JPH0245778B2 - - Google Patents

Info

Publication number
JPH0245778B2
JPH0245778B2 JP58047008A JP4700883A JPH0245778B2 JP H0245778 B2 JPH0245778 B2 JP H0245778B2 JP 58047008 A JP58047008 A JP 58047008A JP 4700883 A JP4700883 A JP 4700883A JP H0245778 B2 JPH0245778 B2 JP H0245778B2
Authority
JP
Japan
Prior art keywords
water supply
air conditioning
temperature
conditioning load
supply temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58047008A
Other languages
Japanese (ja)
Other versions
JPS59173662A (en
Inventor
Kazuyuki Kamimura
Shinichi Okato
Junichi Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP58047008A priority Critical patent/JPS59173662A/en
Publication of JPS59173662A publication Critical patent/JPS59173662A/en
Publication of JPH0245778B2 publication Critical patent/JPH0245778B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、空調用の冷凍装置を空調負荷量に応
じて制御する方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in a method for controlling an air conditioning refrigeration device according to an air conditioning load amount.

〔従来技術〕[Prior art]

第1図は、冷凍装置の構成図であり、冷凍機
R1,R2およびポンプP1,P2等により冷凍装置が
構成され、ポンプP1,P2により圧送された給水
は、冷凍機R1,R2により冷却されたうえ、ヘツ
ダH1を介し送水としてフアンコイルユニツト等
の空調負荷ALへ供給され、これを介してヘツダ
H2へ還水として還流し、循環を反復するものと
なつているが、送水量を流量計Fにより検出する
一方、冷凍機R1,R2毎の送水温度を温度センサ
T1,T2により各個別に検出すると共に、還水温
度を温度センサT3により検出し、これらの検
出々力に基づき、制御器CTにおいては、還水温
度と送水温度との温度差に送水量を乗じて空調負
荷量を算出のうえ、空調負荷量に応じて冷凍機
R1,R2およびポンプP1,P2の運転台数を制御す
ると共に、還水温度がほゞ一定となる様に送水温
度を制御している。
Figure 1 is a configuration diagram of the refrigeration system.
A refrigeration system is constituted by R 1 , R 2 and pumps P 1 , P 2 , etc., and the water supplied under pressure by pumps P 1 and P 2 is cooled by refrigerators R 1 and R 2 and then sent to header H 1. The water is supplied to the air conditioning load AL such as the fan coil unit, and then to the header.
The water is returned to H 2 as return water and the circulation is repeated, but while the amount of water sent is detected by a flowmeter F, the temperature of the water sent to each refrigerator R 1 and R 2 is measured by a temperature sensor.
T 1 and T 2 are used to detect each temperature individually, and the return water temperature is detected by a temperature sensor T 3. Based on these detection forces, the controller CT calculates the temperature difference between the return water temperature and the feed water temperature. Calculate the air conditioning load by multiplying the water supply amount, and then adjust the chiller according to the air conditioning load.
In addition to controlling the number of R 1 , R 2 and pumps P 1 , P 2 in operation, the water supply temperature is controlled so that the return water temperature is approximately constant.

したがつて、空調負荷量LAと送水温度θoとの
関係を第2図に示すとおり、空調負荷量LAが0
〜50%では、冷凍機R1,R2中のいずれか一方の
みの1台運転がなされ、空調負荷量LAの増加に
応じ、送水温度θoが10℃から5℃へ変化するの
に対し、空調負荷量LAが50〜100%では冷凍機
R1,R2の双方による2台運転となり、送水量が
1台運転時に対して2倍となるため、送水温度
θoは、空調負荷量LAの増加に応じ7.5℃から5℃
へ変化するものとなり、空調負荷量LAが50%の
境界近辺では、送水温度θoが空調負荷量LAの増
加にしたがい5℃から7.5℃へ急激に変化するも
のとなる。
Therefore, as shown in Figure 2, the relationship between the air conditioning load L A and the water supply temperature θo is 0.
At ~50%, only one of the refrigerators R 1 and R 2 is operated, and the water supply temperature θo changes from 10°C to 5°C as the air conditioning load L A increases. , when the air conditioning load L A is 50 to 100%, the refrigerator
Two units are operated using both R 1 and R 2 , and the amount of water supplied is twice that of when one unit is operated, so the water supply temperature θo changes from 7.5℃ to 5℃ as the air conditioning load L A increases.
Near the boundary where the air conditioning load L A is 50%, the water supply temperature θo rapidly changes from 5°C to 7.5°C as the air conditioning load L A increases.

なお、1台運転時の送水温度5℃と、2台運転
時の送水温度7.5℃とでは、送水温度θoが異なつ
ても、送水量が2台運転により2倍となるため、
送水の熱量は変化しない。
Furthermore, even if the water supply temperature θo is different between the water supply temperature of 5℃ when one unit is operated and the water supply temperature of 7.5℃ when two units are operated, the water supply amount is doubled when two units are operated.
The amount of heat in the water does not change.

しかし、空調負荷ALの弁開度は、室温設定値
と室温とに応じて制御されており、送水温度θo
が急激に変化しても弁開度は直ちに応答せず、直
前の開度を維持するものとなつている。
However, the valve opening degree of the air conditioning load AL is controlled according to the room temperature set value and the room temperature, and the water supply temperature θo
Even if the valve opening changes suddenly, the valve opening does not respond immediately and maintains the previous opening.

このため、空調負荷量LAの増加に応じて2台
運転となり、送水温度θoが5℃から7.5℃へ変化
しても、弁開度は5℃に対する小開度のまゝであ
り、実際に空調負荷ALを流通する流量が少なく、
7.5℃の送水が殆んど温度上昇を来さずに還水と
なることにより、見掛上、空調負荷量LAが減少
したものと制御器CTが判断し、実際には空調負
荷量LAが50%を越えているにもかかわらず、1
台運転の状態へ復帰させるものとなる。
Therefore, as the air conditioning load L A increases, two units are operated, and even if the water supply temperature θo changes from 5°C to 7.5°C, the valve opening remains small relative to 5°C, and in reality The flow rate flowing through the air conditioning load AL is small,
The controller CT determines that the air conditioning load amount L A has apparently decreased because the water sent at 7.5℃ becomes return water with almost no temperature rise, and in reality the air conditioning load amount L A has decreased. Even though A is over 50%, 1
This will return the machine to the operating state.

また、空調負荷量LAの減少に応じて1台運転
となり、送水温度θoが7.5℃から5℃へ変化して
も、弁開度は7.5℃に対する大開度のまゝであり、
実際に空調負荷ALを流通する流量が必要以上に
多く、5℃の送水が過剰に温度上昇を来して還水
となることにより、見掛上、空調負荷量LAが増
加したものと制御器CTが判断し、実際には空調
負荷量LAが50%以下となつているにもかかわら
ず、再び2台運転の状態へ復帰させるものとな
る。
In addition, even if one unit is operated in response to a decrease in the air conditioning load L A and the water supply temperature θo changes from 7.5°C to 5°C, the valve opening remains at the large opening relative to 7.5°C.
The actual flow rate flowing through the air conditioning load AL is higher than necessary, and the 5°C water supply causes an excessive temperature rise and becomes return water, which is assumed to have increased the air conditioning load L A. Even though the air conditioning load amount L A is actually less than 50%, the system returns to two-unit operation.

したがつて、従来においては、空調負荷量LA
が50%近傍において増減した場合、1台運転と2
台運転との状態を往復的に反復し、制御状況が不
安定となる欠点を生じていた。
Therefore, in the past, the air conditioning load amount L A
If the value increases or decreases around 50%, one unit is operated and two units are operated.
The problem was that the control situation became unstable because the state of the machine was repeated back and forth.

