JPH028231B2 - - Google Patents

Info

Publication number
JPH028231B2
JPH028231B2 JP55088116A JP8811680A JPH028231B2 JP H028231 B2 JPH028231 B2 JP H028231B2 JP 55088116 A JP55088116 A JP 55088116A JP 8811680 A JP8811680 A JP 8811680A JP H028231 B2 JPH028231 B2 JP H028231B2
Authority
JP
Japan
Prior art keywords
relay
control
temperature difference
indoor units
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55088116A
Other languages
Japanese (ja)
Other versions
JPS5714159A (en
Inventor
Hiroshi Fujeda
Isamu Okuda
Kenichiro Imasu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8811680A priority Critical patent/JPS5714159A/en
Publication of JPS5714159A publication Critical patent/JPS5714159A/en
Publication of JPH028231B2 publication Critical patent/JPH028231B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は1台の室外ユニツトに複数台の室内ユ
ニツトを接続した空気調和装置に関し、特に冷凍
サイクルの制御に用いる絞り装置の制御に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air conditioner in which a plurality of indoor units are connected to one outdoor unit, and particularly to control of a diaphragm device used to control a refrigeration cycle.

複数室空調用の空気調和装置としては例えば第
4図に示すようなものがあつた。1は室外ユニツ
トで圧縮機10、熱源側熱交換器11、送風フア
ン12、電磁弁13a,13B、絞り装置14A,
14B、絞り装置制御装置15A,15Bを収納
する。2A,2Bは室内ユニツトで各々利用側熱
交換器20、送風フアン21を収納し、さらに絞
り装置制御装置15A,15Bの入力源として、
利用側熱交換器20の中間部に設けた第1の温度
センサ22A、利用側熱交換器20の出口部に設
けた第2の温度センサ22Bを有する。絞り装置
14A,14Bとしては例えばモータにより弁を
開閉するもの、電気ヒータとバイメタルを組合せ
た弁駆動部を有するものなどがあり、制御装置1
5Aは第1、第2の温度センサ22A,22Bに
より検出する温度の差SH′が所定の値になるよう
に制御する。このような空気調和装置の電気回路
を第5図に示す。3A,3Bは各々室内ユニツト
2A,2Bの電気回路で、内容的には同一なので
3Aについてのみ説明すれば、電源スイツチ3A
1をオンすれば、送風フアン21のモータ21M
に通電される。3A2はサーモスタツトで、サー
モスタツト3A2がオンすると、室外ユニツト1
の電気回路4のリレー40Aがオンし、制御装置
15Aに通電されるとともに電磁弁13Aがオン
し、圧縮機10、送風フアン12用モータ12M
に通電される。リレー40Bは室内ユニツト2B
に対応する室外ユニツト制御用のリレーで、オン
すれば制御装置15Bに通電され、電磁弁13B
がオンし圧縮機10、送風フアン12用モータ1
2Mに通電される。
An example of an air conditioner for air conditioning multiple rooms is the one shown in FIG. 1 is an outdoor unit that includes a compressor 10, a heat source side heat exchanger 11, a blower fan 12, solenoid valves 13a, 13B, a throttle device 14A,
14B and diaphragm control devices 15A and 15B are housed therein. 2A and 2B are indoor units that house a heat exchanger 20 on the user side and a blower fan 21, respectively, and serve as input sources for the throttle device control devices 15A and 15B.
It has a first temperature sensor 22A provided at the intermediate portion of the usage-side heat exchanger 20, and a second temperature sensor 22B provided at the outlet of the usage-side heat exchanger 20. The throttle devices 14A and 14B include, for example, those that open and close valves using a motor, and those that have a valve drive unit that combines an electric heater and a bimetal.
5A controls the temperature difference SH' detected by the first and second temperature sensors 22A and 22B to a predetermined value. The electrical circuit of such an air conditioner is shown in FIG. 3A and 3B are the electric circuits of the indoor units 2A and 2B, respectively, and since they are the same in content, only the power switch 3A will be explained.
1, the motor 21M of the blower fan 21
is energized. 3A2 is a thermostat, and when thermostat 3A2 is turned on, outdoor unit 1 is turned on.
The relay 40A of the electric circuit 4 is turned on, and the control device 15A is energized, and the solenoid valve 13A is turned on, and the motor 12M for the compressor 10 and the blower fan 12 is turned on.
is energized. Relay 40B is indoor unit 2B
This is a relay for controlling the outdoor unit that corresponds to
is turned on and the motor 1 for the compressor 10 and the blower fan 12 is turned on.
2M is energized.

以上のような構成でリレー40Aのみがオンし
ている状態では、冷媒は全て室内ユニツト2Aに
流入し、リレー40A及び40Bがともにオンし
ている状態で、室内ユニツト2A及び2B両者に
冷媒が流入しているときでは、室内ユニツト2A
の冷媒流入量は当然ながら異なり、前者の場合の
流入量Qc1は後者の場合のそれQc2よりも大とな
る。冷媒流入量が大なるときの絞り装置14Aま
たは14Bの単位絞り量の変化に対する温度差
SHLの変化量△SH′Hは冷媒流入量小なるときの
変化量△SH′Lよりも小さい。すなわち、絞り装
置と利用側熱交換器とで形成する冷媒プロセスの
プロセスゲインGpが変化するのである。また冷
媒流入量大なるときの利用側熱交換器の入口出口
圧力差△PHは小なるときの圧力差△PLより大と
なり、したがつて利用側熱交換器の入口出口温度
差△Tは、冷媒流入量大なるときの温度差△T
は、冷媒流入量大なるときの温度差△THの方が
小なるときのそれ△TLよりも大となる。一方温
度差SH′は、過熱度SHとはSH=SH′+△Tとの
関係にある。したがつて△T一定と仮定できる範
囲内では温度差SH′を所定値のSH′Rに保つことに
よつて過熱度SHを冷凍サイクルの最適値SHppt
保つことができる。然るに上述したように△Tが
変化する場合、温度差SH′を一定に保つても、過
熱度SHは冷凍サイクル最適過熱SHpptにはならな
い。
With the above configuration, when only relay 40A is on, all of the refrigerant flows into indoor unit 2A, and when both relays 40A and 40B are on, refrigerant flows into both indoor units 2A and 2B. indoor unit 2A when
Naturally, the refrigerant inflow amounts are different, and the inflow amount Q c1 in the former case is larger than that Q c2 in the latter case. Temperature difference with respect to change in unit throttling amount of throttling device 14A or 14B when refrigerant inflow is large
The amount of change △SH′ H in SH L is smaller than the amount of change △SH′ L when the amount of refrigerant inflow is small. In other words, the process gain G p of the refrigerant process formed by the expansion device and the utilization side heat exchanger changes. Also, the inlet/outlet pressure difference △P H of the user-side heat exchanger when the refrigerant inflow is large is larger than the pressure difference △P L when the refrigerant inflow is small, and therefore the inlet-outlet temperature difference △T of the user-side heat exchanger. is the temperature difference △T when the refrigerant inflow is large
The temperature difference ΔT H when the refrigerant inflow is large is larger than the temperature difference ΔT L when it is small. On the other hand, the temperature difference SH' has a relationship with the degree of superheating SH=SH=SH'+ΔT. Therefore, by keeping the temperature difference SH' at a predetermined value SH' R within a range in which ΔT can be assumed to be constant, the degree of superheating SH can be kept at the optimum value SH ppt for the refrigeration cycle. However, as described above, when ΔT changes, even if the temperature difference SH' is kept constant, the degree of superheating SH will not reach the optimum superheat SH ppt for the refrigeration cycle.

以上述べたように従来の装置では、過熱度SH
を最適値SHpptに保てない。またプロセスゲイン
Gpが変化するため、応答が変化し最適の応答が
得られないといつた欠点があつた。本発明はこの
ような従来装置の欠点を排除し、過熱度SHを常
に最適値SHpptに維持し、さらに常に最適の応答
が得られ、これらによつて最適な冷凍サイクル状
態が常に得られ、結果としてEERが常に最高と
なる空気調和装置を得たものである。
As mentioned above, in conventional equipment, the superheat degree SH
cannot be kept at the optimal value SH ppt . Also process gain
Since G p changes, the response changes and an optimal response cannot be obtained. The present invention eliminates the drawbacks of the conventional device, constantly maintains the superheat degree SH at the optimum value SH ppt , and furthermore, always obtains the optimum response, thereby always obtaining the optimum refrigeration cycle condition. As a result, an air conditioner with consistently highest EER was obtained.

第1図は本発明の一実施例の室外ユニツトの電
気回路図である。第4図の電気回路とはリレー4
0Aのオンオフ信号をCAとして制御回路15
B′に入力し、リレー40Bのオンオフ信号とCB
として制御回路15A′に入力している点が相異
している。もしリレー40Aがオンして、制御装
置15A′が動作している状態で、リレー40B
がオンすると、この信号CBにより制御装置15
A′はその制御パラメータとしての所定温度差
SH′R及び制御ゲインGcを自動的に調節し、△T
及びプロセスゲインGpの変動を補償する。
FIG. 1 is an electrical circuit diagram of an outdoor unit according to an embodiment of the present invention. What is the electrical circuit in Figure 4? Relay 4
Control circuit 15 using 0A on/off signal as CA
B′, relay 40B on/off signal and CB
The difference is that the signal is input to the control circuit 15A' as a signal. If relay 40A is turned on and control device 15A' is operating, relay 40B
When turned on, this signal CB causes the control device 15 to
A′ is the predetermined temperature difference as its control parameter
SH′ R and control gain G c are automatically adjusted, and △T
and compensate for variations in process gain G p .

第2図は上述した制御装置15A′の一実施例
である。15A′1は電源回路で、直流電圧+
Vcc、−Vccを出力する。さらに電源回路15A′1
は、制御パラメータ変更手段としてのリレーA1
を内蔵している。15A′2は制御回路で、第1、
第2の温度センサ22A,22Bとしてのサーミ
スタ22A′,22B′で検出する温度の差SH′=
T2−T1と、低抗A2またはA3で与えられる所
定温度差SH′Rとの差をオペアンプA7で増幅し、
その出力電圧VTに等しい電圧を、絞り装置14
Aとしての熱電膨張弁14A′に印加する。熱電
膨張弁14A′は弁駆動部が電気ヒータとバイメ
タルの組合せにより構成されていて、印加電圧
VTによりその弁開度すなわち絞り量が制御され
る。この制御回路15A′2の動作により、熱電
膨張弁14A′の絞り量を制御して、温度差SH′が
所定値SH′Lと等しくなる。なお制御ゲインGc
Gc1=RA6/RA4、またはGc2=RA6/RA5で与えら
れる。但しRA4,RA5,RA6は各々抵抗A4,A
5,A6の抵抗値である。今リレー40Bがオフ
していて、室内ユニツト2Bに冷媒が流入せず、
冷媒が流入している室内ユニツトが2Aの一台の
みの場合、室内ユニツト2Aの冷媒流入量は比較
的多く、ために△Tが△THと大きくなり、プロ
セスゲインGpはGpHと小さくなつている。この状
態では、所定温度差SH′RをSH′RLと小さい値に
し、制御ゲインGcはGcHと大きくなる。リレー4
0BがオフだからリレーA1もオフで所定温度差
SH′Rは抵抗A2で与えられる。したがつて所定
温度差SH′RをSHRLと小さくするようRA2<RA3
る関係を満足するよう各々の抵抗値を定める。ま
た制御ゲインGcをGcHと大きくするようGc1>Gc2
すなわちRA4<RA5なる関係を満足するよう各抵
抗値を定める。リレー40Bがオンして室内ユニ
ツト2A,2B双方に冷媒が流入している時は、
室内ユニツト2Aへの流入量は相対的に小さくな
り、△Tが小さくなり(△TL)プロセスゲイン
GpはGpLと大きくなる。このとき、リレーA1が
オンするので、所定温度差SH′RはSH′RHと大きく
なり、また制御ゲインGcはGcLと小さくなる。
FIG. 2 shows an embodiment of the above-mentioned control device 15A'. 15A'1 is the power supply circuit, DC voltage +
Outputs Vcc and -Vcc . Furthermore, power supply circuit 15A'1
is the relay A1 as control parameter changing means.
Built-in. 15A'2 is a control circuit, the first,
Difference in temperature SH' detected by thermistors 22A' and 22B' as second temperature sensors 22A and 22B =
The operational amplifier A7 amplifies the difference between T 2 −T 1 and a predetermined temperature difference SH′ R given by the low resistor A2 or A3,
A voltage equal to its output voltage V T is applied to the throttling device 14
A is applied to the thermoelectric expansion valve 14A'. The thermoelectric expansion valve 14A' has a valve driving section composed of a combination of an electric heater and a bimetal, and the applied voltage
V T controls the valve opening degree, that is, the throttle amount. The operation of the control circuit 15A'2 controls the throttle amount of the thermoelectric expansion valve 14A', so that the temperature difference SH' becomes equal to the predetermined value SH'L . Note that the control gain G c is
It is given by G c1 = R A6 /R A4 or G c2 = R A6 /R A5 . However, R A4 , R A5 , and R A6 are resistors A4 and A, respectively.
5, is the resistance value of A6. Relay 40B is currently off, and no refrigerant is flowing into indoor unit 2B.
When there is only one 2A indoor unit into which refrigerant is flowing, the amount of refrigerant flowing into indoor unit 2A is relatively large, so △T becomes large as △ TH , and the process gain G p becomes small as G pH . It's summery. In this state, the predetermined temperature difference SH' R is set to a small value SH' RL , and the control gain G c is set to a large value G cH . relay 4
Since 0B is off, relay A1 is also off and the specified temperature difference
SH' R is given by resistor A2. Therefore, each resistance value is determined so as to satisfy the relationship R A2 <R A3 so that the predetermined temperature difference SH' R is smaller than SH RL . Also, to increase the control gain G c to G cH , G c1 > G c2
That is, each resistance value is determined so as to satisfy the relationship R A4 <R A5 . When relay 40B is on and refrigerant is flowing into both indoor units 2A and 2B,
The amount of flow into indoor unit 2A becomes relatively small, △T becomes small (△T L ), and the process gain
G p becomes large as G pL . At this time, since the relay A1 is turned on, the predetermined temperature difference SH' R becomes large to SH' RH , and the control gain G c becomes small to G cL .

このように、冷媒流入室内ユニツト台数により
制御パラメータを自動的に変更することによつ
て、過熱度SHを一定に保て、常に最適な応答が
得られる。
In this way, by automatically changing the control parameters depending on the number of indoor units into which refrigerant flows, the degree of superheating SH can be kept constant, and an optimal response can always be obtained.

以上の説明では、室内ユニツト台数2台の場合
について述べたが、室内ユニツト台数がさらに多
数の場合でも、例えばリレーA1と同様の機能を
有するリレーを適宜増設したり、抵抗A2,A3
や抵抗A4,A5の数をそれに応じて増すことに
よつて容易に本発明の主旨から外れることなく変
更できる。本発明は冷媒循環量の変化に起因する
諸々の不具合を解消するものであつて、上述した
説明では冷媒流入室内ユニツト台数が変化した場
合について説明したが、他に圧縮機として容量可
変圧縮機の容量が変化した場合についても同様に
制御パラメータを変更する必要があり、本発明を
適用できる。従がつて冷媒循環量の検出方法とし
ては、冷媒流入室内ユニツト台数及び圧縮機容量
を検出し、それらの組合せによつて制御パラメー
タを決定すればよい。
In the above explanation, the case where there are two indoor units has been described, but even when there are many more indoor units, for example, a relay having the same function as relay A1 may be added as appropriate, or resistors A2 and A3 may be installed.
This can be easily changed without departing from the spirit of the invention by increasing the number of resistors A4 and A5 accordingly. The present invention is intended to solve various problems caused by changes in the amount of refrigerant circulated, and the above explanation deals with the case where the number of indoor units in which refrigerant flows changes. The present invention can also be applied to cases where the capacitance changes, in which case it is necessary to change the control parameters as well. Therefore, as a method for detecting the amount of refrigerant circulation, it is sufficient to detect the number of indoor units into which refrigerant flows and the capacity of the compressor, and determine the control parameters based on a combination thereof.

第3図は本発明の他の実施例の制御装置のブロ
ツク図である。6は空調状態検出器6Aの出力に
応じて、10′なる容量可変圧縮機の容量を制御す
る容量制御装置である。15Cは熱電膨張弁14
A′,14B′の絞り量を制御する制御装置である。
23A,23Bは室内ユニツト2Bの、温度セン
サ22A,22Bに対応する温度センサである。
B1はリレー40Bに応動するリレーである。1
5C1は温度センサ22A,B、23A,Bから
の信号をマイクロコンピユータ15C3の出力に
より選択するアナログマルチプレクサ、15C2
はアナログマルチプレクサ15C1により選択さ
れた信号をデジタル量に変換するA・Dコンバー
タ、15C3は温度センサ22A,B,23A,
Bで検出した温度の差SH′を室内ユニツト2Aの
SH′A,同2BのSH′Bを各々計算するとともに、
リレーA1,B1のオンオフ状態により冷媒流入
室内ユニツト運転台数Nを決定し、さらに、容量
制御装置6より現在の容量に相当する信号Cpp
受け、室内ユニツト運転台数N、圧縮機容量Cpp
により、所定温度差SH′R制御ゲインGcを、内蔵
する計算プログラムにより決定し、(SH′R
SH′A)、(SH′R−SH′B)を計算してこれに各々Gc
を乗じた結果を出力する。15C4,15C5は
マイクロコンピユータ15C3から出力される計
算結果をアナログ量に変換するDAコンバータ
で、この出力電圧VTA及びVTBが熱電膨張弁14
A′,14B′に印加される。このようにすれば、
冷媒流入室内ユニツト運転台数Nにさらに、圧縮
機容量Cppを加味して制御パラメータの自動調整
を行なうことができる。
FIG. 3 is a block diagram of a control device according to another embodiment of the present invention. 6 is a capacity control device that controls the capacity of a variable capacity compressor 10' in accordance with the output of the air conditioning state detector 6A. 15C is thermoelectric expansion valve 14
This is a control device that controls the aperture amount of A' and 14B'.
23A and 23B are temperature sensors corresponding to the temperature sensors 22A and 22B of the indoor unit 2B.
B1 is a relay that responds to relay 40B. 1
5C1 is an analog multiplexer that selects signals from temperature sensors 22A, B, 23A, and B based on the output of microcomputer 15C3, and 15C2
15C3 is an A/D converter that converts the signal selected by the analog multiplexer 15C1 into a digital quantity; 15C3 is the temperature sensor 22A, B, 23A,
The temperature difference SH' detected at B is expressed as that of indoor unit 2A.
While calculating SH′A and SH′B of 2B,
The number N of operating indoor units in which refrigerant enters is determined by the on/off states of relays A1 and B1, and furthermore, the number N of operating indoor units and the compressor capacity C pp are determined by receiving a signal C pp corresponding to the current capacity from the capacity control device 6.
The predetermined temperature difference SH′ R control gain G c is determined by the built-in calculation program, and (SH′ R
SH′ A ) and (SH′ R −SH′ B ) are calculated and each G c
Output the result of multiplying by . 15C4 and 15C5 are DA converters that convert the calculation results output from the microcomputer 15C3 into analog quantities, and these output voltages V TA and V TB are applied to the thermoelectric expansion valve 14.
A' and 14B' are applied. If you do this,
The control parameters can be automatically adjusted by taking into account the compressor capacity Cpp in addition to the number N of operating indoor units in which refrigerant flows.

以上詳述したように、本発明によれば冷媒循環
量の変化を冷媒流入室内ユニツト台数や、さらに
容量可変圧縮機を用いる場合、その容量をも加味
して検出し、これによつて制御パラメータを自動
調整するので、常に過熱度SHを最適の過熱度
SHpptに保てるとともに、制御系としての応答を
全ての範囲にわたつて最適化でき、きわめて
EERの高い空気調和装置を得ることができる優
れた効果を奏するものである。
As described in detail above, according to the present invention, changes in the refrigerant circulation amount are detected by taking into account the number of refrigerant inflow indoor units, and also the capacity when a variable capacity compressor is used, and thereby the control parameters are The superheat level SH is automatically adjusted, so the superheat level SH is always set to the optimal superheat level.
In addition to maintaining SH ppt , the response as a control system can be optimized over the entire range, making it extremely
This has an excellent effect of making it possible to obtain an air conditioner with high EER.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における空気調和機
の室外ユニツトの電気回路図、第2図は本発明の
空気調和機の制御装置の回路図、第3図は本発明
の他の実施例の制御装置のブロツク図、第4図は
空気調和装置の冷凍サイクル図、第5図は従来の
電気回路図である。 1…室外ユニツト、2A,2B…室内ユニツ
ト、14A,14B…絞り装置、15A′,15
B′,15C…制御装置、15A′2…制御回路、
22A…第2の温度センサ、22B…第1の温度
センサ、A1…パラメータ変更手段としてのリレ
ー。
FIG. 1 is an electric circuit diagram of an outdoor unit of an air conditioner according to an embodiment of the present invention, FIG. 2 is a circuit diagram of a control device for an air conditioner according to the present invention, and FIG. 3 is a diagram of another embodiment of the present invention. 4 is a refrigeration cycle diagram of an air conditioner, and FIG. 5 is a conventional electric circuit diagram. 1... Outdoor unit, 2A, 2B... Indoor unit, 14A, 14B... Throttle device, 15A', 15
B', 15C...control device, 15A'2...control circuit,
22A...second temperature sensor, 22B...first temperature sensor, A1...relay as parameter changing means.

Claims (1)

【特許請求の範囲】[Claims] 1 1台の室外ユニツトと、複数台の室内ユニツ
トと、各室内ユニツトに対応して設けた絞り装置
と、冷凍サイクルの状態に応じて前記絞り装置の
絞り量を制御する制御装置とを備え、前記制御装
置は室内ユニツトの熱交換器の入口部または中間
部に設けた第1の温度センサおよび出口部に設け
た第2の温度センサと、前記第1、第2の温度セ
ンサで検出する温度の差が所定温度差となるよう
に絞り装置の絞り量を制御する制御回路と、前記
制御回路の前記所定温度差とゲインを前記室内ユ
ニツトの運転台数に応じて変更するパラメータ変
更手段とで構成した空気調和装置。
1 comprising one outdoor unit, a plurality of indoor units, a throttling device provided corresponding to each indoor unit, and a control device that controls the throttling amount of the throttling device according to the state of the refrigeration cycle, The control device includes a first temperature sensor provided at the inlet or intermediate portion of the heat exchanger of the indoor unit, a second temperature sensor provided at the outlet, and the temperature detected by the first and second temperature sensors. and a parameter changing means for changing the predetermined temperature difference and gain of the control circuit according to the number of operating indoor units. air conditioner.
JP8811680A 1980-06-27 1980-06-27 Airconditioner Granted JPS5714159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8811680A JPS5714159A (en) 1980-06-27 1980-06-27 Airconditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8811680A JPS5714159A (en) 1980-06-27 1980-06-27 Airconditioner

Publications (2)

Publication Number Publication Date
JPS5714159A JPS5714159A (en) 1982-01-25
JPH028231B2 true JPH028231B2 (en) 1990-02-22

Family

ID=13933913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8811680A Granted JPS5714159A (en) 1980-06-27 1980-06-27 Airconditioner

Country Status (1)

Country Link
JP (1) JPS5714159A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61237978A (en) * 1985-04-13 1986-10-23 ダイキン工業株式会社 Multiple type refrigerator
JPS61237977A (en) * 1985-04-13 1986-10-23 ダイキン工業株式会社 Multiple type refrigerator
JPS6279792A (en) * 1985-10-04 1987-04-13 Showa Sangyo Kk Production of crystalline glucose as raw material for injection
JP3327158B2 (en) * 1997-02-07 2002-09-24 松下電器産業株式会社 Multi-room air conditioner

Also Published As

Publication number Publication date
JPS5714159A (en) 1982-01-25

Similar Documents

Publication Publication Date Title
JP3162827B2 (en) Temperature control device
JP2884249B2 (en) Optimal control method of pleasure and efficiency of variable speed heat pump and air conditioner
US4501125A (en) Temperature conditioning system staging control and method
US5611484A (en) Thermostat with selectable temperature sensor inputs
US4550770A (en) Reverse cycle room air conditioner with auxilliary heat actuated at low and high outdoor temperatures
US5004149A (en) Central air conditioning system having compensating control function for total heat load in a plurality of rooms
US4682473A (en) Electronic control and method for increasing efficiency of heating and cooling systems
US5737934A (en) Thermal comfort controller
US5197293A (en) Method of controlling an air conditioning apparatus and air conditioning apparatus using the method
US4498310A (en) Heat pump system
JPS6354567B2 (en)
US5247989A (en) Modulated temperature control for environmental chamber
US5207379A (en) Cascaded control apparatus for controlling unit ventilators
JPH028231B2 (en)
US4368621A (en) Method of operating air conditioner
JPH0642802A (en) Controller for air conditioner
JPS633229B2 (en)
JPH0668410B2 (en) Air conditioner
JP3155045B2 (en) Vehicle air conditioner
JPH08327122A (en) Air conditioner
JPS6011782B2 (en) air conditioner
JPS6034037B2 (en) Refrigerant flow control device
JPS6011044A (en) Control system for air-conditioning
JPH0131103B2 (en)
JPS58123038A (en) Air conditioner