and find the determined temperature difference.
    If the state of less than the reference value has continued for a predetermined time,
    An air conditioner characterized by judging that there is no gas, and stopping the compressor (4).
  2. 【請求項2】 運転周波数が変更可能な圧縮機(4)、
    凝縮器(5)、減圧機構(6)、蒸発器(7)を順に接
    続して冷媒循環回路を構成し、上記凝縮器(5)の凝縮
    温度を検出する凝縮温度検出手段(17)と、上記凝縮
    器(5)の周囲の温度を検出する周囲温度検出手段(1
    9)と、空調運転の開始を指示するためにユーザによっ
    て操作される操作手段と、上記冷媒循環回路を制御して
    空調運転を行う制御手段(16)とを備え、上記制御手
    段(16)は、上記操作手段によって空調運転の開始が
    指示されると、予め定める基準周波数(FGK1)以上
    で上記圧縮機(4)を運転させると共に、上記凝縮器
    (5)の凝縮温度とその周囲温度との差を求めるガス欠
    検出運転を行い、求めた温度差が所定の基準値未満であ
    る状態が所定の時間継続したときは、さらに上記基準周
    波数(FGK1)より高い第2の基準周波数(FGK
    2)以上でガス欠検出運転を行い、求めた温度差が所定
    の基準値未満である状態が所定の時間継続したときは、
    ガス欠状態であると判断し、上記圧縮機(4)を停止さ
    せることを特徴とする空気調和装置。
    2. A compressor (4) whose operating frequency is variable.
    A condenser (5), a pressure reducing mechanism (6), and an evaporator (7) are connected in order to form a refrigerant circuit, and a condensation temperature detecting means (17) for detecting a condensation temperature of the condenser (5); Ambient temperature detecting means (1) for detecting the temperature around the condenser (5)
    9), operating means operated by a user to instruct the start of air-conditioning operation, and control means (16) for controlling the refrigerant circulation circuit to perform air-conditioning operation, wherein the control means (16) When the start of the air conditioning operation is instructed by the operation means, the compressor (4) is operated at a predetermined reference frequency (FGK1) or higher, and the condensing temperature of the condenser (5) and its surrounding temperature are controlled. When a gas shortage detection operation for obtaining the difference is performed and the state in which the obtained temperature difference is less than the predetermined reference value has continued for a predetermined time, the above-described reference cycle is further performed.
    The second reference frequency (FGK) higher than the wave number (FGK1)
    2) Perform the gas-out detection operation as described above, and find the determined temperature difference.
    If the state of less than the reference value has continued for a predetermined time,
    An air conditioner characterized by judging that there is no gas, and stopping the compressor (4).
  3. 【請求項3】 請求項1のガス欠検出運転と、請求項2
    のガス欠検出運転とを同時に行い、求めた2つの温度差
    が共に所定の基準値未満である状態が上記所定の時間継
    続したときは、ガス欠状態であると判断し、上記圧縮機
    (4)を停止させることを特徴とする空気調和装置。
    3. An operation for detecting a gas shortage according to claim 1, and a second operation.
    Is performed at the same time, and when the state where both of the obtained two temperature differences are less than the predetermined reference value continues for the predetermined time, it is determined that the gas is low and the compressor (4) B) shutting down the air conditioner.
  4. 【請求項4】 上記制御手段(16)は、上記圧縮機
    (4)の運転周波数を上記基準周波数(FGK1)(F
    GK2)まで上昇させる間に、上記圧縮機(4)の運転
    状態に対応して運転周波数の上昇を規制する上限制限を
    かける必要が生じたときは、ガス有りと判断して上記ガ
    ス欠検出運転を終了し、上記上限制限の下で空調運転を
    行うことを特徴とする請求項1〜請求項のいずれかの
    空気調和装置。
    4. The control means (16) changes the operating frequency of the compressor (4) to the reference frequency (FGK1) (FK1).
    If it is necessary to apply an upper limit for restricting an increase in the operating frequency in accordance with the operating state of the compressor (4) while the compressor is running up to GK2), it is determined that there is gas, and the gas-out detection operation is performed. The air conditioner according to any one of claims 1 to 3 , wherein the air conditioning operation is performed under the upper limit.
  5. 【請求項5】 上記制御手段(16)は、所定の期間内
    に、上記ガス欠検出運転による圧縮機(4)の停止を複
    数回行ったときは、上記操作手段による運転開始の指示
    を無効とすると共に、上記圧縮機(4)の停止状態を維
    持することを特徴とする請求項1〜請求項のいずれか
    の空気調和装置。
    5. The control means (16) invalidates an operation start instruction by the operation means when the compressor (4) is stopped a plurality of times by the gas-out detection operation within a predetermined period. with the any of the air conditioning apparatus of claim 1 to claim 4, characterized in that to maintain the stopped state of the compressor (4).
JP29153998A 1998-09-28 1998-09-28 Air conditioner Expired - Fee Related JP3166731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29153998A JP3166731B2 (en) 1998-09-28 1998-09-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29153998A JP3166731B2 (en) 1998-09-28 1998-09-28 Air conditioner

