JPS6112176B2 - - Google Patents

Info

Publication number
JPS6112176B2
JPS6112176B2 JP56094672A JP9467281A JPS6112176B2 JP S6112176 B2 JPS6112176 B2 JP S6112176B2 JP 56094672 A JP56094672 A JP 56094672A JP 9467281 A JP9467281 A JP 9467281A JP S6112176 B2 JPS6112176 B2 JP S6112176B2
Authority
JP
Japan
Prior art keywords
heat
amount
supplied
time
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56094672A
Other languages
Japanese (ja)
Other versions
JPS57210230A (en
Inventor
Kensuke Okazoe
Hiroshi Muto
Tadamitsu Ryu
Hideaki Arisaka
Masayuki Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56094672A priority Critical patent/JPS57210230A/en
Publication of JPS57210230A publication Critical patent/JPS57210230A/en
Publication of JPS6112176B2 publication Critical patent/JPS6112176B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 本発明は、複数台の熱源を用いて一定時間内に
所要量の蓄熱を行う場合に、目標時刻や目標値の
変更が生じた場合でも対応が容易な、熱源の運転
台数決定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a heat source system that can easily handle changes in target time or target value when storing the required amount of heat within a certain period of time using multiple heat sources. This relates to a method for determining the number of operating vehicles.

例えばビルの空調を行う場合、夜間、冷凍機を
運転して蓄熱槽(冷水槽)に熱量を蓄えておき、
これを昼間の需要に充てることによつて、ピーク
負荷に対する冷凍機の設備能力を減少する方法が
多く用いられている。このような蓄熱のための冷
凍機の必要運転台数を決定するためには、運転開
始時の蓄熱槽の温度等から求められた所要蓄熱量
を、単純に一定時間で算術平均して供給熱量を求
めて運転台数を決定する方法が、従来一般に用い
られていた。しかしながら目標値(目標温度)や
目標時刻の変更によつて必要な供給熱量が増加し
たとき、運転台数を増加しなければならないが、
その設備の最大能力を超過してしまつて、所要の
蓄熱が不可能になる事態を生じることがあつた。
For example, when air conditioning a building, a refrigerator is operated at night to store heat in a heat storage tank (cold water tank).
A method is often used to reduce the installed capacity of the refrigerator for peak loads by allocating this amount to daytime demand. In order to determine the required number of operating refrigerators for such heat storage, the amount of heat to be supplied is simply calculated by arithmetic averaging over a certain period of time the required amount of heat storage determined from the temperature of the heat storage tank at the start of operation, etc. Conventionally, the method of determining the number of vehicles in operation has been generally used. However, when the required amount of heat to be supplied increases due to changes in the target value (target temperature) or target time, the number of units in operation must be increased.
In some cases, the maximum capacity of the equipment was exceeded, making it impossible to store the required amount of heat.

第1図は従来の算術平均を用いた運転台数決定
方法を説明している。同図において横軸は時間を
示し、縦軸は供給熱量を示している。いま現在時
刻t0において目標時刻t〓までの間に目標値に達
するものとし、所要蓄熱量を時間t〓−t0で算術
平均して当初の供給熱量QAを決定し、これによ
つて熱源の台数を定めて運転を開始する。以後、
所定の計算サイクルaごとに運転台数決定の計算
を行うことなしに、最初の台数のままで運転を続
ける。このようにして運転を継続して、ある時刻
oに到つて蓄熱量に不足を生じることが判明し
たとき目標値を変更し、これに対応して運転台数
を増加して供給熱量を増加させることが必要にな
る。しかしながら、その場合の所要供給熱量QB
が設備能力によつて定まる最大供給熱量Q0を超
過しているときは、所要の熱量を蓄えることがで
きず、QB−Q0,t〓−toの熱量不足を生じる
ことになる。
FIG. 1 explains a conventional method for determining the number of operating vehicles using an arithmetic mean. In the figure, the horizontal axis shows time, and the vertical axis shows the amount of heat supplied. Assume that the target value is reached between the current time t 0 and the target time t 〓, and the required heat storage amount is arithmetic averaged over time t 〓 - t 0 to determine the initial supply heat amount Q A . Determine the number of heat sources and start operation. From then on,
The operation continues with the initial number of vehicles without performing calculations to determine the number of vehicles in operation every predetermined calculation cycle a. The operation continues in this way, and when it becomes clear that there is a shortage in the amount of heat storage at a certain time t o , the target value is changed and the number of units in operation is increased accordingly to increase the amount of heat supplied. It becomes necessary. However, in that case, the required amount of heat to be supplied Q B
When exceeds the maximum supply heat quantity Q 0 determined by the equipment capacity, the required heat quantity cannot be stored, resulting in a heat quantity shortage of Q B −Q 0 , t〓−t o .

このように、従来の方法は所要運転台数を決定
するために、単純な算術平均の方法を用いていた
ため、目標時刻や目標値の途中変更に対して、最
大能力の制限から目標達成が不可能になる場合が
あつた。そしてこのような事態を避けるために
は、設計段階で装置能力にある程度の余裕を見込
んでおかなければならなかつた。一方、最初に平
均をとつて台数を決定する方法でなく、計算サイ
クルaごとに蓄熱槽温度から所要運転台数を決定
する方法をとつた場合は、温度データの収集や台
数決定の計算に時間がかかるため計算機の負荷が
増加する。
In this way, the conventional method used a simple arithmetic mean method to determine the required number of operating vehicles, which made it impossible to achieve the target due to maximum capacity limitations when the target time or target value changed midway. There were times when this happened. In order to avoid such a situation, it was necessary to allow for a certain amount of margin in the device capacity at the design stage. On the other hand, if the required number of units to be operated is determined from the heat storage tank temperature in each calculation cycle a, rather than the method of first determining the number of units by taking an average, it takes time to collect temperature data and calculate the number of units to be operated. This increases the load on the computer.

本発明はこのような従来技術の欠点を除去しよ
うとするものであつて、その目的は、目標時刻ま
でに目標値に達するように蓄熱を行う場合におい
て、運転途中で目標時刻や目標値の変更が生じた
場合に、最大能力を超過することなくこれに対応
することが容易な、熱源運転台数決定方式を提供
することにある。
The present invention aims to eliminate such drawbacks of the prior art, and its purpose is to avoid changing the target time or target value during operation when storing heat so as to reach the target value by the target time. An object of the present invention is to provide a method for determining the number of operating heat sources that can easily cope with the situation without exceeding the maximum capacity when this occurs.

本発明の熱源の運転台数決定方法は、必要な総
供給熱量の2倍を想定して供給熱量を決定して熱
源運転台数を定め、以後目標時刻まで直線的に減
少する運転曲線に沿つて熱源運転台数を定めるよ
うにすることによつて、目標時刻や目標値の途中
変更が生じても容易にこれに対応することができ
るようにするとともに、運転中、計算サイクルご
とにその都度所要運転台数決定の計算を行う必要
がないようにして計算機の負荷増加を防止するも
のである。
The method of determining the number of operating heat sources according to the present invention is to determine the amount of heat to be supplied assuming twice the total amount of heat to be supplied, determine the number of operating heat sources, and then calculate the number of heat sources in operation along an operating curve that linearly decreases until the target time. By determining the number of operating vehicles, it is possible to easily respond to changes in the target time or target value midway through, and the required number of operating vehicles can be determined each time during operation, during each calculation cycle. This prevents an increase in the load on the computer by eliminating the need to perform determination calculations.

以下、実施例について本発明を詳細に説明す
る。
Hereinafter, the present invention will be described in detail with reference to Examples.

第2図は、本発明の熱源の運転台数決定方法に
よる熱源運転台数決定方法を第1図の従来方法と
対比して説明したものである。また第3図は本発
明の方法をフローチヤートによつて示したもので
ある。
FIG. 2 illustrates a method for determining the number of operating heat sources according to the method of the present invention in comparison with the conventional method shown in FIG. FIG. 3 is a flowchart showing the method of the present invention.

本発明の方式においては、運転開始時、現在時
刻t0から目標時刻t〓までに目標値(目標温度)
に達するために必要な供給熱量をこれらのデータ
から計算して求める。すなわち底辺を現在時刻と
目標時刻との差の時間t〓−t0とし、必要な総供
給熱量を面積とする直角三角形を考え、その高さ
を最初に必要とする供給熱量QA′とし、以後、こ
の三角形の斜辺に対応する運転曲線に沿つて、そ
の時刻において必要とする供給熱量を定める。最
初の必要供給熱量QA′が装置の最大能力を超過す
るときは、最大供給熱量を与えるように最大能力
で運転する。供給熱量QA′が最大能力を超えない
ときは、供給熱量QA′に見合つた運転台数を計算
して、その台数で運転する。運転中は計算サイク
ルaごとに、運転曲線におけるその時刻の所要供
給熱量に対応する運転台数を計算して、その台数
によつて運転を行う。第2図においては供給熱量
A′が最大供給熱量Q0に等しい場合が例示され
ているが、供給熱量QA′は必ずしも最大供給熱量
Q0に等しい必要はない。但し最大供給熱量Q0
超えることができないことは言うまでもない。時
刻toにおいて、目標時刻、目標値に変更を生じ
たときは、その時点において再び本発明の方法を
適用して運転曲線を再設定する。但しこの場合計
算時点での必要供給熱量が最大供給熱量Q0を超
過しているときは、最大供給熱量で運転台数を定
める。次の計算サイクルにおいて、再び本発明の
方法を適用して運転曲線を再設定する。このよう
な手順を繰り返えして目標時刻まで運転を継続す
る。
In the method of the present invention, at the start of operation, the target value (target temperature) is set between the current time t0 and the target time t.
Calculate the amount of heat required to reach the required amount from these data. In other words, let us consider a right triangle whose base is the time difference between the current time and the target time t〓−t 0 , whose area is the total required amount of heat to be supplied, and whose height is the initially required amount of heat to be supplied Q A '. Thereafter, the required amount of heat to be supplied at that time is determined along the operating curve corresponding to the hypotenuse of this triangle. When the initial required amount of heat to be supplied Q A ' exceeds the maximum capacity of the device, it is operated at maximum capacity to provide the maximum amount of heat to be supplied. When the amount of heat supplied Q A ' does not exceed the maximum capacity, the number of operating units commensurate with the amount of heat supplied Q A ' is calculated and operated with that number. During operation, the number of operating units corresponding to the required amount of heat to be supplied at that time in the operating curve is calculated for each calculation cycle a, and operation is performed according to the calculated number of units. In Figure 2, a case is illustrated in which the amount of heat supplied Q A ′ is equal to the maximum amount of heat supplied Q 0 , but the amount of heat supplied Q A ′ is not necessarily the maximum amount of heat supplied.
Q does not have to be equal to 0 . However, it goes without saying that the maximum amount of heat supplied cannot exceed Q0 . When a change occurs in the target time and target value at time to , the method of the present invention is applied again at that time to reset the operating curve. However, in this case, if the required amount of heat to be supplied at the time of calculation exceeds the maximum amount of heat to be supplied, Q0 , the number of operating units will be determined based on the maximum amount of heat to be supplied. In the next calculation cycle, the method of the invention is applied again to reset the operating curve. These steps are repeated to continue operation until the target time.

このように本発明の方式では、運転開始時の供
給熱量を大きくして、その後次第に供給熱量を減
少するため、目標値の変更が生じても変更後の必
要熱量に対して供給熱量が不足するおそれが少な
く、目標値の達成が容易となる。
In this way, in the method of the present invention, the amount of heat supplied at the start of operation is increased and then the amount of heat supplied is gradually decreased, so even if the target value is changed, the amount of heat supplied is insufficient for the required amount of heat after the change. There is less risk, and it becomes easier to achieve the target value.

第4図は本発明の熱源の運転台数決定方法の一
実施例の構成を示すブロツク図である。同図にお
いて、1-1,1-2,……………,1-oは冷凍機、
2は蓄熱槽、3-1,3-2,……………,3-oは温
度センサ、4は計測回路、5は計時手段、6はデ
イスクメモリ、7はテーブル、8は供給熱量計算
手段、9は運転台数計算手段、10は発停制御回
路である。また20は処理装置(CPU)を、3
0は現場を示している。
FIG. 4 is a block diagram showing the structure of an embodiment of the method for determining the number of operating heat sources according to the present invention. In the same figure, 1 -1 , 1 -2 , ……………, 1 -o are refrigerators,
2 is a heat storage tank, 3 -1 , 3 -2 , ……………, 3 -o is a temperature sensor, 4 is a measurement circuit, 5 is a timing means, 6 is a disk memory, 7 is a table, 8 is a supply heat amount calculation 9 is a means for calculating the number of operating vehicles, and 10 is a start/stop control circuit. Also, 20 is the processing unit (CPU), 3
0 indicates the site.

第4図において、冷凍機1-1,1-2,…………
…,1-oは蓄熱槽2にその発生した熱量を供給す
るように装置されている。蓄熱槽2に設けられた
温度センサー3-1,3-2,……………,3-oの出
力は、計測回路4に入力されて各点における温度
の計測値のデータを発生する。一方、計時手段5
は現在時刻のデータを発生する。またデイスクメ
モリ6はその上に、目標時刻、目標値およびそれ
ぞれの冷凍機1-1,1-2,……………,1-oの装
置能力のデータを格納したテーブル7を有する。
In Fig. 4, refrigerators 1 -1 , 1 -2 , ......
..., 1 -o is arranged to supply the generated heat to the heat storage tank 2. The outputs of the temperature sensors 3 -1 , 3 -2 , ......, 3 -o provided in the heat storage tank 2 are input to the measurement circuit 4 to generate data of the temperature measurement value at each point. On the other hand, the timing means 5
generates current time data. Further, the disk memory 6 has thereon a table 7 storing data on target times, target values, and device capacities of the respective refrigerators 1 -1 , 1 -2 , . . . , 1 -o .