〔発明の概要〕[Summary of the invention]

本発明は、従来の欠点を根本的に解決する目的
を有し、空調負荷量に応じて冷凍機の運転台数を
制御する一方、還水温度θiを示す信号Siと還水温
度θiの設定値SPiとの差に基づき還水温度θiがそ
の設定値SPiとほゞ等しくなるように送水温度θo
の指令値を演算し、冷凍機の運転台数に応じて送
水温度θoの制限値を定め、この制限値よりも上
記指令値が高い場合にはその制限値に応じて送水
温度θoの制御を行い、冷凍機の運転台数の切り
換え時に送水温度θoを連続的に変化させるよう
にした極めて効果的な、冷凍装置の制御方法を提
供するものである。
The present invention has the purpose of fundamentally solving the conventional drawbacks, and while controlling the number of operating chillers according to the air conditioning load, the present invention also controls the signal Si indicating the return water temperature θi and the set value of the return water temperature θi. The water supply temperature θo is set so that the return water temperature θi is approximately equal to the set value SPi based on the difference from SPi.
The command value is calculated, and the limit value of the water supply temperature θo is determined according to the number of operating chillers. If the above command value is higher than this limit value, the water supply temperature θo is controlled according to the limit value. The present invention provides an extremely effective method of controlling a refrigeration system in which the water supply temperature θo is continuously changed when changing the number of operating refrigeration machines.

〔実施例〕〔Example〕

以下、実施例を示す第3図以降により本発明の
詳細を説明する。
The details of the present invention will be explained below with reference to FIG. 3 and subsequent figures showing embodiments.

第3図は、制御器CTへ付加する制御回路のブ
ロツク図、第4図は、第3図の構成による制御に
よつて得られる空調負荷量LAと還水温度θiおよび
送水温度θoとの関係を示す図であり、第3図に
おいては、セレクタSEL1,SEL2に対し、ポテン
シヨンメータまたはデイジタルスイツチ等による
定格設定器RS1,RS2の出力、および定格零を示
す信号Szが与えられており、定格設定器RS1
RS2により、冷凍機R1,R2の定格能力が設定さ
れ、これらに対する運転開始指令に応じてスイツ
チS1,S2がオンとなれば、セレクタSEL1,SEL2
が定格設定器RS1,RS2の出力を選択し、加算器
ADDへ送出するものとなつている。
Fig. 3 is a block diagram of the control circuit added to the controller CT, and Fig. 4 shows the relationship between the air conditioning load L A , the return water temperature θi, and the water supply temperature θo obtained by the control according to the configuration shown in Fig. 3. This is a diagram showing the relationship, and in FIG. 3, the outputs of rating setters RS 1 and RS 2 by potentiometers or digital switches, and the signal Sz indicating rated zero are given to selectors SEL 1 and SEL 2 . Rating setter RS 1 ,
The rated capacity of the refrigerators R 1 and R 2 is set by RS 2 , and when the switches S 1 and S 2 are turned on in response to the operation start command for these, the selectors SEL 1 and SEL 2
selects the output of rating setters RS 1 and RS 2 , and adds
It is designed to be sent to ADD.

加算器ADDにおいては、セレクタSEL1
SEL2の各出力を加算のうえ、係数変換器FCVへ
与えるものとなつており、こゝにおいて、加算器
ADDの出力が空調負荷量LAと対応する100分率へ
変換され、低値セレクタLSEの一方の入力へ与え
られる。
In the adder ADD, selectors SEL 1 ,
The outputs of SEL 2 are added together and then fed to the coefficient converter FCV.
The output of ADD is converted into a 100th fraction corresponding to the air conditioning load L A and is applied to one input of the low value selector LSE.

一方、還水温度θiを示す信号Siは、還水温度θi
の設定値SPiと共に演算器PID1へ与えられ、こゝ
において、両入力に基づくPID(比例、積分、微
分)演算がなされ、送水温度θoの指令値となつ
てから、低値セレクタLSEの他方の入力へ与えら
れる。
On the other hand, the signal Si indicating the return water temperature θi is the return water temperature θi
is given to the calculator PID 1 along with the set value SPi, where PID (proportional, integral, differential) calculations are performed based on both inputs, and after becoming the command value of the water supply temperature θo, the other one of the low value selector LSE is given to the input of

たゞし、送水温度θoの指令値は、この場合、
送水温度θoが10℃のとき0%、5℃のとき100%
となる100分率として定められる。
However, the command value of the water supply temperature θo is, in this case,
0% when the water supply temperature θo is 10℃, 100% when it is 5℃
It is determined as a 100% rate.

このため、冷凍機R1,R2の各定格能力を共に
100tとすれば、係数変換器FCVの出力は、1台
運転のとき50%、2台運転のとき100%となり、
1台運転時には、演算器PID1からの指令値が0
〜50%未満の範囲であれば、低値セレクタLSEが
演算器PID1からの指令値を選択し、演算器PID2
PID3へ設定値として送出するのに対し、指令値
が50%以上となれば、低値セレクタLSEが係数変
換器FCVの出力を選択し、これを演算器PID2
PID3へ設定値として送出するものとなり、この
設定値および、温度センサT1,T2からの送水温
度θoを示す信号So1,So2に基づき、演算器PID1
PID2が各々PID演算を行ない、送水温度θoを制
御する信号Sc1,Sc2を冷凍機R1,R2へ送出する
ことにより、第4図のとおり送水温度θoが制御
され、空調負荷量LAが0〜ほゞ25%では、送水
温度θoが空調負荷量LAに応じて低下するのに対
し、空調負荷量LAがほゞ25%〜50%では、送水
温度θoがほゞ7.5℃の一定値に保たれ、これによ
つて1台運転時の制限値LV1が定められる。
For this reason, the rated capacities of refrigerators R 1 and R 2 are both
If it is 100t, the output of the coefficient converter FCV will be 50% when one unit is operated and 100% when two units are operated.
When operating one unit, the command value from computing unit PID 1 is 0.
If the range is less than ~50%, the low value selector LSE selects the command value from the computing unit PID 1 , and the command value from the computing unit PID 2 ,
The set value is sent to PID 3 , but if the command value is 50% or more, the low value selector LSE selects the output of the coefficient converter FCV and sends it to the calculator PID 2 ,
Based on this set value and signals So 1 and So 2 indicating the water supply temperature θo from the temperature sensors T 1 and T 2 , the calculation units PID 1 and
PID 2 each performs PID calculation and sends signals Sc 1 and Sc 2 that control the water supply temperature θo to the refrigerators R 1 and R 2 , so that the water supply temperature θo is controlled as shown in Fig. 4, and the air conditioning load is When L A is 0 to approximately 25%, the water supply temperature θo decreases according to the air conditioning load L A , whereas when the air conditioning load L A is approximately 25% to 50%, the water supply temperature θo decreases approximately. It is kept at a constant value of 7.5°C, which determines the limit value LV 1 when one unit is operated.

また、2台運転時には、係数変換器FCVの出
力が100%となり、演算器PID1からの指令値が
100未満の間は、低値セレクタLSEが常に指令値
を選択し、これを設定値として演算器PID2
PID3へ与えるため、第4図のとおり、空調負荷
量LAが50〜100%未満では、送水温度θoが空調負
荷量LAに応じて低下し、空調負荷量LAの100%に
おいて2台運転時の制限値LV2へ達する。
Also, when operating two units, the output of the coefficient converter FCV is 100%, and the command value from the calculator PID 1 is
While it is less than 100, the low value selector LSE always selects the command value, and uses this as the set value for the calculation unit PID 2 ,
As shown in Figure 4 , when the air conditioning load L A is less than 50% to 100%, the water supply temperature θo decreases according to the air conditioning load L A , and at 100% of the air conditioning load L A , the water temperature θo decreases to 2. Reach the limit value LV 2 during machine operation.

なお、第4図においては、空調負荷量LA
ほゞ25〜50%のとき、還水温度θiに変化を生ずる
が、還水温度θiと送水温度θoとの温度差は、空調
負荷量LAに応じて増大するため、空調負荷量LA
と対応した冷房が行なわれる。
In addition, in Fig. 4, when the air conditioning load L A is approximately 25 to 50%, the return water temperature θi changes, but the temperature difference between the return water temperature θi and the water supply temperature θo depends on the air conditioning load. Since it increases according to L A , the air conditioning load L A
Cooling is performed accordingly.

したがつて、空調負荷量LAが50%近傍におい
て増減しても、送水温度θoが連続的に制御され
るものとなり、空調負荷ALの弁開度が送水温度
θoの変化に即応しなくとも、制御CTが空調負荷
量LAを誤判断することがなくなり、冷凍機R1
R2に対する運転台数の制御が安定なものとなる。
Therefore, even if the air conditioning load L A increases or decreases around 50%, the water supply temperature θo will be continuously controlled, and the valve opening of the air conditioning load AL will not have to respond immediately to changes in the water supply temperature θo. , the control CT no longer misjudges the air conditioning load L A , and the refrigerator R 1 ,
Control of the number of operating vehicles for R 2 becomes stable.

なお、第4図において、制限値LV2はあまり効
果的でないものと認められるが、冷凍機が3台以
上の場合は制限値LV1と同様に作用し、効果的と
なる。
In addition, in FIG. 4, it is recognized that the limit value LV 2 is not very effective, but when there are three or more refrigerators, it acts in the same way as the limit value LV 1 and becomes effective.

たゞし、第3図の構成は、マイクロプロセツサ
等による演算機能により実現してもよく、第4図
に示す制御状態を実現するものであれば、具体的
構成の選定は任意であり、冷凍機R1,R2の台数、
送水温度θo、還水温度θiおよび制限値LV1,LV2
等は、条件に応じて定めればよく、種々の変形が
自在である。
However, the configuration shown in FIG. 3 may be realized by the arithmetic function of a microprocessor or the like, and the specific configuration can be selected arbitrarily as long as the control state shown in FIG. 4 is realized. Number of refrigerators R 1 and R 2 ,
Water supply temperature θo, return water temperature θi and limit values LV 1 , LV 2
etc. may be determined according to the conditions, and various modifications are possible.

〔発明の効果〕〔Effect of the invention〕

以上の説明により明らかなとおり本発明によれ
ば、冷凍機の運転台数の切り換え時に送水温度が
連続的に制御されるため、空調負荷の弁開度が送
水温度に即応せずとも、制御上空調負荷量の誤判
断を生ずることがなく、冷凍機の運転台数制御が
安定に行なわれ、空調用冷凍装置の制御において
顕著な効果が得られる。
As is clear from the above explanation, according to the present invention, the water supply temperature is continuously controlled when switching the number of operating chillers, so even if the valve opening degree of the air conditioning load does not immediately respond to the water supply temperature, the air conditioning Misjudgment of the load amount does not occur, the number of operating refrigerators can be controlled stably, and a remarkable effect can be obtained in the control of the air conditioning refrigeration system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は冷凍装置の構成図、第2図は従来にお
ける空調負荷量と送水温度との関係を示す図、第
3図以降は本発明の実施例を示し、第3図は制御
回路のブロツク図、第4図は空調負荷量と還水温
度および送水温度との関係を示す図である。 R1,R2……冷凍機、P1,P2……ポンプ、CT…
…制御器、F……流量計、T1〜T3……温度セン
サ、RS1,RS2……定格設定器、SEL1,SEL2
…セレクタ、ADD……加算器、FCV……係数変
換器、PID1〜PID3……演算器、LSE……低値セ
レクタ、θo……送水温度、θi……還水温度、LA
…空調負荷量、LV1,LV2……制限値。
Fig. 1 is a block diagram of a refrigeration system, Fig. 2 is a diagram showing the relationship between air conditioning load and water supply temperature in the conventional system, Fig. 3 and subsequent figures show embodiments of the present invention, and Fig. 3 is a block diagram of a control circuit. FIG. 4 is a diagram showing the relationship between the air conditioning load amount, the return water temperature, and the water supply temperature. R 1 , R 2 ... Refrigerator, P 1 , P 2 ... Pump, CT...
...Controller, F...Flowmeter, T1 to T3 ...Temperature sensor, RS1 , RS2 ...Rating setting device, SEL1 , SEL2 ...
…Selector, ADD…Adder, FCV…Coefficient converter, PID 1 to PID 3 …Arithmetic unit, LSE…Low value selector, θo…Water supply temperature, θi…Return water temperature, L A
…Air conditioning load amount, LV 1 , LV 2 …Limit value.