Publications (2)

Publication Number Publication Date
JP2000105033A JP2000105033A (en) 2000-04-11
JP3166731B2 true JP3166731B2 (en) 2001-05-14

Family

ID=17770225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29153998A Expired - Fee Related JP3166731B2 (en) 1998-09-28 1998-09-28 Air conditioner

Country Status (1)

Country Link
JP (1) JP3166731B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589218A (en) * 2011-11-30 2012-07-18 青岛海尔空调电子有限公司 Method for monitoring detachment of exhaust temperature sensor of air conditioning compressor
CN103424211A (en) * 2012-05-17 2013-12-04 珠海格力电器股份有限公司 Method and device for detecting thermal bulb of compressor and outdoor unit

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474329B1 (en) * 2002-05-07 2005-03-08 엘지전자 주식회사 Compressor driving control method of refrigerator
JP2004162979A (en) * 2002-11-12 2004-06-10 Daikin Ind Ltd Air conditioner
JP4606394B2 (en) * 2006-08-30 2011-01-05 シャープ株式会社 Refrigerant leak detection method, refrigerant leak detection device, and air conditioner
JP5070914B2 (en) * 2007-04-12 2012-11-14 パナソニック株式会社 Protection control device for refrigeration cycle equipment
JP2014089007A (en) * 2012-10-31 2014-05-15 Daikin Ind Ltd Air conditioner
JP6111665B2 (en) * 2012-12-28 2017-04-12 ダイキン工業株式会社 Refrigeration equipment
JP6061819B2 (en) * 2013-08-29 2017-01-18 三菱電機株式会社 Air conditioner
DE102017204122B4 (en) * 2017-03-13 2020-07-16 Audi Ag Method for operating a refrigerant circuit for a vehicle air conditioning system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2564328B2 (en) * 1987-10-21 1996-12-18 株式会社日立製作所 Refrigerant shortage detection device for air conditioner
JP3219583B2 (en) * 1994-01-18 2001-10-15 三菱重工業株式会社 Gas conditioner for air conditioner
JPH07234045A (en) * 1994-02-24 1995-09-05 Matsushita Electric Ind Co Ltd Air conditioner
JPH07234044A (en) * 1994-02-24 1995-09-05 Matsushita Electric Ind Co Ltd Controlling device for protecting compressor of air conditioner
JPH0814717A (en) * 1994-06-29 1996-01-19 Mitsubishi Heavy Ind Ltd Refrigerant quantity detector for refrigerating cycle
JPH08128765A (en) * 1994-10-31 1996-05-21 Matsushita Electric Ind Co Ltd Compressor protective controller for air conditioner
JPH08226732A (en) * 1995-02-20 1996-09-03 Matsushita Electric Ind Co Ltd Air conditioning equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589218A (en) * 2011-11-30 2012-07-18 青岛海尔空调电子有限公司 Method for monitoring detachment of exhaust temperature sensor of air conditioning compressor
CN102589218B (en) * 2011-11-30 2014-08-06 青岛海尔空调电子有限公司 Method for monitoring detachment of exhaust temperature sensor of air conditioning compressor
CN103424211A (en) * 2012-05-17 2013-12-04 珠海格力电器股份有限公司 Method and device for detecting thermal bulb of compressor and outdoor unit

Also Published As

Publication number Publication date
JP2000105033A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
JP3166731B2 (en) Air conditioner
JP2004162979A (en) Air conditioner
JP3199527B2 (en) Refrigeration cycle equipment
JPH08261542A (en) Air conditioner
US20200309434A1 (en) Diagnostic mode of operation to detect refrigerant leaks in a refrigeration circuit
JP3448432B2 (en) Control device for air conditioner
JPH07180933A (en) Refrigerating cycle device
JP3868265B2 (en) Air conditioner
JPH07103583A (en) Air-conditioning equipment
JP3589203B2 (en) Air conditioner
JP3438551B2 (en) Air conditioner
JP3329603B2 (en) Air conditioner
JPH07234044A (en) Controlling device for protecting compressor of air conditioner
JPH05256543A (en) Operational failure detector for air conditioner
JPH09159293A (en) Compressor protection controller for air conditioner
JP3232852B2 (en) Superheat control device for air conditioner
JPH1019344A (en) Air conditioner
JP3218180B2 (en) Air conditioner
JPH08261543A (en) Air conditioner
JP3343400B2 (en) Control device for air conditioner
JP3534635B2 (en) Inside / outside separation type air conditioner
WO2021074991A1 (en) Air conditioning apparatus
JP3445904B2 (en) Air conditioner monitoring system equipment
JP3436962B2 (en) Refrigeration cycle device
JP3594358B2 (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080309

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees