JPH0131103B2 - - Google Patents

Info

Publication number
JPH0131103B2
JPH0131103B2 JP59163396A JP16339684A JPH0131103B2 JP H0131103 B2 JPH0131103 B2 JP H0131103B2 JP 59163396 A JP59163396 A JP 59163396A JP 16339684 A JP16339684 A JP 16339684A JP H0131103 B2 JPH0131103 B2 JP H0131103B2
Authority
JP
Japan
Prior art keywords
temperature
air
indoor
outdoor
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59163396A
Other languages
Japanese (ja)
Other versions
JPS6062543A (en
Inventor
Hitoshi Iijima
Fumio Matsuoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59163396A priority Critical patent/JPS6062543A/en
Publication of JPS6062543A publication Critical patent/JPS6062543A/en
Publication of JPH0131103B2 publication Critical patent/JPH0131103B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 この発明は室内側において、少なくとも室内湿
度を用いて室外温度を精度よく推定できるように
した空気調和装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air conditioner that can accurately estimate outdoor temperature indoors using at least indoor humidity.

従来セパレート形空気調和装置等において、例
えばサーミスタ等の感温素子を用いた室外温度検
知器を室外ユニツト外壁に設け、その検知量を用
いて室内ユニツトに室外温度を表示したり、室外
温度に応じて室内温度を制御したりすることはお
こなわれていた。
Conventionally, in separate type air conditioners, an outdoor temperature detector using a temperature sensing element such as a thermistor is installed on the outside wall of the outdoor unit, and the detected amount is used to display the outdoor temperature on the indoor unit, or to display the outdoor temperature in response to the outdoor temperature. The indoor temperature was controlled by

しかしそのような室外温度検知器は普通全面に
空気の流通口を有し、外面に白色塗装を施した筐
体内に、防水構造を有するサーミスタを配置した
ようなものであるので、直射日光等の熱放射の影
響を充分に除去できないばかりか、雨露や上記熱
放射等による劣化が激しいという欠点があつた。
However, such outdoor temperature detectors usually have air circulation holes all over the surface and have a waterproof thermistor placed inside a white-painted case, so they cannot be exposed to direct sunlight, etc. Not only could the effects of thermal radiation not be sufficiently removed, but there was also the drawback that deterioration due to rain and dew, the aforementioned thermal radiation, etc. was severe.

また上記サーミスタの配線を動力線と束ねて配
線すると、動力線からのノイズが入つて誤動作の
原因となるので、別個の配線にする必要があり、
そのために工事の手間を要するという欠点もあつ
た。
Also, if the thermistor wiring is bundled with the power line, noise from the power line will enter and cause malfunction, so it is necessary to wire it separately.
This also had the disadvantage of requiring a lot of construction work.

この発明は上記の不都合を改善し、室内側にお
いて室外温度を推定するようにした空気調和装置
に関するものである。
The present invention relates to an air conditioner that improves the above-mentioned disadvantages and estimates the outdoor temperature on the indoor side.

第1図はこの発明の基礎となる実施例を示す構
成図である。図中、10は室内ユニツト、11は
室内側熱交換器(蒸発器)、12は高速(H)、中速
(M)、低速(L)の3速度の送風機であり、熱交換器
11は送風機12の回転によつて矢印方向に送風
される室内空気と、熱交換器11に供給される冷
媒との間で熱交換を行なう。20は室外ユニツ
ト、21は室外側熱交換器(凝縮器)、22は高
速(H)、低速(L)の2速度の送風機、23は冷媒を圧
縮する電動圧縮機、24は減圧弁であり、熱交換
器21は送風機22の回転によつて送風される室
外空気と熱交換器21に供給される冷媒との間で
熱交換を行なう。熱交換器11,21、圧縮機2
3、減圧弁24は冷媒配管によつて図のように連
結され、ヒートポンプ式の冷凍サイクル(回路)
を形成する。
FIG. 1 is a block diagram showing an embodiment that is the basis of this invention. In the figure, 10 is an indoor unit, 11 is an indoor heat exchanger (evaporator), 12 is a blower with three speeds: high speed (H), medium speed (M), and low speed (L). Heat exchange is performed between the indoor air blown in the direction of the arrow by the rotation of the blower 12 and the refrigerant supplied to the heat exchanger 11. 20 is an outdoor unit, 21 is an outdoor heat exchanger (condenser), 22 is a two-speed blower of high speed (H) and low speed (L), 23 is an electric compressor that compresses the refrigerant, and 24 is a pressure reducing valve. The heat exchanger 21 exchanges heat between the outdoor air blown by the rotation of the blower 22 and the refrigerant supplied to the heat exchanger 21 . Heat exchanger 11, 21, compressor 2
3. The pressure reducing valve 24 is connected by refrigerant piping as shown in the figure, and is connected to a heat pump type refrigeration cycle (circuit).
form.

31は熱交換器11に対する室内空気の流入側
(入口側)における温度Taiを検出する空気温度
検出器、32は熱交換器11に対する室内空気の
流出側(出口側)における温度Taoを検出する空
気温度検出器であり、これは室内空気の流通部に
配置され、温度に応じた電気信号を発生する。3
3は熱交換器11に対する冷媒の流入側(入口
側)における温度Teiを検出する冷媒温度検出
器、34は熱交換器11に対する冷媒の流出側
(出口側)における温度Teoを検出する冷媒温度
検出器であり、これらの冷媒温度検出器33,3
4は熱交換器11の近くの冷媒配管の管壁に設け
られ、冷媒温度に応じた電気信号を発生する。3
5は温度検出器31〜34の出力を受けて、室外
空気の温度Toを演算推定し、その値を室外温度
表示器36に出力し、そして、その値によつて室
内温度設定器38からの設定値を変更し、この値
と、上記空気温度検出器31により検出した室内
温度とを比較判定し、圧縮機23の運転・停止を
制御する室外温度推定制御装置である。
31 is an air temperature detector that detects the temperature Tai on the inflow side (inlet side) of indoor air to the heat exchanger 11; 32 is an air temperature detector that detects the temperature Tao on the outflow side (outlet side) of the indoor air to the heat exchanger 11; A temperature sensor is placed in the room air flow and generates an electrical signal depending on the temperature. 3
3 is a refrigerant temperature detector that detects the temperature Tei on the inflow side (inlet side) of the refrigerant to the heat exchanger 11, and 34 is a refrigerant temperature detector that detects the temperature Teo on the outflow side (outlet side) of the refrigerant with respect to the heat exchanger 11. These refrigerant temperature detectors 33, 3
Reference numeral 4 is provided on the pipe wall of the refrigerant pipe near the heat exchanger 11, and generates an electric signal according to the refrigerant temperature. 3
5 receives the outputs of the temperature detectors 31 to 34, calculates and estimates the temperature To of the outdoor air, outputs the value to the outdoor temperature display 36, and uses that value to control the temperature To from the indoor temperature setting device 38. This is an outdoor temperature estimation control device that changes a set value, compares and determines this value with the indoor temperature detected by the air temperature detector 31, and controls operation/stop of the compressor 23.

次に第6図により、室外温度推定制御装置35
(以下推定制御装置と略す。)の詳細を説明する。
推定制御装置35はマイクロプロセツサなどの
CPU40と、マルチプレクサ(多点切換器)4
1、アナログ/デイジタル信号変換器(A/Dコ
ンバータ)42、入力インタフエース43、出力
インタフエース44、メモリ45そしてリレー4
6から構成され、前記各温度検出器31,32,
33,34には抵抗器31などを介して直流定電
圧が掛かつており温度変化が電圧変化となつてマ
ルチプレクサ41に入力される。室温設定器38
は可変抵抗器などから成りその両端にも直流定電
圧が掛けられておりその位置変化に応じて電圧が
変化し、これもマルチプレクサ41の入力端子の
一点に入力される。上記各入力はマルチプレクサ
41で切換えられ一点づつA/D変換器42で信
号変換され、入力インタフエース43を介して
CPU40に入力される。CPU40ではこれらの
入力と、メモリ45に記憶された所定のプログラ
ムおよびデータにより室外温度を演算し、その値
によつて、例えば冷房運転時、推定外気温度に追
随させて室温設定値をソフトウエアで上下させ
て、この変更後の設定値と、上記室温とを比較
し、出力イタフエース44を介してリレー46を
ON/OFFし、その接点を介して電源50に接続
された圧縮機23の運転・停止を行う。
Next, according to FIG. 6, the outdoor temperature estimation control device 35
(hereinafter abbreviated as the estimation control device) will be explained in detail.
The estimation control device 35 is a microprocessor or the like.
CPU 40 and multiplexer (multi-point switch) 4
1, analog/digital signal converter (A/D converter) 42, input interface 43, output interface 44, memory 45, and relay 4
6, each of the temperature detectors 31, 32,
A constant DC voltage is applied to 33 and 34 via a resistor 31 or the like, and a temperature change is input to a multiplexer 41 as a voltage change. Room temperature setting device 38
is made up of a variable resistor, etc., and a constant DC voltage is applied to both ends of the resistor, and the voltage changes in accordance with changes in its position, and this is also input to one point of the input terminal of the multiplexer 41. Each of the above inputs is switched by a multiplexer 41, converted into a signal one by one by an A/D converter 42, and then sent via an input interface 43.
It is input to the CPU 40. The CPU 40 calculates the outdoor temperature based on these inputs and a predetermined program and data stored in the memory 45, and uses the calculated value to set the room temperature set value by software to follow the estimated outdoor temperature during cooling operation, for example. The set value after the change is compared with the above room temperature, and the relay 46 is activated via the output interface 44.
The compressor 23, which is connected to the power supply 50 through its contacts, is operated and stopped by turning it on and off.

第7図は演算・制御プログラムのフローチヤー
トであり、スタートして、ステツプ(60)でマル
チプレクサ41の切換チヤネルchを初めのchに
セツトする。ステツプ(61)でA/D変換器42
でアナログ信号をデジイタル信号へ信号変換を行
い、入力インタフエース43を介してCPU40
に読み込む、ステツプ(62)で読み込んだ電圧か
ら温度へと変換してメモリ45に入れる。ステツ
プ(63)はchを判定(例えばここでは入力点は
5点であり5点読み終つたかどうか。)し、全て
の読み込みが終つていなければ、ステツプ(64)
でchを一つ次のchに切換えてステツプ(61)か
ら(63)までの動作を繰り返し、終つていれば、
次ステツプ(65)に移り、上記読み込み温度から
外気温度を演算する。ステツプ(66)ではその外
気温度によつて室温設定値を変更し、ステツプ
(67)でその設定値と、室温とを比較判定し例え
ば冷房時室温が設定温度より高いとステツプ
(68)に行き圧縮機23を運転し、低いときはス
テツプ(69)にて圧縮機23を停止する。以上の
フローが所定のインターバルタイムにて繰り返さ
れることになる。
FIG. 7 is a flowchart of the arithmetic and control program, which starts and sets the switching channel of the multiplexer 41 to the first channel in step (60). At step (61), the A/D converter 42
converts the analog signal into a digital signal and sends it to the CPU 40 via the input interface 43.
In step (62), the read voltage is converted into temperature and stored in the memory 45. Step (63) judges the channel (for example, here there are 5 input points, and whether or not all 5 points have been read), and if all reading has not been completed, step (64) is executed.
Switch the channel to the next channel and repeat steps (61) to (63).
Proceeding to the next step (65), the outside air temperature is calculated from the read temperature. In step (66), the set value of the room temperature is changed according to the outside temperature, and in step (67), the set value is compared with the room temperature. For example, if the room temperature during cooling is higher than the set temperature, the process goes to step (68). The compressor 23 is operated, and when the temperature is low, the compressor 23 is stopped at step (69). The above flow is repeated at a predetermined interval time.

さて、発明者は第1図の構成について種々実験
を行ない、相関分析を行なつた結果、室外温度
Toが次式で演算推定されることを見出した。先
ず室外側送風機22が高速(H)で運転される場合に
は、 To=f(Tai、△Te)≒0.527Tai−1.2
64△Te+21.55……(1) 室外側送風機22が低速(L)で運転される場合に
は、 To=f(Tao、△Te)≒0.624Tao−1.1
97△Te+27.04……(2) ただし△Te=Teo−Teiである。
Now, the inventor conducted various experiments on the configuration shown in Figure 1, and as a result of correlation analysis, found that the outdoor temperature
We found that To can be calculated and estimated using the following equation. First, when the outdoor fan 22 is operated at high speed (H), To=f(Tai, △Te)≒0.527Tai−1.2
64△Te+21.55……(1) When the outdoor fan 22 is operated at low speed (L), To=f(Tao, △Te)≒0.624Tao−1.1
97△Te+27.04……(2) However, △Te=Teo−Tei.

これら式(1)(2)を室外温度推定装置35内に記憶
しておき、送風機22の運転状態に応じてそれら
を選択し、温度検出器31〜34から、Tai、
Tao、Tei、Teoを与えることにより、推定装置
35はToに応じた電気信号を出力する。
These equations (1) and (2) are stored in the outdoor temperature estimating device 35, and selected according to the operating state of the blower 22, and from the temperature detectors 31 to 34, Tai,
By providing Tao, Tei, and Teo, the estimation device 35 outputs an electrical signal according to To.

第2図は室内湿度50%の場合において実際に得
られたデータを示す図表である。なおこのデータ
は、三菱電機株式会社製MS−2203R形のエアコ
ン(標準冷房能力2240.0Kcal/h、60Hz)を用い
て室内湿度50%の下で得たデータである。この第
2図から明らかなように、実際の外気温度(室外
空気温度)と推定した外気温度との誤差は0.1〜
1.5℃であり、充分実用できるものである。
Figure 2 is a chart showing data actually obtained when the indoor humidity is 50%. Note that this data was obtained at an indoor humidity of 50% using a Mitsubishi Electric Corporation MS-2203R air conditioner (standard cooling capacity 2240.0 Kcal/h, 60 Hz). As is clear from this Figure 2, the error between the actual outside air temperature (outdoor air temperature) and the estimated outside air temperature is between 0.1 and
The temperature is 1.5℃, which is sufficiently practical.

第3図は室内湿度70%の場合において実際に得
られたデータを示す図表である。このデータも第
2図の場合と同じエアコンを使つた場合のもので
ある。この第3図から明らかなように、室内湿度
が70%と変つた場合には、実際の外気温度と推定
した外気温度との誤差は2〜9℃となり、実用は
難しくなる。この問題に対応するため、発明者は
改めて種々の実験を行ない、相関分析を行なつた
結果、次の改善された演算式を得ることできた。
FIG. 3 is a chart showing data actually obtained when the indoor humidity is 70%. This data is also for when the same air conditioner as in Figure 2 is used. As is clear from FIG. 3, when the indoor humidity changes to 70%, the error between the actual outside temperature and the estimated outside air temperature is 2 to 9 degrees Celsius, making it difficult to put it into practical use. In order to deal with this problem, the inventor conducted various experiments again and performed correlation analysis, and as a result, was able to obtain the following improved arithmetic expression.

(a) 室内側送風機12が高速(H)運転されるときに
は、 To=f(Tai、Tao、△Te、Tao2、Tei2)≒72.64+1.43T
ai−9.42Tao−0.317△Te +0.187Tao2+0.145Tei2 ……(3) (b) 室内側送風機12が中速(M)運転されると
きには、 To=f(Tai、Teo、△Ta2、Tei2)≒86.43−4.128Tai−
0.509Teo+0.188△Ta2+0.239Tei2……(4) ただし△Ta=Tao−Tai (c) 室内側送風機12が低速(L)運転されるときに
は、 To=f(Tao、Teo、Tei2)≒93.66−9.79Tao
−0.23Teo+0.543Tei2……(5) 式(3)(4)(5)は推定装置35中の記憶装置に記憶し
ておき、送風機12の運転状態に応じてそれらを
選択して演算させる。
(a) When the indoor fan 12 is operated at high speed (H), To=f(Tai, Tao, △Te, Tao 2 , Tei 2 )≒72.64+1.43T
ai−9.42Tao−0.317△Te +0.187Tao 2 +0.145Tei 2 ...(3) (b) When the indoor fan 12 is operated at medium speed (M), To=f(Tai, Teo, △Ta 2 , Tei 2 )≒86.43−4.128Tai−
0.509Teo+0.188△Ta 2 +0.239Tei 2 ...(4) However, △Ta=Tao−Tai (c) When the indoor fan 12 is operated at low speed (L), To=f(Tao, Teo, Tei 2 )≒93.66−9.79Tao
−0.23Teo+0.543Tei 2 ...(5) Equations (3), (4), and (5) are stored in the storage device in the estimation device 35, and they are selected and calculated according to the operating state of the blower 12. .

さて、上記式(3)(4)(5)による推定を行なつた場合
の実際のデータを第4図の推定外気温度(To)1
に示す。このデータは第2図の場合と同じエアコ
ンを使つて得たものである。第4図の(To)1
ら明らかなように、式(3)(4)(5)による場合には実際
の外気温度との誤差は0.1〜3.3(℃)であり、充
分実用できることがわかつた。
Now, the actual data when estimated using the above equations (3), (4), and (5) are shown in Figure 4 as estimated outside air temperature (To) 1
Shown below. This data was obtained using the same air conditioner as in Figure 2. As is clear from (To) 1 in Figure 4, when formulas (3), (4), and (5) are used, the error from the actual outside temperature is 0.1 to 3.3 (℃), which is sufficient for practical use. Ta.