供給熱量計算手段8は、温度計測値のデータと
現在時刻のデータおよびテーブル7における目標
時刻と目標値のデータから必要な供給熱量の値を
計算する。さらに運転台数計算手段9は供給熱量
のデータとテーブル7上における各冷凍機の装置
能力のデータから運転すべき冷凍機の台数を計算
する。発停制御回路10は運転台数のデータから
運転すべきそれぞれの冷凍機に対する発停の制御
を行う。運転途中の計算サイクルにおける冷凍機
の発停制御は、その時刻のデータと目標時刻とか
ら三角平均によつて逓減された供給熱量によつ
て、計算サイクルごとに運転台数を決定して行
う。外部条件によつて目標時刻、目標値が変更さ
れたときは、最初の運転台数決定の手順に従つて
新たなデータを用いて計算を行なつて必要な運転
台数を決定する。
The supply heat amount calculating means 8 calculates the value of the necessary supply heat amount from the temperature measurement value data, the current time data, and the target time and target value data in the table 7. Furthermore, the operating number calculating means 9 calculates the number of refrigerators to be operated from the data on the amount of heat supplied and the data on the equipment capacity of each refrigerator on the table 7. The start/stop control circuit 10 controls the start/stop of each refrigerator to be operated based on data on the number of units in operation. The start/stop control of refrigerators in a calculation cycle during operation is performed by determining the number of refrigerators in operation for each calculation cycle based on the amount of heat to be supplied, which is reduced by triangular averaging from the data at that time and the target time. When the target time and target value are changed due to external conditions, calculations are performed using new data according to the initial procedure for determining the number of operating vehicles to determine the required number of operating vehicles.

以上説明したように本発明の熱源の運転台数決
定方法によれば、運転開始時必要な総供給熱量の
2倍を想定して供給熱量を定め、以後目標時刻ま
で直線的に減少する運転曲線に沿つて熱源運転台
数を定めるので、目標時刻や目標値の途中変更が
生じてもこれに対応することが容易であつて蓄熱
量の不足を生じるおそれが少なく、また設備能力
に余裕を見込む必要がないので甚だ効果的であ
る。
As explained above, according to the method for determining the number of operating heat sources of the present invention, the amount of heat to be supplied is determined by assuming twice the total amount of heat to be supplied at the start of operation, and thereafter the amount of heat to be supplied is determined based on the operating curve that decreases linearly until the target time. Since the number of heat sources in operation is determined based on this, even if the target time or target value changes midway, it is easy to respond to this change, there is less risk of insufficient heat storage, and it is necessary to allow for a margin in the equipment capacity. It is very effective because there is no such thing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は算術平均を用いた運転台数決定方法の
説明図、第2図は本発明の熱源の運転台数決定方
法による運転台数決定方法の説明図、第3図は本
発明の熱源の運転台数決定方法を示すフローチヤ
ート、第4図は本発明の三角平均方式の一実施例
の構成を示すブロツク図である。 1-1,1-2,……………,1-o:冷凍機、2:
蓄熱槽、3-1,3-2,……………,3-o:温度セ
ンサ、4:計測回路、5:計時手段、6:デイス
クメモリ、7:テーブル、8:供給熱量計算手
段、9:運転台数計算手段、10:発停制御回
路、20:処理装置(CPU)、30:現場。
Fig. 1 is an explanatory diagram of a method for determining the number of operating heat sources using the arithmetic mean, Fig. 2 is an explanatory diagram of a method for determining the number of operating heat sources according to the method of determining the number of operating heat sources of the present invention, and Fig. 3 is an explanatory diagram of the method of determining the number of operating heat sources of the present invention. FIG. 4 is a flowchart showing the determination method, and is a block diagram showing the configuration of an embodiment of the triangular averaging method of the present invention. 1 -1 , 1 -2 , ……………, 1 -o : Freezer, 2:
Heat storage tank, 3-1 , 3-2 , ……………, 3 -o : Temperature sensor, 4: Measurement circuit, 5: Time measurement means, 6: Disk memory, 7: Table, 8: Supply heat amount calculation means, 9: means for calculating the number of operating units, 10: start/stop control circuit, 20: processing unit (CPU), 30: site.