Claims (1)

【特許請求の範囲】[Claims] 1 空調負荷量に応じて冷凍機の運転台数を制御
する一方、還水温度θiを示す信号Siと還水温度θi
の設定値SPiとの差に基づき還水温度θiがその設
定値SPiとほゞ等しくなるように送水温度θoの指
令値を演算し、前記冷凍機の運転台数に応じて送
水温度θoの制限値を定め、この制限値よりも前
記指令値が高い場合にはその制限値に応じて送水
温度θoの制御を行い、前記冷凍機の運転台数の
切り換え時に送水温度θoを連続的に変化させる
ようにしたことを特徴とする冷凍装置の制御方
法。
1 The number of operating chillers is controlled according to the air conditioning load, while the signal Si indicating the return water temperature θi and the return water temperature θi
A command value for the water supply temperature θo is calculated based on the difference between the return water temperature θi and the set value SPi, and a limit value for the water supply temperature θo is calculated according to the number of operating chillers. is determined, and if the command value is higher than this limit value, the water supply temperature θo is controlled according to the limit value, and the water supply temperature θo is continuously changed when the number of operating refrigerators is changed. A method for controlling a refrigeration device, characterized in that:
JP58047008A 1983-03-23 1983-03-23 Method of controlling refrigerator Granted JPS59173662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58047008A JPS59173662A (en) 1983-03-23 1983-03-23 Method of controlling refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58047008A JPS59173662A (en) 1983-03-23 1983-03-23 Method of controlling refrigerator

Publications (2)

Publication Number Publication Date
JPS59173662A JPS59173662A (en) 1984-10-01
JPH0245778B2 true JPH0245778B2 (en) 1990-10-11

Family

ID=12763135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58047008A Granted JPS59173662A (en) 1983-03-23 1983-03-23 Method of controlling refrigerator

Country Status (1)

Country Link
JP (1) JPS59173662A (en)

Also Published As

Publication number Publication date
JPS59173662A (en) 1984-10-01

Similar Documents

Publication Publication Date Title
US5736823A (en) Constant air flow control apparatus and method
US5447414A (en) Constant air flow control apparatus and method
US4353409A (en) Apparatus and method for controlling a variable air volume temperature conditioning system
US5199637A (en) Electronic thermostat having correction for internally generated heat from load switching
JPH0359343B2 (en)
US5588589A (en) Air conditioner
US4356961A (en) Dual deadband control system
JPS60200037A (en) Controller for temperature regulating system and method thereof
MXPA03008159A (en) Method for controlling a multiple cooling compartment refrigerator, and refrigerator using such method.
JP2708053B2 (en) Refrigerator temperature controller
JPH0245778B2 (en)
JP3320631B2 (en) Cooling and heating equipment
JPH0791765A (en) Heat source controller
JP3030169B2 (en) Control system for the number of absorption chillers
JPH0132903B2 (en)
JPH08271066A (en) Number-of-refrigerators controller for refrigerator
JPS6112176B2 (en)
JPH0814438B2 (en) Multi-room air conditioner
JPH06180152A (en) Chilled water feeding device
JP2000172301A (en) Control mode switch device and temperature control system
JPS61184367A (en) Refrigerant flow controller
JPS59122860A (en) Flow controller for refrigerant of air conditioner
JPH0221729Y2 (en)
JPH0424634B2 (en)
JPH0670537B2 (en) Heat source steam flow controller for absorption refrigerator