この発明は上述した実験に基づいて更に推定精
度を上げることを目的としたもので、以下この発
明の実施例について説明する。この実施例では第
5図に示すように室内ユニツト10内に更に、熱
交換器11の室内空気吸込側に、例えば金属酸化
物セラミツクよりなる抵抗式室内湿度検出器39
が付加され、これは室内空気の相対湿度iに応じ
た電気信号を推定装置35へ供給する。この相対
湿度iを含めた演算式は次の通りにするとよいこ
とが見出された。
This invention aims to further improve the estimation accuracy based on the above-mentioned experiment, and examples of the invention will be described below. In this embodiment, as shown in FIG. 5, a resistance-type indoor humidity detector 39 made of, for example, metal oxide ceramic is further installed in the indoor unit 10 on the indoor air suction side of the heat exchanger 11.
is added, which supplies an electric signal to the estimation device 35 according to the relative humidity i of the indoor air. It has been found that the calculation formula including this relative humidity i should be as follows.

(a) 室内側送風機12が高速(H)運転されるとき、 To=f(△Te、e、Tao2、Tei2、i)≒58.9+0.214
△Te−3.07e+0.047Tao2 +0.089Tei2−0.185i ……(6) ただしe=Tei+Teo/2 (b) 室内側送風機12が中速(M)運転されると
き、 To=f(Tai、Teo、Tao2、i)≒40.2+0.37Tai−1.
0Teo+0.211Tao2−0.818i……(7) (c) 室内側送風機12が低速(L)運転されるとき、 To=f(Tao、Teo、i)≒20.12+6.723Tao−
1.171Teo−0.956i……(8) これらの演算式による推定温度(To)3を第4
図の最右欄の(To)2に示す。このデータから明
らかな通り、相対湿度iを導入して式(6)(7)(8)によ
つて推定する場合には、実際の外気温度との誤差
は0.1〜1.3(℃)となり、より高精度の推定が可
能になる。
(a) When the indoor fan 12 is operated at high speed (H), To = f (△Te, e, Tao 2 , Tei 2 , i) ≒ 58.9 + 0.214
△Te−3.07e+0.047Tao 2 +0.089Tei 2 −0.185i ……(6) However, e=Tei+Teo/2 (b) When the indoor fan 12 is operated at medium speed (M), To=f(Tai, Teo, Tao 2 , i)≒40.2+0.37Tai−1.
0Teo+0.211Tao 2 −0.818i……(7) (c) When the indoor blower 12 is operated at low speed (L), To=f(Tao, Teo, i)≒20.12+6.723Tao−
1.171Teo−0.956i……(8) Estimated temperature (To) from these calculation formulas 3 to 4th
Shown in (To) 2 in the rightmost column of the figure. As is clear from this data, when the relative humidity i is introduced and estimated using equations (6), (7), and (8), the error from the actual outside air temperature is 0.1 to 1.3 (℃), which is more Highly accurate estimation becomes possible.