Claims (1)

【特許請求の範囲】[Claims] 1 蓄熱槽の温度を目標値にするために必要な熱
量を複数の熱源にらつて目標時刻までに分散して
供給するシステムにおいて、必要な総供給熱量を
面積とし現在時刻から目標時刻にいたる経過時間
を底辺とする直角三角形の斜辺の高さによつて経
過時間の各点における供給熱量を求める三角平均
によつて熱源の運転台数を定め、目標時刻、目標
値の変更があつたときはその時点での必要総供給
熱量に対して再び三角平均によつて残余の経過時
間における供給熱量を定めて運転台数を決定する
ことを特徴とする熱源の運転台数決定方法。
1 In a system that distributes and supplies the amount of heat required to bring the temperature of the heat storage tank to the target value by a target time using multiple heat sources, the total amount of heat supplied is the area and the progress from the current time to the target time. The number of operating heat sources is determined by triangular averaging, which calculates the amount of heat supplied at each point in the elapsed time based on the height of the hypotenuse of a right triangle with time as the base, and when the target time or value changes, the number of heat sources is determined. A method for determining the number of operating heat sources, characterized by determining the number of operating units by determining the amount of heat to be supplied in the remaining elapsed time by again using triangular averaging with respect to the total amount of heat to be supplied at the time.
JP56094672A 1981-06-19 1981-06-19 Triangular average method Granted JPS57210230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56094672A JPS57210230A (en) 1981-06-19 1981-06-19 Triangular average method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56094672A JPS57210230A (en) 1981-06-19 1981-06-19 Triangular average method

Publications (2)

Publication Number Publication Date
JPS57210230A JPS57210230A (en) 1982-12-23
JPS6112176B2 true JPS6112176B2 (en) 1986-04-07

Family

ID=14116721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56094672A Granted JPS57210230A (en) 1981-06-19 1981-06-19 Triangular average method

Country Status (1)

Country Link
JP (1) JPS57210230A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334694A (en) * 1986-07-29 1988-02-15 松下冷機株式会社 Card type vending machine
JPS63115296A (en) * 1986-10-31 1988-05-19 松下冷機株式会社 Card type vending machine
JPS63132391A (en) * 1986-11-21 1988-06-04 松下冷機株式会社 Card type vending machine
JP2006038276A (en) * 2004-07-23 2006-02-09 Hitachi Air Conditioning System Co Ltd Ice thermal storage type air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289251A (en) * 1985-06-14 1986-12-19 Yamatake Honeywell Co Ltd Control of heat accumulating operation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334694A (en) * 1986-07-29 1988-02-15 松下冷機株式会社 Card type vending machine
JPS63115296A (en) * 1986-10-31 1988-05-19 松下冷機株式会社 Card type vending machine
JPS63132391A (en) * 1986-11-21 1988-06-04 松下冷機株式会社 Card type vending machine
JP2006038276A (en) * 2004-07-23 2006-02-09 Hitachi Air Conditioning System Co Ltd Ice thermal storage type air conditioner

Also Published As

Publication number Publication date
JPS57210230A (en) 1982-12-23

Similar Documents

Publication Publication Date Title
US6860431B2 (en) Strategic-response control system for regulating air conditioners for economic operation
US4483152A (en) Multiple chiller control method
US20180172309A1 (en) Management apparatus for plurality of air conditioning apparatuses
JPH0886478A (en) Ice storage type refrigerator unit
US4660759A (en) Optimum start/stop dependent upon both space temperature and outdoor air temperature
US5539382A (en) System for monitoring the operation of a condenser unit
JP6116097B2 (en) Thermal storage system and control method thereof
JPH08226682A (en) Ice thermal storage type cooler
JPS6112176B2 (en)
JP2020012564A (en) Quantity control device and program
JPS63140236A (en) Control system for the number of heat source machines
JP4563825B2 (en) Refrigerator operation method and equipment comprising the refrigerator
JP5955206B2 (en) Demand control apparatus and method
EP3754269B1 (en) Method and associated computer readable medium for controlling the defrost cycle of a vapor compression system
JPS60251336A (en) Optimum control of heat accumulating tank
JP6203131B2 (en) Control device for refrigeration cycle apparatus and air conditioning system
JPS583534A (en) Automatic monitoring interval setting system
JPH0876858A (en) Heat source control system
CN118582824A (en) Air conditioner control method and device, air conditioner and computer readable storage medium
JPS6335904B2 (en)
JPH06159819A (en) Air conditioner and method for controlling the same
JPH0684835B2 (en) Defroster for air conditioner
JP2022190677A (en) Operation device and method
JPH0518390A (en) Operating number control device for pumps
JPH0232540B2 (en)