以上のように、少なくとも室内湿度を利用した
この発明装置によれば、室内側において高精度に
室外温度の推定が可能となり、簡単な構成で室外
温度の表示、圧縮機の制御が可能となる。
As described above, according to the device of the present invention that utilizes at least the indoor humidity, it is possible to estimate the outdoor temperature with high accuracy on the indoor side, and it is possible to display the outdoor temperature and control the compressor with a simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の基礎となる実施例の構成
図、第2図、第3図、第4図は得られたデータを
示す図、第5図はこの発明装置の実施例の構成
図、第6図は第1図に示したものの電気回路ブロ
ツク図、第7図は第1図に示したもののフローチ
ヤートである。 図中、11は室内側熱交換器、21は室外側熱
交換器、23は圧縮器、24は減圧手段、31,
32,33,34は温度検出器、39は相対湿度
検出器、35は室外温度推定装置である。図中、
同一符号は同一または相当部分を示す。
FIG. 1 is a block diagram of an embodiment that is the basis of this invention; FIGS. 2, 3, and 4 are diagrams showing obtained data; FIG. 5 is a block diagram of an embodiment of the inventive device; FIG. 6 is an electric circuit block diagram of the circuit shown in FIG. 1, and FIG. 7 is a flowchart of the circuit shown in FIG. In the figure, 11 is an indoor heat exchanger, 21 is an outdoor heat exchanger, 23 is a compressor, 24 is a pressure reducing means, 31,
32, 33, and 34 are temperature detectors, 39 is a relative humidity detector, and 35 is an outdoor temperature estimation device. In the figure,
The same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 冷媒と室内空気との熱交換を行う室内側熱交
換器、この室内側熱交換器に接続され冷媒と室外
空気との熱交換を行う室外側熱交換器を備え、上
記室内側熱交換器の室内空気流入側の空気温度を
検出する温度検出器、上記室内側熱交換器の室内
空気流出側の空気温度を検出する温度検出器、上
記室内側熱交換器の冷媒流入側の冷媒温度を検出
する温度検出器、上記室内側熱交換器の冷媒流出
側の冷媒温度を検出する温度検出器の各出力の組
み合わせに基づいて室外空気の温度に応じた出力
信号を発生する室外温度推定装置を有する空気調
和装置であつて、この推定装置に室内湿度検出器
を備え、上記各温度検出器および室内湿度検出器
の出力に基づいて室外空気温度を推定する室外温
度推定装置を具備したことを特徴とする空気調和
装置。
1. An indoor heat exchanger for exchanging heat between the refrigerant and indoor air; an outdoor heat exchanger connected to the indoor heat exchanger for exchanging heat between the refrigerant and outdoor air; a temperature detector that detects the air temperature on the indoor air inflow side of the indoor heat exchanger, a temperature detector that detects the air temperature on the indoor air outflow side of the indoor heat exchanger, and a temperature detector that detects the air temperature on the refrigerant inflow side of the indoor heat exchanger. an outdoor temperature estimating device that generates an output signal according to the temperature of outdoor air based on a combination of outputs of a temperature detector that detects the refrigerant temperature on the refrigerant outflow side of the indoor heat exchanger; An air conditioner comprising: an outdoor temperature estimation device for estimating outdoor air temperature based on the outputs of the temperature detectors and the indoor humidity detector; air conditioning equipment.
JP59163396A 1984-08-02 1984-08-02 Air conditioning device Granted JPS6062543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59163396A JPS6062543A (en) 1984-08-02 1984-08-02 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59163396A JPS6062543A (en) 1984-08-02 1984-08-02 Air conditioning device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP54104592A Division JPS6011782B2 (en) 1979-08-17 1979-08-17 air conditioner

Publications (2)

Publication Number Publication Date
JPS6062543A JPS6062543A (en) 1985-04-10
JPH0131103B2 true JPH0131103B2 (en) 1989-06-23

Family

ID=15773091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59163396A Granted JPS6062543A (en) 1984-08-02 1984-08-02 Air conditioning device

Country Status (1)

Country Link
JP (1) JPS6062543A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2808484B2 (en) * 1990-09-25 1998-10-08 三菱重工業株式会社 Processing liquid temperature controller
JP3223391B2 (en) * 1993-01-11 2001-10-29 株式会社日立製作所 Air conditioner and outdoor unit used for it

Also Published As

Publication number Publication date
JPS6062543A (en) 1985-04-10

Similar Documents

Publication Publication Date Title
JP3162827B2 (en) Temperature control device
US5675979A (en) Enthalpy based thermal comfort controller
JP2997487B2 (en) Refrigeration apparatus and method for indicating amount of refrigerant in refrigeration apparatus
KR100289171B1 (en) Method and apparatus for controlling supplemental heat in a heat pump system
US6892547B2 (en) Cooling set point control
US6186407B1 (en) Humidity control based on an estimation using heating plant cycle, of inside window surface temperature
JP2001514369A (en) Temperature and humidity auctioning controller with reheating
WO1997048030A1 (en) Thermal comfort controller
JPH10103818A (en) Air-conditioner
KR910000263B1 (en) Room air conditioner
GB2209828A (en) Air conditioner control apparatus with air flow sensor input
JPH0131103B2 (en)
JP3213662B2 (en) Air conditioner
JPS6011782B2 (en) air conditioner
JP2892241B2 (en) Humidity detection method
JPS6128903B2 (en)
JPS6124615B2 (en)
JP3149932B2 (en) Air conditioner operation control method
JPS6152375B2 (en)
JPH028231B2 (en)
JPS60144546A (en) Controller of defrosting operation of air conditioner
JPH0921548A (en) Dew condensation-preventive automatic ventilator
US11371761B2 (en) Method of operating an air conditioner unit based on airflow
KR102170562B1 (en) The apparatus which controls a dehumidification operation process of a air-conditioner
JP2563153B2 (en) Radiant cooling system